On the Theorem of Castelnuovo-Enriques

Teruhisa Matsusaka (松阪輝久)

Department of Mathematics, Faculty of Science, Ochanomizu University, Tokyo

Introduction. The classical theorem of Castelnuovo-Enriques asserts that the one dimensional Betti number of a sufficiently general divisor on a non-singular algebraic Variety $V^n(n\geq 3)$ is the same as that of V^n or the base for 1-cycles on such divisor also forms the base for 1-cycles on V. The algebraic equivalent of the above theorem may be formulated as follows:

 $V^n(n \ge 3)$ and its sufficiently general divisor have the same Picard (Albanese) Variety up to an isomorphism.

The aim of the present note is to prove the theorem of Castelnuovo-Enriques in the above formulation.

Let X be a divisor on the product $\Gamma \times V^n$ of a non-singular Curve Γ with an algebraic Variety V^n in a projective space and k be a common field of definition for Γ , V over which X is rational. We shall say that the totality $\mathfrak A$ of V-divisors of the form X(u) defined by

$$(u \times V) \cdot X = u \times X(u)$$

is a one-dimensional algebraic family defined by Γ and X or Γ and X defines \mathfrak{A} . A field such as k shall be referred to as a field of definition for \mathfrak{A} or we shall say that \mathfrak{A} is defined over k. The one dimensional algebraic family on V which we shall treat in this paper is a linear pencil of the special kind. When V is absolutely locally normal, and when the complete linear system on V is sufficiently ample, then one can extract from the complete linear system a linear pencil such that it contains a Variety. Moreover, when V is non-singular, we may assume that it contains also a non-singular Variety. Our interest will be concentrated to the linear pencil having this property.

Assume that $\mathfrak A$ is a pencil, V is an algebraic Surface such that it has a base Point at a simple Point of V and that a generic divisor X(u) corresponding to a generic Point u of Γ over a common field of definition k for V and Γ is a non-singular Curve. By Chow's result on Jacobian Varieties (cf. [C]-1, [C]-2, or [M]-4, § 2)¹⁾, there is a symmetric function Ψ defined on the product of sufficiently many factors equal to X(u) on the Jacobian Variety J of X(u) defined over k(u) immersed

We shall use the same terminology and convention as Weil's books "Foundations of Algebraic Geometry" and "Variétès Abeliennes et Courbes algébriques.

¹⁾ Letters in brackets refer to the bibliography at the end.

into a projective space such that when we write Ψ as

$$\Psi = \sum \varphi_i$$
 (cf. [W]-2 chap. III, cor. of th. 7)

where φ_i is a function defined on X(u) with values in J, φ_i and φ coincide within an additive constant and φ_i is the canonical function of X(u). Let x_0 be a base Point of \mathfrak{A} . Then x_0 is algebraic over k and hence it is rational over $\overline{k}(u)$. Moreover x_0 is a simple Point of X(u) and this shows that one of the φ_i , say φ_i , is defined over $\overline{k}(u)$ (cf. [W]-2 chap. III, cor. th.7).

Let |X| be a linear system, which is not necessarily complete, on a Variety V and k be a common field of definition for V and |X|. Let X be a generic divisor of |X| over k and assume that V and X are Varieties having no singular Subvarieties of dimension n-2 and n-3 respectively. The induced linear system on X by |X| shall be referred to as the characteristic linear system of |X| on X. "The characteristic linear system of |X|" will mean the characteristic linear system of |X| on some generic divisior of |X| over k.

There is a maximal algebraic family $\{X\}$ on V such that when a V-divisor Y is algebraically equivalent to zero, there are two divisors X and X' in $\{X\}$ such that $Y \sim X - X'$ (cf. [M]-3, th. 1). We shall call $\{X\}$ as a total maximal algebraic family. We shall say that a field k of definition for the Picard Variety $\mathfrak{p}(V)$ of an algebraic Variety V having no singular Subvariety of dimension n-1 is the complete field of definition for $\mathfrak{p}(V)$ when the following conditions are satisfied:

when X is a V-divisor, algebraically equivalent to zero, such that it is rational over a field K containing k, then the class of X on $\mathfrak{p}(V)$ is rational over K and conversely, when ξ is a Point on $\mathfrak{p}(V)$ rational over a field K containing k, there is a V-divisor X rational over K, algebraically equivalent to zero, such that its class on $\mathfrak{p}(V)$ is ξ . (cf. [M]-3, th. 3 and [M]-4, th. 4).

Denote by L_m the linear system consisting of all the divisors of the form $H_m \cdot V$ where H_m is a hypersurface of order m. Let C_{m_i} be a generic divisor of L_{m_i} ($i=1,2,\cdots,s$) over a common field of definition k for V and for every L_{m_i} . Then the intersection-product $C_{m_1} \cdots C_{m_s}$ is defined on V. We shall say that it is a generic (n-s)-cycle of order $m_1 \cdots m_s$ of V over k. When V has no singular Subvariety of dimension n-r (r>0), its generic (n-s)-cycle over k is a Variety and has no singular Subvariety of dimension n-s-r (cf. [N], [Z]-th. 3). In particular, a generic 1-cycle on V over k is a non-singular Curve.

Let U be a Variety, A be an Abelian Variety and f be a function defined on U with values in A. We shall say that U (and f) generates A when if x_1, \dots, x_n are sufficiently many numbers of independent

²⁾ The writer had used the term "regular," and by the advice of Prof. C. Cheval ley, the writer will use the term "total".

generic Points of U over a common field of definition k for U, A and f, $\sum f(x_i)$ is a generic Point of A over k. When that is so, we shall also say that A is generated by U (and f).

1. Proposition. Let V be an algebraic Surface free from singular Points in a projective space, $\mathfrak A$ be a linear pencil on V and W_0 be a fixed divisor in $\mathfrak A$ such that it is a non-singular Curve. Let X be a divisor on V algebraically equivalent to zero such that $X \cdot W_0$ is linearly equivalent to zero on W_0 . Then X is linearly equivalent to zero within a linear combination of certain numbers of fixed divisors on V independent of X. (cf. [W]-3, (A)).

Proof. Since the proof may be essentially the same as that of Weil, we shall sketch briefly the outline of it.

Let W be a generic divisor of $\mathfrak A$ over a common field of definition k for V and $\mathfrak A$, over which X is rational, then it is a non-singular Curve and it is easy to see that there is a set of finite numbers of Curves U_1, \dots, U_s all algebraic over k on V having the following properties: let Z be a V-divisor rational over \overline{k} such that $Z \cdot W \sim 0$ on W, then Z is linearly equivalent to a certain linear combination of U_1, \dots, U_s . From this, we can derive the following: let Σ be a one-dimensional algebraic family of positive V-divisors defined over k such that every divisor of Σ induces on W mutually equivalent W-divisors with respect to linear equivalence, then every divisor of Σ is mutually equivalent with respect to linear equivalence.

Let $\{Y\}$ be the total maximal algebraic family of positive V-divisors and U be its associated-Variety, which is defined over \overline{k} . Let Y be a generic divisor of $\{Y\}$ over $\overline{k}(w)$ and Y_0 be a rational divisor of it over \overline{k} where w is the Chow-Point of W. Let φ_w be the canonical function of W defined over k(w) and h_w be the function defined on U with values in the Jacobian Variety $\mathfrak{p}(W)$ defined

$$h_w(y) = S[\varphi_w((Y - Y_c) \cdot W)] = \eta_w$$

where y is the Chow-Point of Y. $h_w^{-1}(\eta_w)$ consists of finite numbers of associated-Varieties of complete linear systems and the Locus A_w of η_w over $\bar{k}(w)$ is an Abelian Variety isogeneous to the Picard Variety $\mathfrak{p}(V)$ of V (cf. [M]-2). Let w' be the Chow-Point of a generic divisor W' of \mathfrak{A} over $\bar{k}(w,y)$ and put $h_{w'}(y)=\eta_{w'}$. Then $\eta_{w'}$ is purely inseparable over $\bar{k}(w,w',\eta_w)$ since the group of all the Points of given order on an Abelian Variety is a finite group (cf. [W]-2, cor. 1, th. 33).

Let K be the algebraic closure of k(w'). Then, there is a homomorphism λ defined on A_w with values on A_w^* , with a field of definition K(w) (cf. [W]-2, th. 27) such that $\lambda(\eta_w) = \eta_w^*$, where * denotes an auto-

morphism of the universal domain defined by

$$u^*=u^{pt}$$

for a certain non-negative integer t. By using the theorem of complete reducibility for Abelian Varieties (cf. [W]-2, prop. 25, th. 26), we conclude that there is a function $\bar{\phi}$ defined on W with values in $A_{w'}$ such that

$$S[\bar{\psi}((\mathbf{Y}-\mathbf{Y}_0)\cdot\mathbf{W})]=\eta_u^*$$

 $ar{\psi}$ can be extended to a function ψ defined on V with values in A_w , such that $\psi_w = \overline{\psi}$.

We may assume that $X = Y' - Y_0$ where Y' is in $\{Y\}$ and moreover, that Y', Y_0 are also non-singular Curves (cf. [M]-5, th. 2). Then applying th. 10 of [W]-2, if $X \cdot W_0 \sim 0$, we have

$$0 = S[\phi(\mathbf{X} \cdot \mathbf{W}_0)] = S[\phi(\mathbf{X} \cdot \mathbf{W})]$$

and from this we conclude that $X \cdot W \sim 0$ on W.

q.e.d.

As a corollary of the above proposition, we have

Corollary. Let V^n be a Variety in a projective space, having no singular Subvariety of dimension n-2 and $\mathfrak A$ be a linear pencil on V such that $\mathfrak A$ contains a Variety W free from singular Subvarieties of dimension n-3. When X is a V-divisor which is algebraically equivalent to zero, such that $W \cdot X$ is defined on V and that it is linearly equivalent to zero on W, X is linearly equivalent to zero within a linear combination of certain numbers of V-divisors which are independent of X.

This corollary follows immediately from prop. above and from [W] -3, lemma.

- 2. Theorem. Let V^n be a Variety free from singular Subvarieties of dimension n-2 in a projective space and B be a linear system on V having the following properties:
- (i) B contains a divisor which is a Variety free from singular Subvarieties of dimension n-3
- (ii) $\dim \mathfrak{B}=2$ and the characteristic linear system of \mathfrak{B} contains a Variety having no singular Subvarieties of dimension n-4.3 Then the Picard Variety of a generic divisor of \mathfrak{B} over a common field of definition for V and \mathfrak{B} is isogeneous to the Picard Variety $\mathfrak{p}(V)$ of V.
- **Proof.** By the above corollary, it can be easily seen that the Picard Variety p(Z) of a generic divisor Z of \mathfrak{B} over a common field of definition k for V and \mathfrak{B} contains the Abelian Variety which is isogeneous to the Picard Variety p(V) of V (cf. [M]-3, prop. 11).

³⁾ When n-4<0, put 0 instead of n-4.

Let Z and \bar{Z} be two independent generic divisors of $\mathfrak B$ over k and f be a function on V such that $(f)_0 = Z$, $(f)_\infty = \bar{Z}$. Consider the linear pencil $\mathfrak A$ defined by the function 1 and f on V. The base Variety of $\mathfrak A$ is $Z \cdot \bar{Z} = C$ and C has no singular Subvariety of dimension n-4 by our assumption (ii). Let K be an algebraically closed field of definition for f, C and for the Picard Variety $\mathfrak p(C)$ of C and assume that K is complete as a field of definition for $\mathfrak p(C)$. Let v be a generic Point of the associated-Variety of $\mathfrak A$ over K and denote by Z_v the corresponding divisor of $\mathfrak A$. $\mathfrak B$ induces on Z_v a linear pencil $\mathfrak B'$ —the characteristic linear system of $\mathfrak B$ on Z_v —having C as its divisor. By applying the corollary of our proposition to Z_v , to the linear system $\mathfrak B'$ and to a divisor C of B', we see that there is the Abelian Variety isogeneous to $\mathfrak p(Z_v)$ in the Picard Variety $\mathfrak p(C)$ of C.

Let $\{X\}$ be a maximal total algebraic family of positive Z_v -divisors containing a rational divisor X_0 over K(v) and defined over K(v) (cf. [M]-5, prop. 3) such that $C \cdot X_0$ is defined on Z_v . Let M be the Chow-Point of the associated-Variety T(X) of the complete linear system |X| determined by a generic divisor X of $\{X\}$ over K(v), and x', x'' be two independent generic Points of T(X) over K(v, M) corresponding to X', X'' respectively. Since $C \cdot (X_0 - X')$ is rational over K(v, M, x') (cf. [C]-3), its class ξ on $\mathfrak{p}(C)$ is rational over K(v, M, x') and in the same way ξ is rational over K(v, M, x''). This shows that ξ is rational over K(v, M) and its Locus A over K(v) is isogeneous to $\mathfrak{p}(Z_v)$.

Let Γ be a generic 1-cycle of \mathbf{Z}_v of order 1 over $K(v, \mathbf{M})$, then $\mathfrak{p}(\mathbf{Z}_v)$ is isogeneously imbedded into the Jacobian Variety $\mathfrak{p}(\Gamma)$ of Γ (cf. [M]-3, prop. 11). We may assume that the degree of X is so large that $deg(\Gamma \cdot X) > 2 \cdot genus(\Gamma) - 2$. Then taking Chow's result on the Jacobian Varieties into account (cf. [C]-2), the same arguments as above show that the class 7 of $\Gamma \cdot X$ on $\mathfrak{p}(\Gamma)$ is rational over K(v, M, t) where t is the Chow-Point of Γ . The Locus **B** of η over K(v,t) is an Abelian Variety in $\mathfrak{p}(\Gamma)$ isogeneous to $\mathfrak{p}(\mathbf{Z}_v)$ and moreover, $K(v,t,\mathbf{M})$ is a pure inseparable extension of K(v, t, 7) by Weil's criterion for linear equivalence (cf. [W]-3, (E)). Hence ξ is also purely inseparable over K(v, t, 7) and when p is the characteristic of our universal domain, there is a positive integer e such that ξp^e is rational over $K(v, t, \gamma)$. K is algebraically closed, ξ^{p^e} has also the Locus A' over $K(v^{p^e})\subset K(v)$ and A' is clearly isogeneous to A. By what we have observed above, there is a homomorphism λ defined over K(v,t) from B onto A' and there is a homomorphism μ defined over K(v) from A' onto A, and therefore, there is a homomorphism ν defined over K(v,t) from **B** onto A, that is, into $\mathfrak{p}(C)$. By [W]-2, chap. VII, prop. 25, there is a homomorphism from $\mathfrak{p}(\Gamma)$ onto **B** with a field of definition K(v,t) and consequently, there is a symmetric function \(\mathbb{T} \) defined on the product of sufficiently many factors equal to Γ into $\mathfrak{p}(C)$ such that the image of $\mathfrak{p}(\Gamma)$ is A and that it is defined over K(v,t). Let Γ be cut out on on Z_v by the linear Variety defined by the set of linear equations

$$\sum l_{ij}X_j - s_iX_0 = 0$$

where (l, s) is a set of independent variables over K(v) and put $\overline{K(l)} = K'$. Then Γ has a Point which is rational over K'(v) and so, when we write

$$\Psi = \sum_{i=1}^m \bar{\psi}_i$$
 ,

where $\overline{\psi}_i$ is a function defined on Γ with values in $\mathfrak{p}(C)$, one of it, say $\overline{\psi}_1 = \overline{\psi}$, may be assumed to be defined over K(v,s) (cf. [W]-2, chap. III, cor. th. 7). This function $\overline{\psi}$ can be extended to a function ψ defined on Z_v with values in $\mathfrak{p}(C)$ with a field of definition K'(v) and further, ψ can be extended to a function φ defined on V with values in $\mathfrak{p}(C)$ defined over K' in a natural way such that

$$\varphi_{z_v} = \psi, \quad \psi_{\Gamma} = \bar{\psi}.$$

Let x_1, \dots, x_m be m independent generic Points of V over K' and put $\sum \varphi(x_i) = \zeta$. ζ has the Locus A'' over K' and A'' clearly contains A as a Subvariety. This implies that A = A'' and hence V generates the Abelian Variety A isogeneous to $\mathfrak{p}(Z_v)$ and consequently $\mathfrak{p}(V)$ and $\mathfrak{p}(Z_v)$ are isogeneous. q.e.d.

Corollary. Let V^n be an absolutely locally normal Variety, free from singular Subvariety of dimension n-2 in a projective space and W^{n-1} be its generic (n-1)-cycle over a certain field of definition for V. Then the Picard Variety $\mathfrak{p}(V)$ and $\mathfrak{p}(W)$ of V and W are isomorph.

Proof. By Weil's criterion for linear equivalence (cf. [W]-3, (E)), when V-divisor X is algebraically equivalent to zero, $X \cdot W \sim 0$ on W and $X \sim 0$ are equivalent (cf. also [W]-1, chap. VIII, th. 4). Moreover, when we apply our theorem to this case, $\mathfrak{p}(V)$ and $\mathfrak{p}(W)$ are isomorph as abstract groups. Let $\{X\}$ be a maximal total algebraic family of positive V-divisors and K be a common field of definition for V, W, $\{X\}$, $\mathfrak{p}(V)$, $\mathfrak{p}(W)$ over which a certain divisor X_0 in $\{X\}$ is rational and assume that K is a complete field of definition for $\mathfrak{p}(V)$ and $\mathfrak{p}(W)$. Let M and M^* be the Chow-Points of the associated-Varieties of the complete linear system |X| and $|W \cdot X|$ where X is a generic divisor of $\{X\}$ over K. Then the remark made at the top of this proof implies that $K(M) \supset K(M^*)$ and moreover, M is purely inseparable over $K(M^*)$ (cf. [M]-3, §4). Hence it is sufficient to prove that when we extend the field of reference K to the algebraic closure \overline{K} of it, $\overline{K}(M)$ is a

separable extension of $\overline{K}(M^*)$. It is easy to see that |X| and $|W \cdot X|$ are both defined respectively over $\overline{K}(M)$ and over $\overline{K}(M^*)$, that is, the base of the modules L(X) and $L(W \cdot X)$ have the basis consisting of functions defined over $\overline{K}(M)$ and over $\overline{K}(M^*)$ respectively (cf. [W]-1, chap. VIII, th. 10). Since V^n is absolutely locally normal, and free from singular Subvarieties of dimension n-2, W is also absolutely locally normal and free from singular Subvarieties of dimension n-3 (cf. [N], [Z]-th. 3). Then in view of the Castelnuovo's lemma* (cf. [M]-6, p. 126), we may assume that |X| induces on W the complete linear system $|X \cdot W|$ (cf. also [M]-5, th. 2). Let X^* be a rational divisor of $|X \cdot W|$ over $\overline{K}(M^*)$. There is a divisor X' in |X| such that

$$X^* = X' \cdot W$$

Let x' and x^* be the Chow-Points of X' and X^* respectively. Then we have $\overline{K}(x^*) = \overline{K}(M^*)$ and $\overline{K}(x') \supset \overline{K}(M)$ (cf. [M]-3 lemma 4). We may assume that X^* and X' are both Varieties. Then $\overline{K}(x')$ is a separable extension of $\overline{K}(x^*)$ by [M]-5, prop. 7 and this completes our proof.

Bibliography

- W. L. Chow, Algebraic system of positive cycles in an algebraic variety, Am. J. Math. vol. 72, 1950...[C]-1.
- W. L. Chow, The Jacobian Varieties of algebraic varieties, to appear soon...[C]-2.
- W. L. Chow, On the defining field of a divisor in an algebraic variety, Proc. Am. Math. Soc. vol. 1, 1950...[C]-3.
- T. Matsusaka, The theorem of Bertini on linear systems, Mem. Col. Sci. Kyoto Univ. Ser. A, 26, 1951...[M]-1.
- T. Matsusaka, On the algebraic construction of the Picard Variety I Jap. J. Math., vol. 21, 1951...[M]-2.
- T. Matsusaka, On the algebraic construction of the Picard Variety II Jap. J. Math. vol. 22, 1952...[M]-3.
- T. Matsusaka, Some theorems on Abelian Varieties, Nat. Rep., Ochanomizu Univ. vol. 4, 1953...[M]-4.
- T. Matsusaka, On algebraic families of positive divisors and their associated-Varieties on a projective Variety, J. Math. Soc. Jap. vol. 5, 1953...[M]-5.
- A. Weil, Foundations of Algebraic Geometry, Am. Math. Soc. Colloq., vol. 29, 1946... [W]-1.
- A. Weil, Variétès Abéliennes et Courbes algébriques, Act. Sc. et Ind., no 1046, 1948...[W]-2.
- A. Weil, Criteria for linear equivalence, Proc. Nat. Acad. Sci. U.S.A., vol. 38, no. 3, 1952...[W]-3.

⁴⁾ The Castelnuovo's lemma we need here is the following: let V^n be an absolutely locally normal Variety in a projective space, having no singular Subvariety of dimension n-2, defined over a field k. Let C be a generic divisor of L_1 over k. When X is a V-divisor, then the complete linear system |X+hC| induces on C a complete linear system if h is large.

- O. Zariski, Complete linear systems on normal varieties and a generalization of a lemma of Enriques-Severi, Ann. Math. vol. 55, 1952...[Z].
- Y. Nakai, On the section of an algebraic variety by the generic hyperplane, Mem. Col. Sci. Kyoto Univ. Ser. A. 26, 1951...[N].

(Received November 28, 1953)