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3§ 1. Introduction

It has become more and more important to investigate the flow
past an obstacle at high speeds. Various methods proposed by many
authors for this purpose are in general classified into three groups,
namely, the M*expansion method, the thin-wing-expansion method and
the hodograph method. It should be emphasized that Imai has given
essential contributions to the development of all these methods. In
order to investigate systematically the effects of compressibility for the
characteristics of aerofoils of various shape, thickness, and camber, the
thin-wing-expansion method is the most suitable among them, because
it seems to give very accurate results up to considerably high Mach
numbers with rather simple procedures. Moreover we can easily take
into account the effect of variations in the shape of profiles by this
method, while it is very difficult to estimate this effect directly by the
hodograph method. In fact, Kaplan has studied the two-dimensional
flow of a compressible fluid on the basis of this method, having
obtained the third approximation for the flow past a circular arec
aerofoil® and a cusped wing, now called the Kaplan bump.”®» Further,
investigating the flow along a sinusoidal wall, he suggested a very
interesting conclusion about the limit of the continuous flow.®

On the other hand, about ten years .ago developing his thin-wing-
expansion method, Imai gave the analytical formulae for the veloecity
and pressure distributions, lift and moment of an aerofoil placed in the
- flow of a compressible fluid up to the second approximation,”® and in-
vestigated in detail the characteristics of generalized Joukowski pro-
files.® Later, extending this method to the third approximation, Imai

and Oyama studied the flow along sinusoidal walls.®®” Recently this
method has been applied to an elliptic cylinder by Hasimoto® and to
a Kaplan bump by Matunobu.® Further, in order to test the accuracy
of the method, Naruse" has carried out numerical ealculations for the
special wing, around which ‘the existence of the continuous transonie
flow was demonstrated theoretically by Tomotika and Tamada.®® The
superiority of the thin-wing-expansion method has been demonstrated in

1) Contribution from Department of Physies, Faculty of Secience, Ochanomizu
University, No. 17.
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all these cases.

So far, however, the sharp-edged aerofoils have not yet been dealt:
with in detail by this method. Then we applied the thin-wing-expan-
sion method to a symmetrical biconvex cirecular arc aerofoil, as represen-
tative of these profiles.

In this paper, we shall give the outlines of Imai’s thin-wing-ex-
pansion method for the sake of convenience. At the same time we
shall modify and extend the original method, especially in the proce-
dures for obtaining the complex velocity potentials and the mapping
functions. By these improvements it will- be made more systematic
to proceed to higher order approximations.

In the next paper, a symmetrical circular are gerofoil will be
treated in detail, and the veloeity distributions on its surface up to the
third approximation will be presented. Then they will be compared
with those for an elliptic eylinder and a Kaplan bump. These results.
are very interesting and important from both theoretical and practical
points of view, since they give informations about the compressibility
effects dependent on the shape of aerofoils; and moreover they may
be expected to throw some light on the so-called Taylor’s problem, i.e.,
the problem of existence and stability of the continuous and transonic
. flow around an obstacle. : :

Here the author wishes to express his sineere thanks to Prof. Imai
for his kind guidance and encouragement through this work. He is.
also indebted to Prof. Tomotika for his kindness in making the refer-
ences (3) and (11) available to him.

L The Thm—ng-Expansmn Method
§ 2. The Basic Formulae of the Thin-Wing-Expansion Method

- We shall consider a two-dimensional stationary flow of an ideal
fluid past a cylinder of arbitrary shape. We denote the magnitude of
the fluid velocity, its @- and y-components, the pressure and the density
as q,u, v, p and p respectively.?

If the flow is continuous and irrotational, there exist a velocity
potential @ and a stream function ¥ such that

u=-22 v=29 @.1)
ox oYy _

p=Le= ¥ Cp=— P ¥ 2.2)
p Y P

We assume that the fluid is compressible and its changes of state obey
the adiabatic law : :

2) The corresponding quantities in the undisturbed flow at large dlstances from the.
cylinder are denoted with the suffix o. :
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where 7y is the ratio of specific heats. Then, from Bernoulli’s equa-
tion we obtain the following relation,. :

N2 =|:1_r_‘»—i MZ( ' '1>]1/cv—1> i (2.4)
Po - 2’ q°° ) ‘

where M is the Mach number for the undisturbed flow. For simplicity,
we take ¢.=u.=1 and v.=0. Then we may designate @—==x and ¥=y
for the undisturbed flow. The fundamental assumption for the thin-
wing-expansion method is that, deviations of the velocity, pressure, and
density from those in the undisturbed flow are small, when the thick-
ness of the cylinder is small. Consequently, the deviations of @ and
¥ from « and y respectively are also small. Then we may assume that
@ and ¥ can be expanded as follows, '

O=t kot oeernry | (2.5)
T=y+ P+t otooneee, (2.6)

where ¢, 415 . ¢ and ¢, &5;5- -+ are the quantities of the order of
magnitude of &, & and &,--- respectively, and & is a small. parameter
representing the thlckpgss of the cylinder.

Combining. (2.1) a,n_@dm(z 2), we have

p o0 _2¥ _,  p 20 2 @.7)
Pe 0T oy P Y dx - ‘

Substituting (2.5), (2.6) and (2.4) into (2.7), and arranging various
terms in the order of magnitude with respect to & we obtain a set of
differential equations for ¢, and ¢,.

To solve these equations, we transform the variables by the equa-
tions :

x=¢, y=7p; ‘#=1/1TJIT2 ; (2.8)
Pn=dm > In=tAn ~ (m=1,2,3,---). (2.9)
Further we introduce cofnplexv vafiables, |
E=&+47, C(=£—47, (2.10)
and | =it - ~ (2.11)

o Integratlons of equations thus transformed give the following expres——
s10ns for G, :*® :

G=fO), | | | @1

6= o L)er a0l (df)f+j(df)dc]+f<c), 2.13)
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( df ) :+BS( df ) dC+SB< S(%;)de
(A B
| — gé’ g( )dC+fs(C) , (2.14)
wpere vz%l Z;V:/: , | | (2.15)
and o A= A+NEB=2y) M° ’
9%

we |
B=— 2 {6(—p)—(1-2)B-NM*},
96 T .
C= sjgp i‘z {8—8@B—p)M*+ (18— 9y +2r)M*} ,

D=

—M?} .

f(C) (98 and fa({,') are analytlc functions of ¢, whlch must be deter-
mined by ‘the following con’dltlons

(i) a—G— is one—valued and continuous everywhere in the flow,

(ii) as C—oo, %ﬁ-»o

(iii) on the surface of the cylinder, 3(%+G1+G2+G3+ .. -)= 0.

When G,, are known, velocity potentials and stream functions are easily
obtained successively as follows :

¢m=i[Gm(c, O+GnC ES] ,
(2.16)

pn—t]G ¢, -GG, C)]

§ 3. Determination of f({), f:(¢) and 750

According to the theory of conformal transformations, there exists
always an analytieal function, which maps the region outside a given
profile of the ¢-plane onto the region outside the unit ecirele (Z=¢%) of
the Z-plane, and by means of which the points at infinity of both
planes correspond with each other. Such a function can be expanded as

C -,‘ Cl C’g‘

{2)=CarZt ., for |Zj=1.
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Hereafter we designate the chord length of the profile as always
<overing the 1nte1 val —1<¢<1. Since the thickness of the cylinder is
small compared with its chord length, £(Z) may be assumed as follows :

(@)= 5 {2+ 7 )+ 6@+ D+ 2+ - 6.1

'Where the ﬁrst térm on the right-hand s1de is the mapping function
for th_e flat plate as the 0-th approximation. ¢&,(Z) is of the order of
-magnitude of &" and may be expanded : '

m " 1 1
CM(_Z)—C_lz—*_,co + ' 7 +c; 22"*‘ cec. 3.2)
, If we know the mapping functions (3.2) for the profile, we can
determine the complementary funetions f(&), f(¢), and fi(¢), by econ-
sidering the conditions (i), (ii) and (iii) preseribed for G,,.
As for G;=f({), it can contain only terms of negative power of Z
rfor |ZI>>1, in order to satisfy the condition (ii). Further, since
(G1+(C1/p')) must vanish on the profile by the condition (iii), it must
also vanish on the unit circle of the Z—plane, where Z-—l/Z Then we
«<an verify that

£ ) | (3.3

f(‘:)*‘ —_'“(CI(Z) C-1Z"Co

is the réqulred funection.
By means of this functlon, we ean express G, as follows,

G2=fz(Z)+J§=llAj(gi(Z, Z)+ fi(2)) , (3.4)
-where u p | p
1__ g 1 f 1 __-I ’
A——4 Y, | gzl (dc C; fz (dC)C,
.M . dfz -
A ———2—(1+v) , gz_ol—é'f ’ 2 (8.5)
s Mg s [(AFE LAY
A —T(l'l"’)’ _ 9y S( dE) a¢ , fz g dc )

Here fYZ) is an analytic function of Z, which has been so determined
as to satisfy the conditions (i), (ii) and

(iii’) on the unit circle of the Z-plane
31+ o)

while fi(Z) are analytic functions of Z such that 91 +f ] obeys the con-
ditions (i), (ii) and

(iii"’) on the boundary

Yo+ =0,

3) The constant~term in (3.3) ean be dropped for simplicity.
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\'~Then £(0) in (2.18) is the sum of these functlons, namely o
f(C)——fE(Z)+E arqzy. . (3.6)

The functions fJ can be determined by considerations .similar to those
for finding f. But in this paper, we shall use the more general and
~convenient method :of conJugate Fourler series, which will be described.
.at the end of this section.

By a treatment similar to that of G, we ean obtam the third ap-
proximation,

fs(Z)+Z BUgi(Z, Z)+f42Z)) 3.7)

‘where 9! and fJ have propertles analogous to those of gz and ff These
functions are glven in the following table

| g, g3=(—— 3 s |
p-—ayy -,..g§=_fl—§f]3 n
pe-ton ael@)x] A-{iE)e]
T 2
B - £=Zﬂ e |
-2+ ¢ = df2f 73
B°=—]‘1—§»{(r+3>f3~} ot =( )c rt=—(g)
Br=2(@r+5)  gr=(L )f' o

+2(2r +T)v+ 12,7
=211+ L+

4L 2 u_df n

+(2r+9)y+7»2}] "o dCS(dJCE) * T
B= 2T (80+9) g;Z_=§(fl_§)3¢E | | =S(%Jg—)dt

+2@2r +11)v+16:%} | [
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13 _ M4 df df 13 __
po= ] —
5 =) G- rr=o ;
14=_£c 14 ar df,, fl— df 2
peMs (e ()
s M s_afdif =, RSTES
B 4 v(1+4v) g3 = dcd£ f(C ) | fs 0
16=_]¥j . 16 __ df af 16
B : v(1+v) g5 = dc )(C 19 5=0
B =21 +) 17='(_f ) €8 =0
o M o_df dfiz e df df?
B8=""_y(1 18—
"4 v(14) g3 = ac QC Si= i dc —=2£
w_ M* 2 19 ar df 19
BY="(1 3 =J—0—=
4 1 +v) g de dé | , 3
,BZO—_——J?(I—{-;J)Z 9§0=f %2:;)2 go
31 Mi 2 df a 21
Br="(1+ = - f3
| 2 (L) @=L |
p=ifaey  @=p o
28 M* 2 | 23 df d‘]-zE 2 23 __ df dfz
1+ =\% %J2
B =) g Sdc_ Liac B Sdc P
z4=__ 2» 24=iﬁ‘ 24 .
B 1 L +v) 95'="3¢ S 5 ) |
(3.8)®
Then
SO = g(Z)+j§B-’f§(Z) . (3.9)

Determination of f] and f]. We shall denote any one of ¢{ and ¢

by G, and the correspondmg one of f] and fi by F respectively. If we
put i

G(e¥, e ®)=P(0) +Q(0) , (8.10)
and :

F(e"*)=R(6) +1(0) , (3.11)
then ' o

, L 1(0)=—Q(0) , (3.12)
by the condition : _ L
: (G +F)=0.

# In this table G5 is the sum of the terms of the magnitude of & contained in G»
and-Gs of §2 ((2.13) and (2.14)). [ J; denotes: the: terms of the magnitude of & in the
expression in brackets, and g‘ may be consxdered to stand for }(Z +(1 1Z2)).
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"It is easily seen from its c’onstituti"on ‘thaﬁé G(Z,Z) has no singularity
for |Z|=1. Hence F(Z) is regular in the same region and c¢an be ex-
panded in a series :

c Cy | ‘ .
F(Z)= ca+Z1+ZZ+ , for 7121,

Co=Qn+ib, (n=0,1,2, -+.).
Comparing this expression with (3.11),” we have

R(O)=a,+ 3 (aycosnf+bysinnd) ,  (3.13)
1(0)=b0+§ (b cos 0 —a,sinnb) . (3.14)

The conjugate Fourier series’ assomated with R(6), denoted by R*(6),
is defined as :

R*(6)= gl(ansinna—bngosna) ) (3.15)

Then it is readily verified that v
| R®)=a,+I*06) , I()=b,—R*®). (3.1
As Q(ﬂ) is determined from (8.5) and (3.8), we can get 1(0) and R(0)
from (3.12) and (8.16) respectively.
To obtain the conjugate Fourier series associated with a given
periodic function R(f), we may ealculate it from its definition (8.15).

It is, however, often more convenient to calculate directly by the follow-
ing formula :

R*(0)= — | "R(p) oot Y Yy
- _%S [R(¢+0)—R(0)] cot dy . (3-17)

- When &,(2), £(Z) and &,(Z) are given, f(Z), £.2(Z) and f (Z) can be:
determined by the same procedure.

§ 4. Determination of Mapping‘ Function (%)

In order to calculate the effect of the compressibility on the velocity
distribution over the surface of an aerofoil, we have to determine the:
mapping functions z(Z) and ¢(Z) for various Mach numbers. Here:
2(Z) is the function which maps the region outside the given profile
P of the z-plane onto the region outside the unit cirele of the Z-plane,
while ¢(Z) is the function corresponding to the profile P’ obtained by
expanding P, g times in the direction of the y-axis only (see Fig. 1). The:
existence of these funections is asserted by the  theory of conformal
“mapping and many practical procedures haye been proposed by several
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z-and (-plane - © . Z-plane
v .. Fig. 1. .

authors. Imai has also developed a general method for obtaining z(Z)
and ¢(Z) simultaneously.” This method seems to be especially suitable
for the present case. In this section we shall extend it to higher order
“approximations. :

As shown in § 3, the mapping functlon for a th1n profile can be
expressed in the form :

@)= (Z+ D@D+ B +G@ . @
On the unit circle Z— - o
£(0)= cos0+$1(0)+¢(0)+53(5)+ | }  w2p
2(0)= %(O)+7(O) +T(O) + -+« . .‘

We shall now seek the relations between £,(6) and 7,(0).. Here we
confine ourselves to the case in which the chord line of the profile is
placed parallel to the undisturbed flow. The mapping function for the
profile at some angle of incidence can be obtained from that for zero
angle of incidence only by the rotation of the Z-plane.

We have already assumed that the chord length ranges between
—1 and +1. If the trailing edge and leading edge correspond to =0
and 6, respectively, then :

and €n(0)=0, £&.(6,)=0+ ,
The prime denotes differentiation with respect to 4.
The funections {,(Z) can be expanded as

Cm(Z)=c_1Z+co+'£1+—c—§+r--- s |
z z B } 4.4)
, Cr=0y+1, (n=-1,0,1,-..). ‘
Let us consider the function C,n.(Z)—.c;lZ —c It is regular..for lZJ>1 and

5. Since there is no fear of confusion, simple notatlons E(o) etc -are used mstead
of &(e%f) ete. . S e
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tends to zero as Z—co. Moreover it takes the value on the unit circle :
{6n(0) —@-1c080 +b_,8in 0 — @y} +5{7m(0) —b-,cos0 —a_;sin6—0b,} .
Then, from (8.16),

L En(0)=7:(0)+2(at-, cos 0 — b_lsm (J?)+OL0 . (4.5)
Owing to (4.3), we have
7% (0) +2a-, +a,=0,
7% (0,)+2a_,co86,—~2b_,8in 0, +a,=0, (4.6)
7%7(0) —2b_; =0,
7%(0,)—2a_,sin0,—2b_,cos0, =0
From these relations 6,, a_., b_;, and @, are determined, namely,
| tanfi— _ T O +7(0) ' N
2 7m(0)—77.(6)
Gogm— L g% ©-7: £(0)+ 75/ (0)sin0,}, ‘
2(1—cos@,) _ _ | (4.7-)
b= SO,
4y =— 1—~{77 (0)cos 0, —75(6,) + 7' (0)sin 6} .

1—cos?,

When 7(0) is known, 6, is given by the first equation and thereby a.,,
b_,; and a, are obtained. Then §¢,(0) is determined by substituting these
values into (4.5). -We shall denote this procedure of deriving E m()
from 7,(0) by the symbol T, that is

En(0)= ’7?;(0) 4.8)
‘When the’ proﬁle is symmetrlc about its chord, 0 =7 and

£.(6)=71(0)— 77 (0)—l fv*(O)—vm(n)}coso—m'(O) sind

,, -—~{77 H0)+ 7} - (4.9)

Now we shall determine the mapping, function by means of these
relations between £,(0) and 7,,(0). Let a profile in the physical plane
be given by the eguation

Cy=yl@) (—1<z<1).
‘We introduce a parameter ¢ such that
Z=COoS?¥, . }
Y=g(3)=gu(}) + gu(F) + gs(H) + - - -
Points at ¢=0 and d=rn correspond to the trailing and leading edge of
the profile respectively. Since the thickness is small, g(¢) is a _small

quantity and g.(#), g.(). and gs(), - -+ are of-the order of magnitude of
&, & and &, ... respectively. :

(4.10).-
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Remembering #=¢§ and y=7/p, and comparing (4.2) with (4.10), we
can infer that ¢ is nearly equal to 6, and we may put
F=0+(0) +5,(0) +O(E) . - ‘ (4.11)
Here ¢, and ¢, are functions of 6 and of the order of magmtude of &

and & respectively.

When we substitute (4.11) 1nto (4 10) and compare the ﬁlst equatlon
with that of (4.2), we get : v , :

sO)=—50@ v
sind . 1 w12
8.(6) = _i’@__ cotd ( £(0) Y .
sin 6 sin

By comparing the second equatlon of (4.2) w1th that of (4.10) and
making  use.of (4.12), we can obtain the followmg expresalons of 7 (0)~
and &,(6) in terms: of gm((?)
WO=rg0), | I \
£.(0)="1(0)=pgl(0) , ’

7,(6) = 129,(0) — 1i(0)50)_ |
sind

LO=O =gl 0) - 50 LD

| (4.13)
7,(6) = 95(6) — 12 g(6) sﬂ? N AC) ‘72(‘2 p 51(0; ‘l:g 0% (0;]
2 ot0. g1 0)( O 2 )( 9HO)
cotd-gi(o)( L 0) RTAOICLONS
53(0)::77;(0) . . /

The symbol T has the meaning already defined in (4.5) and (4.7) or
(4.9). Now the mapping function has been determined completely up to -
the third order.

If the mapping function #z(Z) for the profile in the physical plane
is knowm from the beginning, £(Z) is derived from it by means of the-
above formulae. If we put

2(e®)=x(0) +iy(0) , ;
x(0) =cos 0+ x:(0) + x,(0) + x5() + - - -, } (4.14)
y(0)= 2:(0) +5.(0) +ys(0) + -+,
we obtain |
7(0)=py(0) » - - T
£(0)=pea(6) . ] .
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7(0)=p00) + e (L — ) i(0) 20
.. sin 0
eO=pn @+ - @O 2D T,
| ., xl(ﬁ) /.
75(0) =, ys(0)+/1(1 #)y (0) 0 w1
1 — D\t mz(a) ' 371(0)“ 971(0) 1—p z,(0) \
e p)yl(ﬂ){ sin @ * sin@ sind 2 cot 0( sin@ -
_, 1 z,(6) pA—=p)?, z:(0)
Heing nﬂ[y( \s1n0 } 2 vi( )(smﬂ)

£,(0)="74(6) .

§ 5. Velocity Distribution
Now we are ready to calculate the velocity distribution over the
surface of the eylinder. If the shape of the cylinder is given by (4.10),
the mapping function is determined from (4.13); thereby G,, is obtained
by the formulae (8.8), (8.4), (3.5), (8.7) and (8.8), the sum of their
real parts being velocity potentials. It is recognized at once by
inspection of (3.5) and (8.8), that the following pairs of gj and f7,
contribute nothing to the value of @ on the surface :
g+ri;
g+fi, %B+f:, Qs+f3 s 3+f‘3~g’8+f’8
Owing 1:0 thls faet, a great deal of calculation is saved.
When @ is obtained, the magnitude of the veloclty q 1s determined
by the formuls :

do do /ds
= = . - (b.1
=45 a6 / a0 " 6.1)
Here s is the distance measured along the surface of the profile and '

@(0)=£(0) + p.(0) + po(0) + s () + = - - . |
ds . ‘ ds (0) 2 1 dv(e) 2 6)
=g/ (22Y) 1.adn0)y |
sy () 4 (L0 o

() =NG, (", e, (m=1,2.8,.-.).
The velocity ¢ is expressed alternatively : ’
=qu(0) +q1(0) + q.(0) + q:(O) + - - - ,

where

9(0)=cos 0/ g; ,

| | e § (5.8)
()= (En(0) + $10(6)) /% . J

6> The sign of the right hand side shall be decided, according as s increases in the
same direction as 6 or not.
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¢, is nearly equal to the velocity distribution for the flow of inecom-
pressible fluid, if the thickness of the cylinder is sufficiently small.
For the range sinf>¢, df/ds can be expanded in a series such as

a _, 1 [y, &0 {52(0) +(é‘1(0) _i(iﬁ@ 't

ds sinfL  sind (sind \sind 2\ sind

{Es(ﬂ) L9 5(0) &(©6) _ 7(0) "(6) +<51’(0) )3

sin @ sinf sind  psinfd psing sind
- _8 &) (1 7:(0) m
, - 2 sing \p s1n0
+O(6‘) o | Coe (B
By means of this expansion, we get another expressmn of q:
q-——l + Ql(o) + 7.(0) + q5(0) + 0(84)

“where

$(0) N a \
ROREC | ; o

— D:(0) | $l0) &(0) | IACRY
w(0)= s1n0 sinf sind * 2(/1 sind

— (o) = HD O O | $50) (EO) (O
sind sinf sinf sinf (sinf . sinﬁ
_1( 70 ) (EO) (O Y, O HEO) )
2 ysinﬁ) }+{ sind ,usin0> i psind ,usin(?}

. (5.5)

).
Here ¢ is reckoned positive when the flow is directed from the nose to
the tail on both the upper and lower surfaces. In this formula, ¢,=1
represents the velocity distribution on a flat plate for an incompressible
flow and ¢, is essentially the same as that given by Prandtl and
Glauert’s linear theory.

Expressions in terms of ¢J. Although we have determined 2 as the
function of 4 in §4, we may treat them conversely ; that is

=3+ 0.(%) + 0.() +0(&) .
where '

g— &)

b
sind

Hzam+awa@;Lm%é@ﬂ. J

sin & sin& si{pz?; 2 sind

(5.6)

Making use of these relations, the various formulae for ¢ obtained above
are expressed in terms of ¢. For instance,
dd(H):

Tas [as

7 See foot note 6).
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where
@(&) cos &+ ¢pr(P) + ¢11(¢9) + Qbm(‘?) + 0(54) )
o) =¢u(9) ; ' ’
pr(H) =, (&) + i ()0(P) , -
¢1n(€9) $:(8) + 951(19)01((9) + 951((9)9 (&) + — ¢i’(¢9)02(l9) ,

=+ ]/sm"& + (dg(l}) ) ‘ | )

The fun‘ctlons $1, . and ¢; are the same as those given in (5.2), and
the prime denotes differentiation with respect to .
Corresponding to (5.5) we have also,

¢=1+q:1(9) + QI_I(‘?) +qu(#)+0(EY ,

L (5.7)

here
1P =a() ,
() =qx(#) + q:(N)6:(S) , )

. 5.8
Gx(®) =4 + GO + GO + — D)), | 9
and qi, ¢., ¢; are given in (5.5). -

When the chord of the eylinder is not placed parallel to the un-
disturbed flow, but with the angle of incidence «, Z must be multiplied
by the factor e '* and terms due to circulation, if necessary, must be
taken into account. Further, since we have determined the velocity
distribution, we can obtain the pressure dlstrlbutlon on the surface,
whence lift and moment acting on the cyhnder are calculated. The
procedures for obtaining these quantities up to the order of magnitude
of & have been formulated also by Imai.®? These methods can be readily
extended to obtain terms of the order of &. In this regard his original
paper should be referred to. '
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