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§ 1. Introduction

In the previous paper® (Part I of this paper) we have presented
the general procedures of Imai’s thin-wing-expansion method with some
modifications and extentions. The usefulness of this method has been
demonstrated in several cases, as described in the previous paper. The
flow at subsonic speeds past an aerofoil with finite edge angles, which
is important from both theoretical and practical points of view, has
not yet been studied analytically in detail. In this paper we shall
apply the thin-wing-expansion method to a symmetrical biconvex circular
are aerofoil, as a representative of such aerofoils.

§ 2. Procedures of the Calculation

For convenience’ sake we shall summarize here the actual pro-
cedures for the ealculation of the velocity distribution over the surface
of an aerofoil. :

We consider a symmetrical aerofoil with its chord placed parallel
to the undisturbed flow. Let its contour be given by an equation

ypzyp(wp) (— léxp_g_l) .

This equation is also written using a parameter ¢ in the following
form :

a,=cos I (—r=d=n) , } 1-(4.10)”

Yp=9()=0:() + go(F) + g5(3) + O(&) .
The points at #=0 and ¥==n (or —=x) correspond to the trailing and
leading edges of the profile respectively. ¢i(d), ¢.(%) and gs(}) are
terms of the order of magnitude of & & and & respectively, & being
a small parameter representing the thickness of the aerofoil.
We consider an auxiliary aerofoil, which is given by the equation
in the ¢-plane,

{=E+1n; =z, =MLy ,
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2> The equation (4.10) of Part I. Hereafter we shall refer to the equations of the
previous paper by this notation.
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where p=1/1—M*, and M is the Mach number of the undisturbed flow.

We must first determine the function, by which the region outside
the profile in the ¢-plane is mapped onto the region outside the unit
circle in the Z-plane (Z—=e¥). If the thickness of the profile is small,

this mapping function can be expanded as follows:

§(0)=cos 0+ &.(0)+ &:(0) +6,(0) + O(%) , ] 1-(4.2)
7(0)= 71(0) + 7:2(0) + 75(0) + O(&Y)
The expressions for &,(0) and 7,(0) in terms of g,(0) (m=1,2,3) are

given by the equations I-(4.13).
The velocity potential is also expanded as follows :

D=+ G+ ot st O(EY I-(2.5)

where the velocity of the undisturbed flow is assumed to be unity and
¢ is the real part of the complex function G,. The functions G, are
the solutions of the differential equations derived by linearization and
iteration, and should obey the following conditions :

(i) oG,/a¢ is one-valued and continuous everywhere in the flow;
(ii) as —oo, 3G, [/0¢—0; and
(iii) on the surface of the profile,

3<_C_»g + Gm)=o .
222
The full expressions for G,, have been obtained in § 3 of the previous
paper : G; in 1-8.8), G, in 1-(8.4) and I-(8.5), and G; in I-(8.7) and
1-(3.8). ' '

The potential functions ¢, have thus been determined successively,
so that the veloeity distribution over the surface of the aerofoil ecan be

calculated by one of the formulae I-(5.1), I-(5.3), I-(6.5), I-(5.7) and
1-(5.8).

The Flow past a Symmetrical Circular Arc Aerofoil
§ 3. The Shape of the Profile and its Mapping Function

The shape of the profile under consideration is shown in Fig. 1.
The upper surface of the profile is expressed by the equation,

&%+ (¥, +cot 2P)*=cosec? 2 (—1<z,<1),
where 4/ denotes the leading or the trailing edge angle. Since the

profile is assumed to be sufficiently thin, 8 is a small quantity and
Y, can be expanded in a series of 8 as follows:

yng(l —cos 2¢) + 2%3(7—4 cos 28 —3 cos 43) +O(5) .



June 1954 Velocity Distribution over the Surface of a Symmetrical Aerofoil II 61

If we use the thickness Y
ratio ¢=tan f instead of £,
the whole contour of the
profile is expressed by the
equations :
x,=c08 ¢ (—n<d<n),
Yp=9(3)=0:1(¢) + 9:(F)
+95(3) +O() ,
3.1)

where

()= iga —c0s29) ,

g3(§)=0 ’
3
gs()= fc—tg—(l —cos 49) .

(3.2)
In these expressions, we
shall take the wupper sign
(+) for the upper surface
(0<9<7), and the lower
sign (—) for the lower sur-
face (0=#>=—=). Thanks
to this notation, manipu- ,
lation of infinite series in ¢ may be avoided even in the case of profiles
with finite edge angles.

Fig. 1.

We must first obtain the conjugate Fourier series for g(6). The
formula 1-(3.17) is favourable for this purpose. For example,

s =__1_JS“L _ =0
gl(ﬂ)\ 21 02(1 cos 2¢) cot 5 de

0 ¢ @ —0 }
-\ 21— eos2¢)cot d
Lz( cos 2¢)c 5 ¢

= —i{2 cos 0 — (1 —cos 20) log ’tan %H .

T

The factor log|tan(6/2)| will appear so frequently throughout this
analysis, that it is convenient to adopt the simple notations

1(0)= Iog‘ tan _';i

, l%ﬁ)z(logl tan -g—‘)z , l"’(é’)E(lOgl tan gl)g .
3.3)
Then
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g5 (0)= — b {2 cos §—(1—cos 20)1(0)}

and similarly | 3.4)

g (0)—= — {gcos 0+2 cos 86 — (1— cos 40)l(0)}

Substituting from (8.2) and (3.4) 'into the formulae I-(4.13), the map-
ping function correct to the order of #* is obtained as follows:

m(0)= & tﬂ—;— (1—cos 26) ,
£(0)= tpl (1—cos20)(6),
T

()= F tw% (cos 6 —cos 36)I(6) ,

iz(cos 0—cos 30)(1:0)— =),

§,(0)=— t*1*
e {(1 — cos 40)4(0) +(1— 4 cos 20+ 8 cos 40)(8) } (8.5)
+ tZ/zMZ—(l —cos40) ,

£(0)=— 17 {(1 +8 cos 20 —9 cos 40) 4(0)

+(1—4 cos 20+ 3 cos 40)53(0)}

+ tC‘//M“ {2(cos 0—cos 30)+ (1 —cos 40){(0)} .

§ 4. Velocity Potential

The first approximation. The equation I-(3.3) is rewritten in the form :

Gi=f(0)= — —(?7 (0) +1im(0)) .

Then we get for the profile considered,

f(@):il[{z cos 0 — (1—cos 20)(8)} F i (1—cos 26) ] . @
pom 2

Evidently £(0) satisfies the conditions (ii) and (iii) assigned for G,. But
af __t4gn a{(1+cos 01(6)) + i ™ cos a},
do J7 2

and —ggr:O((sin 0)-%) as 0 tends to 0 or =, since the}proﬁle in the &-
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plane has the finite edge angle 4483 (§=4pf/7). Therefore le?:g%(é@ %g

vanishes at =0 or =; that is, f(0) satisfies also the condition (i).
Taking this fact into acecount, we shall put in later calculations

g_g‘=%—i—{(l+cos 0U(6)) i Z-cos a} 4.2)

as the first approximation.
Hence f(6) is certainly the required first approximation for G, and
its real part gives ¢,(0).

The second approximation. f3 is determined in a similar way:
f‘z’:t?gl:j@ cos ¢ +i(cos 0 — cos 30)<l2(0) ——E)}
T 2 4
+ 17 (cos 0—cos 30)l(0)] . (4.8)

The pair of gi and fi does not contribute to the value of G, on
the surface, so that we can save its calculation.

g=0SF 8 [{cos 6+ cos 26 1(6)
a¢ L
—~L (cos 6 cos 80)(12(0) +-’T—2)} +1 —”—] ,
4 4 2 4.4)
and
5 t? 8 . T }
2= _— l 0 :t T bl
a e ﬁz{ O£ 2 )
sinee the conjugate Fourier series for +x/2 is just equal to I(6).
Further,
gg:.]?g ’
3:=. C_z_f;>2d =S df ? — 1
3 ‘ S(dc ¢ (d—c)( sin 6)do
_ % ;ﬂz[{‘l c0s 6 — (3 cos 0 +cos 86)—4(1—cos 20)I(0) “@.5)

— (cos 0— cos 30)1*(6) ——432(0)} +47{2 cos 20

- —(cos 0—cos 86)I(0) —45,(6) } ] .

In this expression, we have put
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sl(o)=go sin 0 1(0)d6
5,(0) = S" sin 6 2(6)d6 | (4.6)°
sg(a)=S9 sin 6 I{(6)d0 .

s;(0) will appear later in the expression for G;.
The G, is the linear combination of (4.8), (4.4) and (4.5) as expressed
in I-(3.4) and I-(3.5), that is

G2=f3+%2<1+u){2(gz+fz>+(gz+f3>} : 4.7)

The second approximation of the velocity potential, ¢,(6), is the real
part of G,.

The third approximation. g and fi can be obtained quite similarly
to ¢ and fi. The calculations for G; are so lengthy that their final
expressions have been summarized in Appendix B.

§ 5. Velocity Distribution

So far we have determined the mapping function and the potential
funetion for a symmetrical circular arc aerofoil correct to the order
of £2. Now we are ready to compute the velocity distribution over the
surface of the aerofoil correct to the same order. We may use any one
of the formulae described in §5 of Part I. Among those formulae,
I-(5.8) expressed in terms of ¢ is very convenient for practical compu-
tations. It is because that the value of & corresponding to a definite
point on the surface of an aerofoil is fixed, while that of @ correspond-
ing to the same point varies as the thickness and the Mach number of
the undisturbed flow increase. By making use of the formulae I-(5.8),
we have obtained the following expressions for the velocity distribution :

¢ =1+ q:() + qu(?) + () + Ot , (5.1)
where

G =t _,11 (1+cos 8 (), ‘ (.2)
r 1. 2 o

I ) =t [~§(1 — cos 20)+ 2, {B(L+2 cos # [(3))+ (1+8 cos 20)1(9) }]
+t2—]ll§(1 + u)[—%(l — ¢os 2¢9) + —i—z{10(1 +2 cos ¢ (D))

+(3+5 cos 2&)12(&)}] , (5.3)

3) 81(0) can be expressed in terms of the known functions:
81(8)=1log | sin 6 | —cos 0 l(8) —~log 2,
while $2(6) and s;(6) are newly defined functions.
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Gane(9) = £° i[—gi {2(1 =3 cos 29) + (5 cos 2—3 cos 38) ()}
. T
+ Sig {121 +8 cos & I(#))+ 6(1 +3 cos 29)12(S)
T

+ (cos ?+ cos 319)l3(19)}]

M7 2 (2 5 c0329) + (cos 0 — cos 39)(9)]
p L38r (\3

=2 {4(1+8 008 9U(9) +6 o 20 1(9) — (cos = 003 3N)P(9)} |

+ ttj? (1+) [ 31 {10(% + cos 2-&) — (21 cos 9 —5 cos 3&)5(&)}

8
+%3 {68(1 +3 cos #1()) + 2(27 + 51 cos 28)12(8)
+ (15 cos 9+ 17 cos 39)1(S) }]

M (3 1 B) 1 2@+ T) v+ 120 [L{ (% +2cos20)
%% 3z (\3

+ (cos 9+ cos Sﬂ)zw)} + 547;5 (4(1+8 cos 9 1(5))

+3(1+2 cos 28)12(8) + (cos I -+ eos 3&)13(19)}]
M‘Z
P

(e 3 )
X| — 4 ———+=+4 2
[977 1—1—cos61+8Jr cos 24

+t

[1+%2 2(+ l)+(2r+9)u+7y2}:l

+ (% +3 cos ¢+ 2 cos 3&)[(&) —381(29)}

32

+ -
972

{8(1 +38 cos & 1)) + 3(3+ 4 cos 2D

+2(2 cos 9+ os SNB() +6-— 5P ¢ (9) —81(9)s,()
1—cos2#

+ @@ +o} |

4 = k
+ tﬁ% [8(r +8) + 227 + 11y + 16:)2},_—}— {2(1+cos 2 9)
T

(3 cos 9+ cos 39)I()} +%3 {4(1+8cos 8 U(&)
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+6(1+cos 20)12(8) + (3 cos I +cos 30)13(&)}]

+t3M 25 29

(14 ) [371{ 2 +2 oo 2&) +(3cos + 5 cos 3&)1(&)}

+ :‘:J); {20(1 + 8 cos & I(1)) + 15(1 + 2 cos 28)[*(H)
+ (3 cos 4 +5 cos 319)l3(z9)}:| . (5.4)

The meanings of the notations used here are as follows :
M: Mach number of the undisturbed flow,
7+ ratio of the specific heats (for standard air y=1.40),

p=y/ T3, v=LFL1M o _1.8030 8535 (cf. Appendix A).
These formulae cannot be applied for regions near the leading and the
trailing edge, where the expressions for ¢ diverge. For these regions
g must be calculated by the formula I-(5.2) or I-(5.8).

The velocity distribution for our profile obtained by the thin-wing-
expansion method is always symmetrical fore and aft. The maximum
velocity seems to occur at the mid-chord point unless a shock wave
appears. This maximum velocity is evaluated by putting d==/2 in
(5.1)~(5.4) as follows :

om0 (10 22)4 2 (14 20)

(10 ) 2 (202

p\ 3z 7w 9z 87 3.7
M w( 5 .16
+ 3{(3r+5)+2(2r+7)u+12p}< §_+3n)
M Z
w21 +——{2<r+1>+(2r+9)u+7u}]
56 256 . 56
- 8 log 2y 296, 56
X( 2771' 37_[_ Og + 9 3+ 9 303
E 2y 16 < 62 160)}
16,7} — ___1
+ I {8(r+8)+22r+11)»+ 16} 3713+ /13( ) o s -3
+0() - (5.5)

§ 6. Numerical Results and Discussions

The velocity distributions over the surface of the symmetrical
circular arc aerofoil of the thickness ratio £=0.1, have been computed
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for various Mach numbers.

For the flow of an Incompressible fluid, the velocity distribution
for this aerofoil can be determined by means of the well known formula
of the von Karman-Trefftz transformation. In Appendix C, the results
by the thin-wing-expansion method are compared with this exact solu-
tion, and the accuracy of these approximations has been found satis-
factory. It seems to be generally accepted that the thin-wing-expansion
method would be applied successfully for the problems, which necessitate
the conformal transformation of the region of slender shape into a
circle.

Table I. Velocity Distributions over the Surface of a Symmetrical
Circular Arc Aerofoil t=0.1.

M=0.6 ” M=0.7 M=0.8
(dgg'.) @ qI qII qIII qI qI[ qIII qI qII qIII
9 | 0.988 | 0.7%60 | 0.776 | 0.770| 0.781| 0.762 | 0.725| 0.679 | 0.753 | 0.530
18 | 0.951 | 0.880 | 0.870 | 0.870| 0.866 | 0.853 | 0.840| 0.840 | 0.822 | 0.724
27 | 0.891 | 0.957 | 0.941| 0.941| 0.952| 0.929 | 0.919| 0.942 | 0.901 | 0.828
36 | 0.809 | 1.014 | 1.000 | 0.999 | 1.016 | 0.995 | 0.987 | 1.019 | 0.980 | 0.921
45 | 0.707 | 1.060 | 1.050 | 1.049 | 1.067| 1.053 | 1.047| 1.080 | 1.054 | 1.011
54 | 0.688 | 1.096 | 1.091 | 1.092) 1.108| 1.102| 1.100| 1.128 | 1.120 | 1.098
63 | 0.454 | 1.124 | 1.125 | 1.126| 1.139 | 1.142 | 1.144| 1.165 | 1.176 | 1.17
72 | 0.309 | 1.148 | 1.149| 1.151| 1.161 | 1.172 | 1.178| 1.191 | 1.217 | 1.287
81 | 0.156 | 1.156 | 1.165 | 1.168| 1.174| 1.190 | 1.196 | 1.207 | 1.243 | 1.275
9 | o | 1.159] 1.169 | 1.172| 1.178| 1.196 | 1.205| 1.212 | 1.252 | 1.288

Eennn. 1st approx. qo..... 2nd approx. g .... 2rd approx.

The numerical values of the magnitude of the velocity at the
surface of the profile are listed in Table I and their distribution curves
are shown in Figs. 2, 3 and 4.

It may be noted, that the velocity distribution curves do not pre-
sent any peculiarity, such as seen in the case of an elliptic eylinder,®
even at the point #=9° and up to the value of M=0.8.

Comparing these curves, it seems probable that the process of
iteration would converge at and below the Mach number M=0.7, but
diverge at M=0.8. On the other hand, there is no supersonic region
on the surface when M<0.7, while the fluid velocities in some region
near the mid-chord point exceed the local speed of sound at M=0.8.
In order to make the situation more obvious, the maximum velocities
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Qmax calculated by making use of (5.5) are plotted against Mach numbers
for each step of approximation in Fig. 5. In this figure the curve of
the critical speed q.., which coincides with the local speed of sound, is
also included.
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Fig. 2. Velocity distribution over the Fig. 8. Velocity distribution over the
surface of a symmetrical circular arc surface of a symmetrical circular are
aerofoil, t=0.1, M=0.6. aerofoil, t=0.1, M=0.1.

Here we may consider two kinds of critical Mach numbers. The
critical Mach number of the first kind is defined as that of the undis-
turbed flow at which the continuous potential flow past an aerofoil
first breaks down. The critical Mach number of the second kind is
defined as that of the undisturbed flow at which the local fluid velocity
first attains the local speed of sound somewhere in the flow. Comparing
the curves in Fig. b, the following conjecture would seem plausible :
The critical Mach number of the first kind and that of the second
kind would coincide with each other. In this regard, however, our
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present informations are far from complete and further investigations
are necessary. ' '
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X
Fig. 4. Velocity distribution over the
surface of a symmetrieal circular arc
aerofoil, t=0.1, M=0.8. '

It is very interesting to discuss about the results stated above, com-
paring them with those of the observations in the actual flow, or with
the results of resembling aerofoils, e.g. an elliptic eylinder, a circular
arc aerofoil with infinitesimal thickness, etc. We will report on these
subjects in a separate paper. - -

Here the author wishes to express his hearty thanks to Prof. I.
Imai for his suggestions and advices throughout this. work. He is
also indebted to Mr. W. Motizuki for the help in preparation of the
manuscript of this paper.
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Appendices

A. The Conjugate Fourier Series

In this analysis, it is necessary to determine the conjugate Fourier
series for the functions such as cos nf F(§). The F'(0)’s are +1 (that
is 1 for 0<60<zw and —1 for 0>0>—m=x), +0(0), +1*0) and others.

Here the integral formula I-(3.17)

R*(0)=— 21

Sﬂ R(p) cot SD;'gdfp ,

is favourable. By making use of recurrence formulae, we can reduce

Scos ne F(¢) cot 50;0 de  into SF(QD) cot £ ; 0 de , SF(go)dgo and

T

Ssin ne F(e)de ; that is

S cos ne F(¢) cot £ '2— 0 dy

—cos %BSF(go) cot 9”;‘9 de—sin né SF(gD)dgo

n-1 ' )
-2 1,2=1 Ssin {(n—p)0+ pe}F(p)de — Ssin neF(¢)dy . (A.1)
Then it is concluded that [cos n0 F'(6)]* exists if F'() is integrable in the

range —nr<0<m though F() has some singularities.
We put F(0)=+1, then

'[j:l]*=——21;{5: cot%—a—dgo—— Soﬂcot SD;H d(,o}

=£1ogl tan i‘sil(a) . (A.2)
T 2 T

By virtue of (A.l),

[+ cos 0 T* =—72r—{1+COS 010},

[+ cos 20]*=§_ {2 cos 0 +cos201(0)} ,
T

(A.3)
[+ cos 30]*:3’:{% +2 cos 20+ cos 30 z(e)} ,

T

[+ cos 40]*:3{% c0s 6 +2 cos 30+ cos 46 1(0)} i
T

/
In the case when F'(0)= +1(0),
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w1 S” p—0 _S° p—0
[+1(8)] 2ﬂ{ ") cot -0 dp —|" U0)cot £ dgo} |
:___1‘87”2 log tana‘ 4Md
2m Jo 2 lcos 20 —cos 2¢
1 o
e -7). A.4
RGOES: (A-4)
By making use of (A.l) again, we can get
x_ 1 gy . T N\
[+cos 0 1(O)]* = coso(z 0) 4),
«_ L[ iy T
[+ cos 20 1(0)]* = ﬂ{ 2+ cos 26 (z ) 4)} , (A.5)
w1 f_ gy —
[ cos 30 ()] _ﬂ{ 4 cos 0+ cos 30(z ®) 4)}.

J

Other conjugate Fourier series necessary for the calculations of G, and
G; are obtained by the similar treatments as follows :

[+ PO =2 (PO~ Z166) ),

[+ cos zz(a)]*:;_n{—zi + cos f (53(0) —-12?1(0))} :

2 *=_2_ = 39y — T°
[+ cos 20 L(O)]* = { . cos 0-+cos zo(z ©) —Z1 (o))} ,
[+ cos 36 52(0)]*=§_”{(4 +—1’522—)+ % cos 26 (A.6)

+ cos 30 (zg(a) _ gl(o))} ,

[+ cos 40 Z‘z(ﬂ)]*=3.i{<8+ Ej) cos 0 + g cos 30
3.

6
+ cos 40(53(0) —%21(0))} : y
[+ 8,(0)]* = % {-%2(1 — cos ) + (3,(0) + 0'2)} X

[ isz(ﬁ)]*=§2;{—§+f (1—cos 6) 1(6)

_%fslwn (33(0)+03)} ,
[+cos s, (0)]*=§2;{§ (1—cos 0) +§ (1—cos 6) cos 6 1(6)

A.7
—-%Zcos 0 5,(6) +cos 0(s;(0) + 03)}: ) S -0
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[+ cos 0 1(0)s,(0)]*= 1 {—%2 cos 0 —1i22(1—c0s 0) cos 0 1(6)
T

- f cos 0 s,(0) + cos 6 1(0)s,(6)

—% cos 0 (ss(é)+ag) } .

Here o, and o; are the constants defined as

oy — Sllogxdm — T 1.6449 3407,
01——9(7 6

_ _ESIM do = —3 ¢(3) = —1.8030 8535 ,
4 Jo 1—2x 2

where {(z) is Riemann’s {-function.

The above formulae for the conjugate Fourier series can be obtained
more directly on the basis of the theory of functions. But the ecalcu-
lations in this seetion may be useful as an example for analysis of
commonly used aerofoils.

B. Expressions for G;
g4 and fi are as follows:

fg—_—ﬁpé[{(zz; —272) cos 6+ (1 —cos 20)7(6)

+(1—4 cos 20+ 3 cos 40)(l3(0) —¥5(0))}

il {ﬂ(l —c0s 26) + (1—4 cos 20 + 3 cos 40)(312(0) —§>}}

+ ts_z‘/:’fi[{_z- cos 0+2 cos 30 — (1—cos 40)l(o)} + 7 (1—cos 46) ] ,

p 4rlL 3 2

gt 4 {4(1 — cos 260)1(6) + 4(cos 6 —cos 36) (zzw) + 1)

p 4

+(1—cos 40)(13(0) +_Zfzw))}

77 {4(1- c0326)— (1 - cos 16)(#0) + 15)}]

’bE- 4 ’

f;=ﬁé{(_l_6 +_212) cos 0+ 2 cos 30+ 4(1—cos 26)i(0)

p 3 9 3

~L—cos4) (r0) +210) )} -i3(h)

fim — tié[{(uﬁ) cos 0+ = cos 39+ 4(1+2 cos 20)1(0)
p 4 4
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+ (3 cos 0+5 cos 30)1(8) — (1 —cos 40)(13(0) + fzw))}
+ @%{4(2 + cos 20) +4(3 cos 6+ cos 30)1(6) — (1 —cos 40)(52(0) + g)}] ,
?_;_{(—+— cos 6+ _3— cos 30+ 4(2 +cos 26)I(6)

rLZ)
4

—La- cosan)(r0) + Tu0))} i@

+2(3 cos 0 + cos 30)(l2(0) —

g§=f§ ’
it 2 [{8 cos 0 —dr*(1—cos 6)—20(1—cos 20)i(6)
p 37 ‘
—14{cos 6 — cos ( %(8) )+ 16@\6) + )

5 3r*
—38(5—4 cos 20 — cos 40) (Z 6) —Tl(ﬁ)»
w 121{ —20(1 —cos 26) —28(cos 6 — cos 30)(0) + 325,(0)
—3(5—4 cos 20— cos 40)(31(6) — Z)}] :

95 —t_—2~ {8 cos 0 +4(1+ cos 26)1(0) +2(cos 0— cos 30)(?(0) —M)
p

3 n’ ]
+ (1 — cos 40)(l @) + le)) f
4 7;17_{4(1 + cos 26) —4(cos ¢ —cos 30)2(0) —(1—cos 40)<l2(0) + Ej>}:| ’
5 4/

Fo=— ﬁi{( 8 +2—”) cos 0+ 2™ cos 80+ 4(1+ cos 26)I(0)
p 7\ 3 9 3

—2(cos 0— cos 30)@(0) ——)———(1 — cos 40)(53(0) +;zzw))}
_%0(93) ’

gg:ﬁa ‘ \

f;:t—si[{% cos 0 +20 z*(1 —cos 0)—20(1 —cos 20)I(6)
¢ 6’ L . |
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200) —
+22(cos 6 —cos 30)(l (0) 1 )
—80(s,(8) + ) + 3(7 — 4 cos 20 —3 cos 40)([3(0) —37”2«0))}
Fi %{20(1 —cos 26) — 44(cos 6—cos 36)1(6) + 160s,(6)
—3(7—4 c03 20—3 cos 46)(314(6) — 2)7] ,
4/}
g —ﬁl[{ — (8+ E)coso — ™ 608 80+ 4(3+cos 26)I(6)
Y 2 2
+2(3 cos 0 +5 cos 36)12(0) + (1—4 cos 20+ 8 cos 40)(13(0) + fzw))}
+i %{4(1 +3 cos 20) -+ 4(5 cos 0+3 cos 30)I(6)
_ . ks ?]
+(1—4 cos 260 +3 cos 40)(5 © +7 )f :
f§=ﬁ_1_3{(8—2n2) cos 6+ 27 cos 30 +4(1 + 3 cos 260)I(6)
pow

+2(5 cos 0-+ 3 cos 30)(2(0) —gf)

1. (73 K |
+ 5 (1—4 cos 26+ 3 cos 40)(1 © + l(ﬂ)) [—13(99) »

gé°=—t—2i1~3[{(8 - 5”2) cos 0+ T cos 30+ 4(1+3 cos 260)1(0)

JIa s 2 2 '
+2(cos 0+ 8 cos 360)%(8) — (1 —cos 40) (zs(a) + g‘fzw))}
:t’i%{él(S—l— cos 26) +4(3 cos 6+ cos 30)(6)

— (1= cos 40)(#(0) + f)ﬂ ,

?4((8 | 2n° 2n*
Fo— — ..3_3{(—3—4— 5 )cos 6+ 5 cos 30+ 4(3+ cos 26){(6)

+2(3 cos 0+ cos 30)(#(60) - _Z_)

— La—cos40) (PO) + Z20) )} —insted)

gé1=%§8;§|:{2712+ (8—5);) cos 6 + —g—zcos 30 —4(1—3 cos 20)1(6)

+272 cos (1 — cos 0)1(6) —4n* cos 0 s:(6) — 6(cos 61— cos 36)1(6)
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—8(5,(0) + ;) — (1— cos 46) (l3(0) + fzw)) —8 cos 0(s,(6) + 02)1(0)}
i%{znz cos B(1— cos 6) + 4(3— cos 20) + 4(cos 0 —cos 360)(6) + 165,()

+(1— cos 40)(12(0) + i—) +16 cos 0 s,(6)I(8) —8 cos 6(s,(6) + 02)}] ,

237

fi= v 8{%+16 +(8 8">cosﬁ+%1cos80—gg-cosa(1 cos 0)

— 4(3—cos 20)1(8) —2(cos 6 —cos 36) (12(0) ) 8(s,(8) — )

— l(l — cos 40)(53(0) + ffzw)) — 8 cos 0(s,(6)— a)I(6)

+ %6_ cos 0(s,(60) + ag)f —iS(g2)
= 12
fu_ ¥ _4_[{ —8 cos 0+ 12(1 — cos 26)I(0) + 6(cos O— cos 36) (12(0) _ ff)
J 4
+(5—4 cos 20 — cos 40)(13(0) —¥Z(a))}
" _;5{12(1 — cos 26)+ 12(cos 6—cos 30)I(8)
7T2
+(5—4 cos 20 — cos 40)(3l2(0) - Z)}] ,
95 + g%z——f’ f-l— {(8-}— %) cos 0+ x* cos 36 —4(1 —3 cos 26)1(6)
/l
—6(cos 6—cos 36) (6) — (1—cos 40)(l3(0) + -Z_llzw))}

+ il{4(1 +cos 20) —4(cos 6 —cos 30)1(6) — (1 — cos 40)(12(0) + %)}] ,

rer=-5 448

—2(cos 6—cos 30)(52(0) —_Zf) - %(1 — cos 40)<l3(0) + -Zfzw))}

—i3(95' + 97 ,

3 2 '
95 + 2g§3=t—3 ig[{( 5;) cos 0+ % cos 30 —12(1 —cos 260)1(0)
pomL

—6(cos 0—cos 30)0X(0) ~8(s(6) + ) — (L cos 40)(l3(0) + %21(0))}
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+1 %{4(1 —cos 20) +4(cos § —cos 30)1(0) + 16s,(6)

+(1— cos 40)(12(0) + %)}] ,

foypgm b 4 {( 8 _ 16 ) cos 0+ 2™ cos 30 —4(1 —cos 20)I(6)
p7 P\ 3 9 3

—2(cos O— cosso)(zz(o) 4) 8(s,(0) + )

—La— cos40)(00) + Zu0))} ~i3(er + 20 |

gt 2 [{8 €080 | 8 cos §—4(1—8 cos 20)I(6)
P22 nflt sin? @
—6(cos 61— cos 30)(52(0) + 2) +(8—4 cos 20+ cos 40)(13(0) + ,5(0))}
ii%{él(?)— cos 26) +4(cos 6 —cos 36)I(0)

| —\(3—4.cos 20+ cos 40) (Zz(ﬁ) + %)}:I )

2 cos 0 8 227 27
242 Z*_W—{-—S ( ) 0s 0+ —— cos 30
s poa sin’@  \3 9 /¢ 3

_4(3— cos 26)I(6) — 2(cos 6 —cos 30)(Z2(0) - %)

+ %(3 —4cos 26 + cos 40)(53(0) + fzw))} — (g + 202

The expressions for pairs g3+ f3, 95+ f3, 98+ /3, and ¢+ fP~g' + 7
are omitted, since they do not contribute to the value of Gs; on the
surface of the profile. "

o, and o; are the constants defined in Appendix A.

The function G; is the linear combination of g and fi:

24
Gs=fi+ ;21 Bi(gi+ 1)) ,

where B’ are coefficients determined by M, 7 and v as given in I-(3.8).

The third approx1mat1on of the velocity potential, ¢, is the real part
Of G5 . ’

C. The Incompressible Flow past a Symmetrical Circular Arc Aerofoil

As is well known, the region outside a symmetrical circular are
aerofoil in the z—plane (see Fig. 1) is mapped onto the region outside
the unit cirele in the Z-plane by the followmg transformation due to
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von Karman and Trefftz:
el (Z-1y p—p—2E (C.1)
2+ 1 Z+1 T ’
Here is designated the chord length of the aerofoil as 2, and the

velocity of the undisturbed flow as unity. Since limgzlln , the

Z—>co

velocity potential @ is determined as follows :

1 ( 1 ) _
O=—(Z+ =). C.2
- 7 (C.2)
At the surface of the profile (Z=e"),
o—2 cos o, 40 _ _2 g, (C.8)
; K ao K ,
1+ (z tan %)E 2{1 — (tan%)xeos 52—”} —q2 (tan %)x sin '325
= ) = ) 6 \2x - 1‘7 (0'4)
. K K KT
1— (’b tan E) 1 Q(tan §> cos ?+ (tan E)
‘ a0 | Sm BKtangiY + (tan %) ~*—2cos '—627—7} . (C.5)

Then the magnitude of the velocity at the surface is given byr the
formula :

ao df _ sin’ 6 0\ g\« kT
=G0 a— w ((ng) (e g) —2es T €O

If the thickness ratio ¢é=tan~'f is sufficiently small, those terms
containing k¥ can be expanded into series in 3, especially

(tan 0 )'ﬂ =(tan iﬂl - %z(a) + ifz 2(6)— ”?fg BO)+ - - - - }. ,

2 2

where
Z(ﬂ)—-logltan l

Accordingly we can obtain the expansion formulae in 8 for «(6), y(0),
@(0) and ¢(0). By changing parameter from 3 to ¢, we can easily
verify that these formulae are in perfeet accord with the expressions
obtained in 8§83, 4 and 5; when M=0, as it ought to be.

In Table II, the results by the thin-wing-expansion method are
compared with the exact solutions (C.4) and (C.6). The accuracy of
the approximation is very good. Moreover even the second approxi-
mation seems to give satisfactory result, so long as the thickness ratio
is less than about 0.1.
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Table II. Velocity Distribution over the Surface of a Symmetrical
Circular Arc Aerofoil, £=0.1; Incompressible Flow.

(deg.) (D x(2) 2(3) x (exact) q» q® q(® g (exact)

9 0.9887 0. 9833 0.9833 0.9833 0.8076 0.8306 0.8293; 0.8293,
18 0.9399 0.9395 0.93%4 0.9397 0.9042 0.9132 0-9129, 0.9129;
27 0.8723 0.8726 0.8724 0.8729 0. 9655 0.9697 0. 96964 0.9696;
36 0.7843 0.7867 0.7854 0.7859 1.0115 1.0140 1.0137, 1.0137;
4b 0.6791 0.6815 0.6813 0.6817 1.0480 | 1.0498 1.04945 1.0494,
54 0.5597 | 0.5628 0.5627 0.5629 1.0769 1.0785 1.0781; 1.0781,
63 0.4292 0.4325 0.4325 0.4325 1.0990 1.1008 1.1002g 1.1002;
72 0.2906 0.2933 0.2934 0.2932 1.1148 1.1167 1.1161, 1.1161,
81 0.1466 0.1482 0.1482 0.1481 1.1242 1.1268 1.1266, | 1.12665

90 0 0 0 0 1.1273 1.1295 1.1288, 1.1288,
@O..... 1st approx. @..... 2nd approx. (8).....3rd approx.
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