Natural Science Report, Ochanomizu University, Vol. 4, No. 2, 1953 1}’51_
BEROAELFARE BRBEHRE F£4% £25 o

Dependeéent Experiments and Sufficient Statistics -
Hirokichi Kudo (T 7# 8. %) | |

Department of Mathematics, Faculty of Science,
Ochanomizu University, Tokyo

It seems that any sufficient statistic contains all the informations i
a sample. This is a justification for use of sufficient statistics (see [1]).
E. L. Lehmann showed, in this respect, that for any test function ¢(xy
there exists a test function ¢(¢) of a given sufficient statistic #(x), such
that E,¢(x)=E,4(t) holds for every 6 in the parameter space Q of dis-
tributions (Theorem 4. 1, [2], ¢f. [3]). Is the . converse of the above

.. statement. true?. :Blackwell’s paper [5] answered this question in the case

of Q. cons1stmg of n s1mp1e ‘hypotheses. - Aceording to his results [4], [5],
the sufficiency of a statistic t(z) is equrvalent to the condition. that- t(o:)»k
contains all the informations of a sample.in: every decision problems if’
we restrict ourselves to the case of finite.simple hypotheses.

The principal aim of this paper is to prove the converse proposition
of the above Lehmann’s result in Blackwell’s ease. To attain this aim,
we shall study the properties of the joint ‘‘experiment’’ of two depen-
dent ones. The other aim of this paper is these studies. :

The term ¢ experiment’ was definded, by .Blackwell, as a finite
ordered set of distributions. For two independent experiments « and (3,
Blackwell [4] (and the author [6] in the case n=2) defined the product
ax 8 as the st of joint distributions.of corresponding components of «
and 8. And in the case when every component of /2 depends on the
corresponding component of «, a similar definition can be adopted. In
this paper we shall give an integral representation to this joint experi-
ment. ' : ~
The principal tool in the following is the theory of convex bodies.
In the first section we shall outline the relations between the supporting
function_and the convex body. The details of this may be found in [7].
In section 2 we shall define an integral of a convex body valued function.
A(x) with respect to an experiment, and learn properties of this integral
(Theorem I and II). It will be clear, in Theorem III of section 3, that
A(x) can be regarded as a conditional experiment of a dependent variable,.
and then the first aith will be attacked in Theorem IV.

1. Supporting function. Denote the n-space by E”, and its points
by €=(&, + -+, &) Suppose that ACR"’ be a convex body (=bounded,
closed, convex and non-empty subset), and denote the supporting fune-
tion of A by H(, A), that is, the function H(&, A) is defined by
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HE, A)= sup L€, .
: A=(0y,..0,0p)EA
Thus defined H(&, A) is a continuous function of &, such that
i) H(0, A)=0, o | .

i) H(ké, A)=kH(, A) for all positive number k.

ili) HE+7, A)<H(E, A)+H(n, A),
and therefore ;

iv) all diﬁ'erentials

H(E,n, A)= lim HE+n, A) —H(, A)

-0+ h

of H(¢, A) exist. (see [7])
~ Conversely, a real valued function H(¢) of £e R" satisfying the con-
ditions i), ii) and iii) determines a convex body.

The differential H'(&, n, A) has the following meaning: The inter-
section A of the body A and the hyperplane >,a,=H(§, A) is an at
most (n—1)-dimensional convex body supported by hyperplanes >n0,=
H'(&, 9, A). This set A; is a part of the surface of A. Each point of
this set A is called the supporting point of A in direction é&.

These differentials H'(&, , A) being -also the supporting function of
- A, each of them has a differential H'/(¢, 5, £, A), and so on. Thus we
‘have, for n vectors £, &, ..., &", a set of supporting functions H(¢!, A),
H (&, 8, A), ..., H"™D(E, &, ..., &, A), such that H®(&, ..., &, A)is
the differential of HY"(¢&, ..., &, A) in direction &**=(&{**, &*, ..., &*Y),
and that H®(, ..., &%, A) is a supporting function of the at most
{n—1t)-dimensional convex body A¢,...,¢, the intersection of Ag,... g1
and the hyperplane 3 &la,=H"V(E, ..., ¢, A), i=1,2,...,n—1.

For n linearly independent vectors &, &, ...,&" in R", the solution

@=(qyy Ayy +++,a,) 0f a system of linear equations
3 Ga,=H(E, A),
(1 ) 2 E%a’t=H,(Ely 52’ A) ’

Z E;la.,;‘:H(n_l)(Ely &, ..., 8", A) ’

exists and is unique. This solution a=(a, ..., a,) is obviously an extreme
point of A. And every extreme point is given by the solution of such

system.

2. Integral of convex bodies. Let (X,®8B) be a measurable space,
HE)=((B), .. ., p(E)) (0<p,<1, i=1, ..., n) be an n-dimensional vector
valued measure or an experiment defined on (X;®B). The component
measures #, (i=1,...,n) of ¢ being absolutely continuous - with - respect
10 a measure A(E)=(Xr.4(E))/n, we can represent x, as an integral -

PN
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pi(E>=§ Fl@)di@), EeB,

“where f,(x) is a B-measurable function (=1, ..., n).

A real valued function H(¢, x) of a vector £ R” and a pomt x of

“the space X is called a measurable supportmg function, if H(E, x) satis-
fies 1), ii), iii) of section 1 and is bounded as a function of & for almost (1)
all fixed z, and is B-measurable as a function of x for any fixed &.
“This measurable supporting funection H(&, x) defines a convex body A(x)
-for almost (1) every xe X. We call this mapping A(x) of X into a set
of convex bodies a measurable convex body valued function on X.

Lemma 1. Let H(&, x) be a supporting function for almost (1) every
Jized xe X. It is a mecessary and sufficient condition for H(E, x) to be
@ measurable supporting function that, for any &< R", there exists a B-
-measurable vector valued function a(x, &)= (al(x, ), <oy, 5)) belonging
to Agx). -

Proof. Sufficiency. H(¢, v)=>¢,a,(x, &) is evidently B-measurable,.

since all a,(x, §) are B-measurable.

Necessity. H(¢', x) being B-measurable, H'(&, &, x), ..., H" (g,

ceey & x) are all B- measurjable Hence the solution a(z; &, .. ., &%) of
the system (1) is B-measurable function for any fixed &, ..., . Putting
£=¢" and a(z, £)=a(z, £8, ..., 8, our Lemma is proved.

In the rest of this section, we shall assume that A(x) is measurable.

By 4(A(x)) we denote the family of all B-measurable vector functions
() =(a,(2), « .., a,(x)), whose values belong to A(x) for almost (1) every

xe X, and by v(a) the vector in R" whose ¢-th component is

| s@in@=| a@r@a@, i-1,....n.

Further, by R(¢, A(x)) we mean the set of all vectors v(a) for a € 4(A(x)).
Now we shall try to seek for the form of the supporting function
K(¢) and a supporting point b(&)=(b.(8), ..., b,(£)) of the smallest convex

‘body K, containing R(y, A(z)), in direction & Denote a vector (&,.f:(x),

cos Euf (@) € R by £x f(x), and a supporting point of A(x) in direction
£ by a(x, &)= (a(=, §); «-.,a,(2, §). Under these notations, the vector
DE)=(b1(E)y « + -, b,(8)) : ' o

&)= ae, ex Fa)dm@)

is a supporting point of K in direction &, i.e.

D H(¢ xf(x), x) is. SB-Iheasurable, because H(E, x) is a continuous function of & and
_flx) is B-measurable. Similarly all HO@ELxflx), ---, E+1x flw), ©) are B-measurable.
From this fact, there exists a supporting point a,(x, 77) such ‘ that a;(:v,&x f(x)) are 9B-
:measurable, t=1, ..., n. . .

5t
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ZE-b-(E)zzé'iS a,(x)dy, foi'. every a(x)e 4(A(®)) .

In faect, since a(x,7n) is a supportmg point of A(z), it holds for any-
a(x) € 4(A(x)) that

=&| a@an={ (Su@es@ia
=] (Sa ex r@pes@iar
=25{Lai(x, X f(@)dp,=3ED,) .

Therefore K(§)=23.¢b,(§) is a supporting function of K, provided that:
a, (@, & x f(x)) is p-integrable (¢=1,...,m). Noting that & f.(x)a(z,
Ex f)=H(éx f, x), we have

(2) k@ =| AEx s, 9@ »

ﬁowever, since the p,-integrability of a,(z, &x f(x) (i=1,...,n) is
equivalent to the 2A-integrability of H(¢x f(x), z), we can define the:
wntegrability of a convex body valued function A(x) by the 2-integrability
of H(Ex f(a), ).

Theorem 1. For evem) intégwable A(x), R(p, A(x)) is a convex body.

Proof. The convexity of R(p, A(x)) follows evidently from t_hat of
A4(A(x)). Therefore it is sufficient to prove that every extreme points of”
K belongs to R(x, A(x)). Any extreme point =&, ..., &)=@, ...,
b,) of K is the solution of the system of equations :

S E=K(&Y) ,
(3) » 2 b(z S%=K,(51, Ez) ’

Ebogn K(n 1)(51 . ’Evz), |
where &, ..., &" are linearly independent vectors.
On the other hand, from the convexity of H(&, ), we have
' 1 2) 5¢ — 1
—H(—&x f(z), )< H((§" + k&) x f(x)’kx) H(§ X f(x), x)
<HEX f(x), @) ,
and hence it follows from Lebesgue’s theorem that

K&, &)= LH’(EI x £(@), & % f(@), 2)dA(@) .

Similarly weé .ean show the following equations -

1) See the footnote on page 153.
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KO, ..., 5“I)=S HOE X f(@), -+, £ X f(), m)di(w) 5
X .
=1, ..., n-1.
From the uniqueness of the solution of (3), we have
bg(El’ e En):S a’?(sly o ey En, x)d,u@(x) ) ’i=1, e ey n )
X

Wher‘é al=ald(&, ..., &% x) (1=1,2, ..., n) satisfy
S agif(x)=H(E" X f(x), @) ,
Z alif(x)=H' (€' x f(@), &x f(x), ©) ,

. Z a‘z’:?ﬁ(w) H"D(E X f(@)y « v 05 §" X f(2), @) 5
‘Hence a’=(a?, ..., a%) e 4(A(x)). - This shows b’ e R(u, A(x)).

Since R(x,A(x)) is of the form {S a(@)dp(); aeA(A(m))}, in the follow-

ing we shall use the notation

|4@dr@

instead of R(g, A(z)), analogically to the notation f(E)={f(x);x<cE} in
-the functional theory. We call this the integral of A(x) with respect
to the experiment p={g!, ---, g"}.

From this definition of the integral, it follows directly that A(x)=
B(x) for almost (1) all ze X implies

SA(x)d,u;SB(x)d,u :

It A(x) =A, that is, if every A(x) are always a convex body A, we
: erte

SA(x)oZ,u =A-p.

‘This set A-p coincides with R(p, A) in [4] and B(g, A) in [6]. If A(x)
. s contained in a convex body A for almost (1) all xe X, we have

SA(x)d,ugA-/z .

Let R(x) be the linear subspace consisting of all vectors £ R* whose
4-th component §; vanishes for every 1 :fi(x)=0.

Theorem II. Let us denote by A,(x), Bi(x) the projections of A(x)
and B(x) on R(x), respectively. If A(x)=2B(x) holds almost (1) everywhere
on X, and if the set E={x; A;(x)>=<B\(x)} has a positive A-measure, then
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SA(x)d/t = S‘B(x)dp :

Proof. Let H,(¢,x) and H,¢&,x) be the supporting functions of
A(x) and B(x), respectively. Under the assumption of our theorem, we:
have H, (&, x)=H&, ) for almost (1) all ze X and all £e R*, and for
every wc E the set Q,={&;ée R(x) and H, (€, )>H, (5, )} is not empty,
and hence, by the continuity of the supporting function, @, is open and.
has the property :

& If £€Q,, then kEcQ, for every k>0.
Therefore the set Q,=1{&; H, (¢ xf(x); x)>H (¢ x f(x) x)} is also open and
has the above properties ¥ for every xe€ E. The Lebesgue measure of’
the intersection of Q. and the unit sphere C of R" being non-zero, for
every z € E holds : :

[ (B < (@), 2) = 6 (@), @)} de>0 .

By the equation (2), the supporting functions of SA(:v)dp and {B(x)dg
are respectively

K@= HEx/@), 9di@) ,

and .
@)= Hex (@), 9di(@) .

Heuce by Fubini’s theorem o _
SC {K (&)= K (&)}de = SadsSX{HA(E X f(@), @) — H(& x (@), @)} di(@)

~[ @) (B xp@), - e @), a0

Since K,(8)=K,() holds for every £&&R”, there exists a £¢ R* at
which K ,(6)>K () holds, and the proof is complete.

In the next section we shall denote by 7 the segment (=a convex
body) joining the origin (0, ---, 0) with the point e=(1,1, ---, 1) in R”,
and write

L,=1p.

3. Conditional Experiment and Sufficiency. Let 7T'(x) be a measur-
- able mapping of X onto another measurable space (Y, €), that is to say, -
B>T-1(C). Let v(F)=(n(F),- -, v,(F)) be an n-dimensional vector measure:
on (Y, €), such that y,(F)=p,T-Y(F) for ¢=1, -+, n, and let be r(F)=
Swi)n. A vector valued function g(t)=(g:(t), - -+, g,(t)) is such that

WF)={ 00de®), i=1, 40,
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This meastre =(F) satisfies A(T-'(F))=c(F). Further, for every B-

‘measurable function ¢(x) (0<¢<1), there exist n integrable funct1ons
Q,(¢;t) defined on (Y, €, »), such that

4 XT_IFSP(x)d,ui=S Q.(¢; t)dy,  for every FeG.

(see Kolmogoroff [8]). In the following discussions we do not assume

that these functions Q,(¢;%¢) are conditional expectations of ¢, in spite
of the fact that they can be regarded as conditional expectations under
some regular conditions. However, since Q,(¢;t) can be nomalized with-
out any condition, we shall assume that the values of Q,(¢ ;t), =1, «--

>

' n, belong to the interval [0, 1] at every ¢ on Y.

From. the definition of the supporting functlon K(¢) of L =TI-p, there
exists a B- measurable function ¢f(x) for gny -vector &, which satisfies
0<¢%(x)<1 and

=SY{25_@Q5(¢§’ $)g,(t)}d(t) .

Let us now write | -
(6) Hi(&, t)=28:0:()Q(¢%; 1) .

Lemma 2. Let E be the set of all the vectors in R whose com-
ponents are all rational. For every B-measurable function ¢(x) (0<¢(x)
<1), there exists a set N, (<€) of r-measure zero, such that

DN XTI CHIE A 7‘)

.holds whenever €€ E, and t ¢ N,.

Proof. Suppose that the set
Ne={t; 3€.0:6)Qi(¢; t) > Hi(&, )}

has a positive r-measure for £€ R*. For a B-measurable function

*( ')_{go(x), ~when zeT (N,
P ¢%@), when @&T-'(Ny),
we have ‘

Z&Sx?’*(@d/‘i=25 ST (e )Sa(w)d,u@+ e, SX TN o5 (@)dp,
=2 E@X n (P D+ SY_ n F(E t)de
S Hi(E, t)de=K() - .

This cont1 adlcts Wlth the deﬁnltlon of the supportlng functlon K(E), and
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hence t(Ny)= 0 erttmg N,= U Ng, the proof is complete.

Lemma 3.~ Tkere 28 a set N of T-MeASUTe 2810 such that zf t &N, tken
Hi(&,t) has the following three conditions : : : :

i)  H(k& t)=kH.(&,t) whenever £€ 5, and k>0 is a rational numbefr,
i) Hu(§, )+ H(7, )= HA(E+ 7, t) whenever §,7€ 5,

iii) Hy&, t) s bounded i the intersection of 5 and the unit sphere
of E". :
"~ Proof. Let _

‘ N“ U Ngog‘ ’

. 5 €Ex
The condition i) holds true for ¢ ¢ N, because by Lemma 2 the inequalities
- e QU™ OSKELE, 1) ,
and .
20 kE9,(0)Qu(¢*; )< H,(kE, )

hold for £e 7 and any positive rational number k.

re ii). If t& Nyt+n<N, then we have

Hy(E, )+ H(7, 6)— Hi(E+7, t)={Hi(E, 1) — SE0.0)Q(¢5 "5 1))

+ {H\(7, ) —3.9.(6)Q(¢*7; 1)} =0.

The condition iii) is clear from the following inegqualities

IHI(S < S0+ 1Qu(¢%5 1))
<>EoI=KV I,

where K is a constant independent of ¢ and &.©

By the- condition i), ii) and iii) of Lemma 3, the functlon Hi&,t) is
continuous on 5 for every fixed ¢¢ N, and hence any econtinuous ex-
tension of H,(&, t) onto'R™ defines a convex body A,(¢) whenever ¢é&N.

Lemma 4. i) The function H\(§,t) is the measurable supporting
Sunction defining a measurable convex body wvalued function A;(t) for
almost (7) all teY.

ii) For every B-measurable function ¢ (O<go<1), there exists a
vector valued function Q(¢;t) belonging to the convex body A,(t) almost
(z) everywhere on Y, and satisfying (4).

Proof. Let &,8&% ...,8&™, ... be a sequence of veetors of & tending
t0 a veztor £ outside of Z. By Lemma 2, we have '

Z:E;ngi(t)Qi(Sp; t):<—_H1(§m’ t),
and, by letting m— oo,

1> We shall assume in this paper without any loss of generahty that 9:(¢) is bounded
‘on Y for every i=1,2, -+, n.
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o 5 £948)Quy; )= lim HE", )

for every ¢ ¢ N. Suppose that there exist a sequence {£"} (6"e5F) and
a vector ¢¢ =, such that ‘
lim &m=¢

and that ' ' » N

has a positive r-measure. Let ¢ be a positive number, such that
M. .= {t; H(&, t) 4+ e<lim H,(&™, t)}

is also of positive f—measure. - By quroﬁ" s theorem, thére exists a subset
M'TM, such that (J')>0 and the convergence of the sequence
{H,(¢",t)} is uniform on M’. Therefore, since the sequence 1>6.9:)
Q. (¢t™, t)— H,(£€", t)} tends uniformly to zero as £—£&"—0,2 it holds

Deg O > O 5> Tim HE" ) —e>HiE 0
for every large m on a set of p0s1t1ve r—measure.i This is a contradie-
tion, which «shows, combmmg with (7), that

H\(&, t)= —lim Hl(ém t)

m-—>oco

almost (7) everywhere oan, that is, that the function H(§,¢) is the
supporting function of an A,(f). The measurability of H(&, t) is evident
from its deﬁnition (6). The condiﬁon ii) follows from (7).

' Let S(t) be the set {1;9, (t)ﬁ;O ‘R,(t) be the linear space consisting

of all vectors g(E R") with their ¢-th components zero for ¢¢S(¢), and
R, (t) be the linear space whose vectors are all rectangular to the vector
e=(l,1, ---, 1) and the linear space R (t)[\ fe}L. By these two linear
spaces R (t) a*ld R (t), we have t"le unique decomoos1t10n of e R", such
that ' -

§=8@E) xg(O)+€&'(t) , &(E)eR,(t) and &'(¢)eR,(t) .
Using this decomposition, we shall define the function
 H(E, t)=H,(4(t), 1) - |

This function is a measurable supporting function. In fact the measur-
ability follows from the -eomtinuity of H;(¢, ) with respect to &, and the
G-measurability of £(f). And the convexity of H,(§, ¢) and the equalities
(E+D(E)=E1)+7(t) and (k&)(t)=kE() (&, 7€ R", k=0) imply the fact that
H(&,t) is a supporting function.

On the other hand, we shall conventionally define the values of

2) See the footnote on page 158.
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Qe ) (1¢S@)) as follows: _
Q.(¢; t)=[the arithmetic mean of {Q,(¢;t); 7€ S®}],

since the values of Q,(¢;t) for ¢¢ S(t) are undetermined and S(¢) is not
“empty for almost () all te Y.

Under these definitions of H(E, t) and Q(¢; %), Lemma 4 implies
directly the following

Corollary. H(¢, t)=H,(£(t), t) determines a measurable convex body
valued funetion A(t), and for every B-measurable ¢ (0=¢<1) the vector
Q(¢; ¢) runs almost () always inside of A(¢) when ¢ runs on Y.

By ‘noting ( 5) and the relatlon

H(E xg)y ty=H,(§, t)=26,9,0)Q.(¢%; t),
-we have ‘ ‘

———SA(t)du :
Therefore from the above Corollary follows

Theorem III. For an experiment (=a vector valued measure) p=
(tty < *+. p,) defined on (X,B) and for a statistic (=a B-measurable
mapping) T(x) with values in Y, there corresponds a measurable convex
valued function A(t), such that

i) A@)>DI almost (7) everywhere on Y, =3, 1,7 |n,

i) L,=7-u= |A0apT-@),
, iii) for every test function (=B-measurable non-negative function.
bounded by 1) ¢(x) on X, there exists a vector valued function Q(¢;t)=

(Qu(@3 ), -+, Qu(e; 1), which belongs to A(t) almost (z) everywhere on Y,
and each component of which satisfies the equation

. ST_1F¢(w)dpi=SFQi(go; t)dp, T~ for every FeG, and i=1,---,mn.
The following ‘theorem is our principal aim.
Theorem IV. For evefry emperiment p=(p, +++, p,) and every
statistic T(x), we have
B =

The éqdalz’ty holds when and only when T(x) is a sufficient statistic, tkat
- 18, every vector Q(¢;t) for test function ¢(x) s such that Q.¢;t)=
Qup; t)=-+-=Q,(¢;t) almost (z) everywhere on Y.

Proof. The first part of our theorem is obvious‘ from the fact that
B>OT-'E. ' - ' '
Theorem IIL.and.L,,-1=L, show that
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 LpT-i=Ly-i=L,— SA(t)d,uT-lgl- uT-
that is, '
XA(t)d,uT'1~=I-‘ pT .
Therefore, by Theorem II, we have
A@)=1

almost (7) everywhere on Y, and hence Q(p;t) e A(t)y=1.
Conversely if Q(¢;%)< I almost () everywhere on Y, it holds from
the deﬁmtmn of A(t) that A(f)=1. Therefore

rp={a@aur-~1. AT =Ly
- This completes the proof.

Example 1. (X, ®B) is the direct product space of two measurable:
spaces (Y, €), and (Z, D), and pg=(p, *-+, #,) is an experiment on (X, By
such that

L(FxG) =S o,(G; t)dyi(t) for Fe€ and GeD,

where 6,(G;?) is a function such that (1) for fixed ¢, o, is a probability
measure over (Z; D) and (2) for fixed G, o, is a C-measurable function.
If the measures v; are absolutely continuous each other, the set

Locor={({¢s, t1ai@s0), -+, {o(6, Biou(@sit)); ¢ € a0}
—{(fe@as: o), - [o@ands:t): ¢ <4}

coinsides with the convex body valued fuetion A(%) almost (r) everywhere:
on Y. ' ’

Example 2. The statistic

To(@) =F @) =(fi(@), - -, Ful@))

is su_ﬁicient with respect to p=(py, «--. p,) 1 pm=Vd2, i=1,--+,n, be-
cause the experiment of 7T'(») has the components

#@TJI(E)=S FAAT(F) for every Borel set ECR", i=1, - e, .

Therefore the supporting function of L”T—l is, for the supportmg fune-
tion H, of I,

Sﬂo(s XU S) = Sﬂa(s < f@)dp() ,
which shows that L,=L -1 ‘ :
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This experiment of 7', is called, by Blackwell [4] and [5], the standard
experiment of . _

Remark 1. If it is true that L,=L, implies A-p=A.y for all
convex bodies A, and if both p and g7 " are standard experiments, then

our Theorem IV is a direct implication of Blackwell’s theorem (Theorem
3 and 8, [5]).

Remark 2. We shall restrict ourselves to the case where n=2 and
s s are absolutely continuous one another. In our previous paper [9],
we have introduced a function, named the information generatmg fune-
‘tion,

pa L) =|(£) am,  o0<axi,
Ji |
and investigated the relations of the experiment and the mean informa-
‘tion »
IKL,)= —ip(a; L)l (f exists)
defined by Kullback and Lelbler [10], where p(a; L,) and hence I(L,) ‘do
not depend on the measures g and g, but only on the convex set L,. If
X=YxZ, pi(E)=Sai(E; t)dv, for EeB, ofE; t)=Sk(x;t)dal(x:t),
and u,(F)= S g(t)dy; for F'e G, then we have, by Example 1,
F .

#

1) ,L,L=SA(t)olu,; Lo =AQ®)
2) p(a:|amds )=[p@: 4®) @),
3) I(SA(t)du)zSI(A(t))dul(t)+I(L.,).

‘Therefore we have

SI('A(t))dul(t)=I<§A(t)du)—I(Lv) .
‘This is an amount of information of the experiment p, which is left

after the experiment v has aceomplished. For example, if Y and Z are

finite sets and if (¢, s)=P,, >0, w(t, o k,s=1,-4,1,

then we have
P,
S
The right hand side of the above equation is called the conditional
entropy H,(s) of s in Shannon’s book [11].

SI(A(t))du(t) log I~ — 5.7, log
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