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The writer proved in “Some theorems on Abelian Varieties” (vol. 4,
no. 1, 1958 of this Report) the following theorem :

Let U be a Variety having the normal law of composition both de-
Jined over a field k. When U is birationally equivalent to an Abelian
Variety, it is birationally equivalent over k to an Abelian Variety in a
projective space defined over k.

But the proof of the above theorem (cf. th. 8) is very complicated
and moreover it contains a certain difficulty since the Variety C (cf.
p. 34) is not an Abelian Variety in general. The aim of this note is
to regulate and correct the proof of th. 8. We use the same notations
and conventions as in th. 3. ’

Let f be a function defined on a Variety U with vailues on a
Variety V, Z be the graph of f and = be a . Point of ¥. Assume that
Z (U xx) has no component of greater dimension than zero, then we:
shall say that z is not a fundamental Point for f-!, and when this
holds for all Points on ¥V, we shall say that £-' has no fundamental
Point on V. When « is not fundamental for f-* we denote by f ~*(x)
x the sum of all the distinet components of

Z~(Uxx) .
In the same way, when Z~(yx U) has no component of greater di-
mension than zero, we shall say that y is not a fundamental Point of
f and when every Point on U is not fundamental for U, we shall say
that f has no fundamental Point on U. We defirie f(y) in"the same:
way as f(x).

Lemma. Let U", W", A" be three Varieties, f and g be functions
defined on U and defined on A with values on A and on Wrespectively*
having the following properties: (i) U has a normal law of composition
defined over a field k of definition for U, and U is birationally equi-
valent to an Abelian Variety, (it) f and g are both defined over the
algebraic closure k of k, (i4i) the composite function ge°f is defined over
k, (i) g is defined everywhere on A and g~' has no fundamental Point
on W, (v) A is an Abelian Variety, (vi) W s a projective Variely.
When these conditions are satisfied, U is birationally equivalent over k
to an Abelian Variety defined over k in a projective space.

Proof. Let u be a generic Point of U over k and put f(u)=§&,
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g°f(m)=x. Then by (iii), we have k(x)Ck(x) and by prop. 5, there is
a Variety U, defined and birationally equivalent to U over %k and a
function ¢; defined on U, with values on W such that g, is defined over
k, ¢. is defined at every Point of U, ¢i* has no fundamental Point on
W and that when % is the corresponding generic Point of U, over k&
to u, gl(u) z. Moreover, we may assume that U, is relatively normal
with reference to k. There is a function f; defined on U, with values
on A with a field of definition % such that fi(@)=¢ and hence g;=g ° 9°fi

For s1mp11(31ty, we omit to write —, and let uXvXw be a generic
Point of the graph Z of the normal law of" compos1t10n on U, over k.
Then, there is a Point o on A rational over % such that fi—a=h is a
function defined on U, with values on A with a field of definition %
such that 4 :

h(u.q‘;)'xﬁgh(u)%h(v) (cf. [W]—s, I, th.9).

~ Let T be the Locus ofux fi(w) < g(fi(u))=u xExx over k. We have
=g). Let u' x& xz’ be a Point on T then since g, is defined at
every Point on Uy, ¢:(u')=2" and sinee & xa’ is a specialization of &x
z over k, & must be contained in a compomnent of g-'(z’) which is a
0-dimensional eycle on A and hence, f; has no fundamental Point on
U.. Conversely, since g is defined at every Point of A, we have .o'=
g(&"). As w’' xz' is a specialization of u xz over ‘k, u’ must be a com-
ponent of gr'(x’) since gi' has no fundamental Point on W. This shows
that fi* has no fundamentsdl Point on A. Henee %2 has no fundamental
Point on U, and %~~' has no fundamental Point on ‘A. :

Put h(u)=&, h(v)=7, h(w)=C and let E be the Locus of u xvxw X
ExYxC over k. Let /' xv' xw' x& x7' x¢ be a Point on E having the
projection u’ xv’ on U,x U.. Then & and 7’ are components of A(u’)
and A(v’) respectively. Hence the specialization of ¢ over u xv—u’ xv’
with reference to % is in finite numbers. Moreover, w is a component
of 2 '(¢) and so specializations of w over u xv—u’ xv’ with reference
to k are in finite numbers. - This shows-that (¥’ xv"x U;)~Z has no com-
ponent of greater dimension than zero. Thesame holds for (u’ x U, xXw')
~Z and from this we conclude that U, is an Abelian Variety by pfop.
6. q.e.d. ’ ,

Proof of th. 3. Since U is birationally equivalent to an Abelian
Variety, we may assume that there is an Abelian Variety A defined
over k in a projective space such that there is a function f defined on
U with values on' A with a field of definition % (cf. prop. 4).

Put U=U, W=A, A=A, f=f, g=0A, k=k. Then our lemma
shows that there is an Abelian Variety in a projective space defined
and birationally equivaleht'-to U over k. Assume that A is already
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such an Abelian Variety. Let T be a birational correspondence between
U and A and (Ti= ..., 1y} be the set of complete conjugates of T

over k. Let u be a generic Pomt of U over %, L be the ambient
space of A and put

(wxL)- Zﬁ—u X6 -

>& is rational over &(w) and hence its Chow-Point « is rational over
k(uw). Hence « has the Locus Wover k. &, is a Point of A;=pr,T; which
is an Abelian Variety and (&, &) is a generic Point of the birational
correspondence T, between A, and A, over % since it holds that

k() =k(8) =k(E) (Ok()).

Put &=¢&. Let f, g be funections such that f(u)=§, g(§)=z. The
conditions (i), (ii) of our lemma are clearly satisfied. The composite
funetion ge°f is defined over 'k since z is rational over k(u).

Let Z be the Locus of & x...x§, over ¥, then pn,Y T;. Let
&/ be a Point on ‘A and extend the specialization &~&, to a specializa-
tion & X+ xE,—E X0 %" over k when &' is a specialization of
¢ over k. Then this is uniquely determined since T is a birational
transformation between A; and A, (cf. [W]-3, II, th. 6). This proves
that when G is the graph of g, G~(W x&’) has no component of
greater dimension than zero and since A has no singular Point, g is

defined at &’ by Zariski’s main theorem on birational transformations

(cf. [Z]). Moreover, it is easy to see that g has also no fundamental

Point on W and the condition (iv) is also satisfied. Conditions (v), (vi).

are satisfied in. our case and henee our theorem is proved.
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