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In algebraic theories of Riemann matrices and complex toroids, it
is a very important problem to find out, how one can construct an
Abelian Variety from a Variety having a normal law of composition,
and satisfying a certain condition. A. Weil developped elegant theories
on Abelian Varieties (ef.[W-3])» and there, he constructed them as ab-
stract Varieties : moreover, he applied the transcendental ground field
extensions. But can one construct an Abelian Variety as a projective
Variety, without applying any ground field extensions? The latter half
was pointed out by A. Weil as an open question in [W-3], and both of
the above were solved for Jacobian Varieties of non-singular projective
Curves by W.L. Chow in [C-1] and for Picard Varieties of non-singular
projective Varieties by the writer in [M-8]. In this paper, we prove
the following theorem :

Let U be a Variety having a normal law of composition, and k a
common field of definition for U and for that law. When U is birational-
ly equivalent to an Abelian Variety, it vs birationally equalent over k
to an Abelian Variety in a projective space.

This includes the preceeding results of Chow and the writer, but
from the ‘‘geometric” standpoint of view, the writer believes, how-
ever, that this does not diminish the values of those. The problem
was discussed between J. Igusa and the writer and this is the report
of the writer’s. Igusa’s general results in the classical case is not pub-
lished yet. :

A linear equivalence of divisors and an algebraic equivalence of cy-
cles on a Variety are defined in the wusual manner, the former being
~ denoted by ~. We shall say that an algebraic family {X} of positive
divisors on a normal projective Variety as mawximal, when {X} is a
Variety as the totality of divisors and when it is not contained in any
algebraic family of the same kind. Let G,(V) be the group formed by
all the divisors on a normal projective Variety ¥ which are algebrai-
cally equivalent to zero and G;(V) be the group formed by all the V-
divisors which are linearly equivalent to zero. There is an algebraic
family of positive V-divisors {X} such that for any Y in G, (V), we

1) The letters and numbers in brackets refer the bibliography at the end. We use
terminology and conventions in [W-1], [W-2], [W-8], freely.
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can find two divisors X and X’ in {X} such that

Y~X-X'.
We call such a {X} as regular. The existence of it is proved in [M-2]-
th. 1. The Picard Variety P of V is an Abelian Variety satisfying the
following conditions:

i) ' P is isomorphic with G,(V)/G/(V) as a group, ,_

ii) there is a common field of definition K for V and P such that
when YeG,(V) is rational over a field K’ containing K, its class on P
with respect to linear equivalence is rational over K’ and that when a
Point y on P is rational over a field K’/ containing K, there is a ra-
tional V-divisor Y in G,(V) over K’/ whose class on Pis y. For these,
see [M-2]-th. 3, [M-3]-§ 2, and for the classical case see [I-2]. The Albanese
Variety A of V is an Abelian Variety satisfying the following condition:

There is a function ¢ defined on V' with values in A such that
when f is a function defined on ¥ with values in an Abelian Variety
B, there is a homomorphism 2 from A to B and that

f =Z§0+C ’
where ¢ is a constant. (cf. [M-3]-§ 3, [1-2]).

- We say that an Abelian Variety is generated by a Variety ¥V when
there is a function f defined on V¥V with values in A and a finite num-
ber of simple Points «y,.., , on ¥V such that f(z)+...+ f(x,) is a
generic Point of A over a common field of definition for V, A and f.

Let W be a Variety in a projective space, defined over a field £,
and (" be a section of J¥ by the linear Variety defined by a generic
set of linear equations over k. We say that C is a generic 1-section of
W over k. When the particular reference to the field is not made, we
mean by it a generic 1-section of W over a suitable field of definition
for W.

§ 1

1. Proposition 1. Let {W} be an algebraic family of positive cycles
of dimension t in a projective space and F be its associated-Variety.
Assume that it contains a non-singular Variety. Then there is o fron-
tier & on F such that when W’ is a cycle of {W'}, such that its Chow-
Point is not on §F, W’ is a non-singular Variety. ' .

Proof. Let k be a field of definition for F and W be a generic
cycle of {W} corresponding to a generic Point w of F over k. Then
W is a Variety and by [M-4]-lemma 8 and [M-1]-prop. 1, W is non-
singular. Since W is rational over k(w), there is a Subvariety X of
Fx L"”, where L” is the ambient space of W, such that (wx L).X=w
x X(w)=wx W by [W-1]-th.12, ch.VII. There is. a frontier §-on F.
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such that when w'’e F—§,, X(w'’) is defined and is a Variety by [M-4]-
lemma 5. Passing to representatives, we assume that Points and Varie-
ties under considerations are in affine spaces and we regard represen-
tatives of I” as an affine space S”. Let Y be the projection of X on S
and fi(X),.., f.(X) be a basis of the prime ideal in k(w)[X] of W. We
may assume that the coefficients of f,(X) are in k[w] and henge f;(X)
=fi(w, X) e K[w, X]. Let w’’ be a point on F such that X(w’’) is de-
fined and is a variety. Then f,(w’’, X) vanishes on X (w’’) and is in the
prime ideal of X(w’’) over k(w'’). Let g;(w,X),.., g,(w,X) be all the
determinants of the matrix [[of;(w, X)/8X;|| of n—¢ rows. Since W is
non-singular, at least one of them does not vanish at every point of W
by [W-1]-85, ch. IV. The set of equations g(w,X)=0,.., g,(w, X)=0
defines on F'x S a bunch &,” and the projection §, of it on F is surely
a bunch on F since w is not contained in any component of %,. Put
F=T—Fr~(multiple Subvarieties of F). When w'’'eF—F, Xw'') is
defined, is a variety, and at least one of ¢g;(w’’, X),.., g,(w’’, X) is not
zero at every point of it. Therefore it is non-singular. This proves
our assertion.

Proposition 2. Let {Z} be an algebraic family of cycles on a pro-
duct of two projective spaces L,Xx L, defined over a field k and Z a
generic cycle of it over k. Assume that Z is a Variety, U, is the pro-
jection of Z on L, and that the projection of Z on U, is regular at every
Point of U,. Let W be the associated-Variety of {Z}. There is a
bunch ¥, normally algebraic over k such that when z' is on W—3F, the
corresponding cycle Z' is a Variety and if U is the projection of Z’
on L., the projection of Z' on U, is regular at every Point of it.

Proof. Let K be the smallest common field of definition containing
k for Z, U,, U,. Since Z is a Variety, we have K=F(z), where ¢z is
the Chow-Point of Z. By [W-1]-th.12, ¢h. VIII, there is a Variety X
on Wx L,x L, such that

(X Lix Ly X=2x X(z)=zx Z.

Let xxy be a generic Point of X (z) over k(z), then zxxxy is a ge-
neric Point of X over % and k(z, )=Fk(z, ,y). Therefore, when Y is
the projection of X on W L,, the projection of X on it is regular.
One can find 2 bunch § on Y such that when 2’ x2’ is on Y—§’, the
projection of X on Y is regular at z’x«’ and is not regular otherwise
by [W-8]-no.1, ch.1. The projection ¥, of §F on W is surely a bunch
since z is not contained in any component of ¥. When we enlarge
to § by adding certain components, if necessary, we. may assume that
for 2’eW—g, X(2') is defined and. is a Variety.
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By the compatibility of specializations with the operation of
algebraic projection (cf. [S] or [M-1]), we have
pry, X@)=U,
where U’ is a specialization of U, over z—z’ with reference to k. Now
~let ' xy’ be a generic Point of X (2’) over k(z') and a'’ xy’’ be a Point
on X(z'). Since 2'¢®¥, 2’ xx''¢% and hence the projection of X on Y

is regular at 2z’ xz’’. Therefore every coordinates of a representative
of y can be written in the form

S, ©)[9(, Z)
with ¢@z', #'")==0, Where we have indicated by z,Z,2z',Z’, %" represen-
tatives of 2, «,2’,z’, " and where f, g are polynomials in z,#. This

proves g(z’, z')==0 and hence the projection of X(2’) on U, is regular
at x#'. Our proposition is thereby proved.

_/.,

The following proposition has been proved in the writer’s paper
[M-3] on the non-singular projective Variety and one can see immedia-
tely that the proof can be extended without essential modifications to
a normal projective Variety. Therefore, we write down the proof of
" it here briefly.

Proposition 8. Let V be a normal projective Vartety defined over
a field k and {X} a regular maximal algebraic family of positive
V-divisors. When {X} contains a rational divisor over k, its associated-
Variety U s defined over k.

Proof. Let X, be a rational divisor over %k in {X} and x, the

Chow-Point of it. Let o be an automorphism of k/k. One can see easily
that U°=U, for U’ is the associated-Variety of a regular maximal al-
gebraic family, the divisors of which are algebraically equivalent to a
divisor of {X}, since z, is also a Point of U°. But this is impossible
when U°==U. There is a positive integer % such that k,=k?™" is a
field of definition for U. Let « be a generic Point of U over k, cor-
responding to X and 7 be the 1somorph1sm of k,(x) and k(a?") such that
for any element ¢ in k,(x),

ra=a?".
r maps k, onto k& and hence k(a?") is a regular extension of k. It is
clear that z?* is the Chow-Point of p"X. Let {Y} be a maximal
algebraic family containing all the specializations of p*"X over k. One
can see that {Y} is a regular maximal algebraic family defined over
% and p*X is linearly equivalent to a generic divisor of it over %k using
[M-2]-th. 2, [W-8]-cor. , th. 33. Let U* be the associated-Variety of
{Y} and M* the Chow-Point of the associated-Variety T'(p"X) of |p"X].
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Since p*X is rational over k(z**) by [C-2], M* is rational over k(z*")
by [M-2]-lemma 4. Therefore k(M*) is a regular extension of k. Let
y be a generic Point of T'(p"X) over k(M*) corresponding to Y. Y is
rational over k(y) and hence M* is rational over it by [M-2]-lemma 4.
Therefore, k(y)=rFK(y, M*) and k(y) is a regular extension of k(M*).
This proves that k(y) is a regular extension of % and U* is defined
over k. _
Let M be the Chow-Point of the associated-Variety T'(X) of |X].

In the same way as above, it is sufficient to prove that k(M) is a re-
gular extension of .. {Y} contains p"X and hence it contains also
Y,=9"X,. Since it is regular, there is a generic divisor Y in it over

k such. that
X— XON Y"“ YQ .

Let N be the Chow-Point of the associated-Variety T'(Y) of |Y]| and y
the Chow-Point of Y. As Y—Y,+ X,~X and as Y— Y,+ X, is rational
over k(N,y), |X| contains a rational divisor over k(NN,y) by [W-1]-
th.10, ch. VIII. Hence M is rational over k(IN, y) by [M-2]-lemma 4.
We may vary freely y on T(Y) and this proves that (M) k(N). q.e.d.

2. Let V be a normal projective Variety, A’ the Albanese Variety
and P the Picard Variety of V. Let k be a common field of definition
for V, A, P and C a generic 1-section of ¥ over k. Since A is gene-
rated by ¥V and by a function f, A is also generated by C and f,,
which is the function induced on C by f (this follows from the writer’s
remark, <“On a generating Curve of an Abelian Variety”, Nat. Sci. Rep.
Ochanomizu Univ. vol. 3, 1952). Let Z be the graph of f.

(CxA)-Z

is defined and pr [(Cx A) - Zl=mI", where I' is a Curve and m==0 since
C is non-singular and A is a minimum model (cf. [N] and [W-8]-th. 6).
We may assume, without loss of generality, that I” contains the Point
o on A. :

Let z,,.., 2, be ¢t independent generic Points of I" over a common
field of definition for ¢ and f containing k. >i..2z,— is a generic Point
of A over K. Put y=>/Zlz, and let ® be the Locus of y over K. Let
{0,} be the totality of A-divisors of the form &,, acA. Let bbea
Point on A and assume that @,~60,. When ¢ is a generic Point of A
over K(a,b), we have "

@é—a'\’@t’:—b _
since the birational correspondences a— —a and a—a-+c on A are every-

where biregular. Since ¢—a and ¢—b are generic Points of A over
K(a, b), I"-6,_, and I"-0,_, are defined on A by [W-3]-cor., th.3. Put
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r-0._,=>\x), I'-60, ,=>/(z). There is a Point z,.., z;_, on I" such
that

Zi=(c—a)— (Z+cee+7Ziy) 1€, C—A=F14 eee+Zi1+2.
It can be easily seen that z;,.., Z,_,, 2 are independent generic Points
of I' over K since c—a is a generic Point of A over K. In fact, let
U be the graph of the function defined on /" x...x I with values on

[
A defined by the relation >7 .z,=x. U is defined over K and dim
U=t.
U-(I'< ... x I' < (c—a))
is defined and is a prime rational 0-cycle over K(c—a) by [W-1]-th. 1,
ch. VI. This proves that z{,.., Z,_., 2 are independent generic Points
of I" over K and every z, is in I'~@,_,. Therefore we have

I 0, ,=>1((7) + oo +(220)

I'-0._,=>3 () + oo + (212)
with st=[U: A] and >}_.z;,=c—a, >};.1zi;=c—a. - It follows that I"-6,_,
and I"-0,_, are I"'— divisors and are such that

r-e, ,~r-e,,
by [W-1]-cor.1, th.4, ch.VIII. This shows that s-(c—a)=s-(c—b), i.e.,
s:a=s-b by [W-8]-th.10 and hence, when &, is given, the divisors 6,
such that ©#,~6, is in finite numbers and it must hold that s-(a—bd)=o0
by [W-3]-cor.1, th. 33.
There is a V'x A-cycle X such that

X-(Vxa)y=pry[Z-(Vx80,)]xa,

where X is the transform of Wx@® by the everywhere biregular
birational correspondence Qx 2> Qx[f(Q)—x] between ¥x A and
itself, whenever the second hand side is defined by [W-3]-prop. 2.
It is easily seen that X has the projection A on A and X~(Vxa) is
non-empty for every ¢ on A. Assume that C is contained in a compo-
nent of X(a). Then (Cx A)-Z is contained in ¥V'x &, and hence I"C0,.
Let a and b be two Points on A such that I” is not contained in 6,
and @,, and that X(a) and X(b) are both deﬁned Assume that X(a)
~X(®). Consider the intersection

Cx A~Z~Vx86,

This intersect properly on ¥V'x A and (C’><A) Z, Z-(Vx0,) are both
defined. Therefore, we have

(Cx A)[Z-(Vx0,)]=[(Cx A)Z]-(Vx8,),
by [W-1]-th.10, ch. VII. In the same way, it holds
(Cx A)[Z-(Vx0,)]=[(Cx A)-Z]-(Vx0,).

We have pr,, {(Cx A)-[Z-(V'x 0,)]} =C-X(a)~C-X(b)=pr {(Cx A)-[Z-(V
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x8,)]} on C by [W-1]-th.16, ch.VII. (Cx A)-Z is the graph of the
function f; and it is non-singular, since €' is non-singular, by [W-1]-th.

15, ch.IV. It follows that
{(C-X(a) x A)[(Gx A)Zl} gx a=[(Cx A)-Z]-(Vx8,)
~{(G-X(0) x A)[(Cx A)-Z]} oy a=L(Cx A)-Z]- (VX 6,)

as (Ox A)-Z-divisors by [W-1]-th.18, ch.VII and [W-1]-cor.1, th.4,
ch. VIII. Let L be the ambient projective space of V. It holds
[(CxA)Z](VX0,)={[(Cx A)Z](LX0.)} 1, a
[(CxA)Z]-(Vx0,)={[(Cx A)»Z](Lx0)} ., a
by [W-1]-cor., th. 18, ch. VII. Therefore we have
7 4{C-X(@) x A)-[(Cx A)Z]} g ag=mI -0,
pr 4 {C-X(0) % A)[(Cx A)-Z]} gy p=mI-0,
(cf. [W-1]-th.16, ch.VII). On the other hand, we have S[f(C-X(a))]
=S[f AC-X(a))]=8[f(C-X(b))] by [W-3]-th.10. This proves that ms-a
=msb by [W-8]-cor.1, th.4. Let {X(x)} be the totality of specializa-
tions of X(x) over K. Then the above arguments and [W-3]-cor., th.33
show that this algebraic family is parametrized by A and a generic
divisor of it over K is isolated with respect to linear equivalence.
{X(x)} is the abstract analogue of‘the family discovered by Poin-
caré (cf. [P]). Moreover, we can deduce easily from the above results

that the Albanese Variety and the Picard Variety of a normal Variety
are isogeneous. Hence we have obtained the following theorem.

Theorem 1. Let P, A be the Picard Variety and the Albanese
Variety of a normal Variety V. Then P and A are isogeneous and
hence have the same dimensions. :

This theorem proves that the dimension of the Picard Variety is
an absolute invariant of the class of V. We define this to be the ir-

regularity of V.

3. Now we shall prove the following theorem

Theorem 2. Let {W7} be an algebraic family of positive cycles on
o projective space, defined over o field k. Assume that a generic cycle
W of it over k is a Variety and let A be an Abelian Variety in a pro-
jective space generated by W. Let {A} be the algebraic family of posi-

tive cycles defined as the totalrz}ty of spectalizations of A over k. Then
almost all of the cycles in {A} are also Abelian Varieties. Let (W', A')

be a specialization of (W, A) over k. Then for almost all of (W', A’), '
W' is a Variety and A’ is an Abelian Variety generated by W'.
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Proof. Since A is generated by W, there is a function f defined
on W with values on A and a certain numbers of simple Points z,,..,
@, such that

f(w1)+"’+f(ws)
is a generic Point of A over a common field of definition containing %
for A, W and f. Hence, there is a symmetric function defined on

Wx...x W with values on A (ef. [W-8]-ch.1). Let Z be its graph
N———

and K§ the smallest common field of definition containing & for A, W, Z
and for the graph of the law of composition ¥ on A. When U is the

projective model of K over k and u a generic Point of U over k, such
that K=Fk(u), there is a Variety X on the product of U and a certain
numbers of projective space L, with the following property:

(uxL)-X=ux Xw)=ux WxAxZxY,
by [W-1]-th.12, ch.VII. There is a bunch § on U such that for

w'eU—-F, (u'xMIL,)-X is defined and is a Variety by [M-4]-lemma 5.
In this case, X(u’) is a specialization of X(u) over u—u’ with reference
to %k and hence, when (W7, A’, Z’, Y’) is a specialization of (W, A, Z, Y)
over u—u’ with reference to %, it holds '
Xu)Yy=W'xA'xZ'xY"

since specializations are compatible with the operation of product (cf.[S]
or [M-1]). Moreover, as w'eU—-g%, W', A’, Z’, Y’ are Varieties. Y’ is
a Subvariety of A’'x A’x A’ and the projection of Y’ on the product
A’x A’ of two factors of A’x A’'x A’ is regular : Z' is a Subvariety
of W x..xW’'x A’ and the projection of it on W’ x...x W’ is regu-
lar, since specializations are compatible with the operation of algebraic
projection (cf. [S], or [M-1]). When we enlarge the bunch & to &, if
necessary, we may assume that the projection of Y’ on the product of
any two factors of A’ x A’ x A’ i§ everywhere regular by prop. 2. The
law defined on A’ by Y’ is eclearly normal since it is so on A and
hence A’ is an Abelian Variety. Moreover, the projection of Z’ on A’
is A’. Hence A’ is generated by ‘W', since we may assume that the
function defined by Z’ is symmetric. This completes our proof.

Corollary. Let {W7} be an algebraic family of vositive cycles on a
projective space defined over a field k and assume that a generic cycle
W of {W?} over k is a Variety. Then almost all of the cycles in {W'}
are Varieties having irregularities = irregularity of W.

Proof. This follows from th.2, when we know that a certain
Abelian Variety, isogeneous to the Albanese Variety of W can be im-
mersed into a projective space. But by th.1, it is isogeneous to the
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Picard Variety of W and the latter can be isogeneously imbedded into
the Jacobian Variety of a generic l-section of W (cf. [W-4] and [M-2]-
prop. 11). By the Chow’s result, Jacobian Varieties of Curves can be
imbedded into projective spaces (ef. [C-1]). q.e.d.

One can show, by replacing W by a (non-singular) Curve C in a
projective space, and A by the Jacobian Variety J of it in a projective
space in th.2, that for almost all (C’,J’),J’ is the Jacobian Variety
of a Curve . This can be done by applying th. 2 and by noticing to
the fact that the Jacobian Variety of a Curve is the Albanese Variety
of it (cf.*[W-3]-th. 21).

§ 2

4. Proposition 4. Let V be a normal projective Variety defined
over a field k and P the Picard Variety of V. One can find an Abelian

Variety defined over k immersed into a projective space, which is isoge-
neous to P. "

" Proof. By [W-4], [M-2]-prop. 11 and [C-1], there is an Abelian
Variety A in a projective space isogeneous to P. Let (V', A’) be a

specialization of (V, A) over k. Then V=V and by th.2; for al-
most all'of A’, it is an Abelian Variety generated by V. Hence A’ is
isogeneous to P by th.1 since dim A=dim A'=dim P. Moreover, as
this holds for almost all of (V, W’), we can choose W’ such that it is

defined over k.

Proposition 5. Let W be a projective Variety defined over a field
k and U an abstract Variety defined over k, having the same dimension
as W. Assume that there is a function g defined on U with values on
W defined over k. There is, then, a birational transformation defined
over k, transforming U to a projective Variety U, and g to a Function
9. defined on U, with values on W defined over k such that, when Z, is
the graph of 9., (1) the projection of Z, on U, is regulor at every Point
of Uy, (@), (@' x U)—~Z, has no component of greater dimension than
zero for every &’ on W.

Proof. Let (21,.., zy) be a generic Point of the representative
cone of V over k, then (x/x,)=(1, ./%s,.., ®x/%,) 1S 2 generic point of
a representative V of ¥V over k and one can find a generic Point Q of
U over k such that k(Q)>k(x/a,). Since k(Q) is an algebraic extension
of k(x/x,), one can find a module basis (%:1,.., ¥,) of k(Q) over k(x/xz,)
consisting of integral elements over E[x/x,]. vy, satisfies then the equa-
tion of the form
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Yo+ A @@y ™+ oo HFF (@l@) =0 (1<e<2)
with fi(x/x,) in k[z/x,]. One can find a positive integer s, such that
wiyis+ fa(@)ags - yi "+ ... +fir¢(m)m§i=0

where «;>0, ..., ;>0 and f,;(x) € k[x]. Let m, be a sufficiently large
integer and put
Si+ 7T =My Ty,
then we may assume that r,>r,, r,=>m,(r,—1). Multiplying 23: we get
(@) i+ Fu(@)at (af )+ oo+, (@) =0

This proves that a7y, is integral over k[x]. Putting S m;=m, we con-
clude that a7y, is integral over %[x]. Let (§) be the totality of mono-
mials zfxh..... ze¥ with e, =m arranged in a suitable order. Since
k[x] is integral over k[£], aMy, is integral over K[£]. The Variety W
whose homogeneous coordinate of a generic Point over k£ is (§) is in
‘everywhere biregular birational correspondence with W over k. The
Variety U, defined over & whose homogeneous coordinate of a generic
Point over %k is ((6), iy:,.., Ziy,) is in birational correspondence with
U over k. The Variety Z in a doubly projective space defined over k
defined by the pair (£; &, &, ..., 2y,) is the transform of the graph
of g by the birational transformations defined above. Z clearly satisfies

all our requirements when we replace W by W. Now our proposition
follows immediately from this.

Remark. In the above proposition, we may assume that U, is nor-
mal with reference to k.

The following proposition has been used and has played an im-
portant réle in my previous paper [M-3]. But for completeness, we sketch
the proof briefly. : o

Proposition 6. Let U be a Variety in a projective space, having a
‘normal law of composition. Let Z be the graph of that law, k a com-
mon field of definition for U and Z and assume that

(&' xy' x U)~Z, (' x Uxy)~Z, (Ux x’Ax Yy )~Z

have on component having the greater dimension than zero for every
z',y on U. Then U is an Abelian Variety defined over k when U is
relatively normal with reference to k.

Proof. In the proof, Zariski’s ‘‘main theorem on birational trans-
formations” (cf. [Z]) plays an essential rdle. First we show that Ux U
is relatively normal with reference to k. Then it proves that the pro-



32 T. MATSUSAKA NSR, 0.0, vol. 4

jection of Z on the product of any two factors of Ux Ux U is regular
everywhere by Zariski’s theorem mentioned above. Hence the law is
defined everywhere and U is an Abelian Variety defined over k. q.e.d.

Proposition 7. Let a=>.a,Q; be the reduced expression for a cycle in
a projective space L" and assume that a,==0 (mod. p), where p is the
characteristic of the universal domain of our algebraic geometry. Let x
be the Chow-Point of a and k a field of definition for L". Then k(x) is
the smallest field containing k over which o is rational.

Proof. First we assume that every Q; has a representative @, on
one and the same representative L of L. Let Q,=(«,.., %) be the co-
ordinate of Q,. We may assume that a®=1, without loss of gener-
ality. Put 6=3,Q, and s=deg(b). Let u{(0<j<n, 1<a<n) be (n+1)n
independent variables over k(Q:,.., Q,)=k(Q) and consider the poly-
nomials in (u§®, ..., u$®) defined by

@)= IT [u§® — @S0 + .o +uPP)]%,  1<a<ln.

By definition, all the set of coefficients of f(u®) is a representative of
w. Put k({uf®, ..., 0} —{u®, ..., uf®})=k(@). « is clearly rational
over k(Q) and k(u) is linearly disjoint over %k with reference to k(Q).
Hence k(Q) and k(x,u) are linearly disjoint over k(x). This shows that
the extension k(Q) of k(x) which is clearly algebraie, is separable or
inseparable according as %k(Q, ) is separable or inseparable over k(xz, u).
Consider f(u™) as a polynomial in u§®. Since ,==0 (mod. p), it is a
separable polynomial in »{* and hence the extension

k(u)(zijugwwgi)’ Va’ 7’)

is separable, and is contained in k(u, @). Since the determinant

uP oo uG ‘

------- ==0, 2§ is in that field and hence k(x, Su®2$, ya, )=k, Q).
wu™..o U
This proves that k(u, Q) is separable over k(u, x), i.e., k(Q) is separable
over k(x). Now 3,0, has no conjugate than itself over k(r), and
hence it is rational over k(x). General case can be proved easily from

this. q.e.d.

5. Now we shall prove the main theorem of this paper.

Theorem 3. Let U be an abstract Variety, having the normal law
of composition, both defined over a field k. When U is birationally equi-
valent to an Abelian Variety, it is birationally equivalent to an Abelian
Variety in a projective space defined over k.
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Proof. Since U is birationally equivalent to an Abelian Variety
A, A is the Albanese Variety of U. By prop. 4, there is an Abelian

Variety A, defined over % in a projective space, isogeneous to A. There
is a function g defined on U with values on A; by the definition of iso-

genity and we may assume that it is also defined over L. Let u be a
generic Point of U over k, %k, the smallest common field of definition
for U, A;, g containing % and put » ‘
gu)y==w.

It holds % (u))lcl(w) and the former is an algebraic extension of the
latter. One can find a projective Variety. U, defined over £k, biration-
ally equivalent to U, and a function g, defined on U, with values on A,
with a field of definition k, such that when Z, is the graph of gl, every
component of

. (' x U)~Z;
is of dimension zero by prop. 5. By the remark of prop. 5, we may
assume that U, is relatively normal with reference to %k,. U, has a nor-
mal law of composition.” Let I"; be the graph of that law. Letu’, u’’
be arbitrary two Points on U, and consider the intersection

. : (" xu"' x U)—~I"; ‘
and u'xu’ xv" be a Point of a component of the above intersection.

Then by prop. 5, we must have g, (u')+ gl(u”) ¢.(v"). Hence g,(v")xv’
is a Point of
X (g:(v") x U)~Z, .

This proves that every component of (u' xu’' x U)~I"; is of dimension
zero. . The same holds for (w' x U;xu ') ~I"; and for (U, xu’ xu')~I",.
Therefore U, is an Abelian Variety by prop. 6.

Now let k, be the largest separable 'extension of % in k,, then k,
is a purely inseparable extension of %k, and there is a positive integer 2
such that k" k,. Let u and u, be the corresponding generic Points of
U and U, over k, by the birational correspondence between them. If"

we denote by u?* the transform of u, by the automorphism of F,(x)
defined by ¢—a?*, we have ' -
Feo(ui™) ley(u) «

Moreover, u?” has the Locus over k?Ck, which is clearly an Abelian
Variety. Since the situation is the same as above, one can prove, in
the same way as above, the existence of an Abelian Varlety B defined
over k, birationally equivalent to U over k,. Let T be a birational cor-
respondence between U and B-defined over k, and T,=T, .., T, be
all the distinct conjugates of T with respect to k. Let uxz be a
generic Point of T, over k, and K the smallest normal extension of %
containing %,. Put (uxL)- (7 T)=uxC P Ti(u)=ux >z, where L is
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the ambient space of B. We have K(u)=K(x,)=---=K(x,). When B,
is the projection of T, on L, this shows that the Locus T, of x;,xx;
over K is a birational correspondence between B, and B;. Since B,’s
are Abelian Varieties, T} are everywhere biregular by [W-8]-th. 6.
Moreover, z=<x; when i>j. Let § be the Chow-Point of Siz;,. Since
ST, is rational over k, S, is rational over k(u) and hence & is ration-
al over it. Therefore & has the Locus € over k..

We shall show that € has a normal law of composition defined
over K. Let & 7 be independent generic Points of ¢ over K. 7 is the
Chow-Point of the cycle Sy, defined by

(X L)« (ZT)=vx >y ,
where v is a generic Point of U over K(u). Let I" be the Locus of
Xy X oo X, OVer K, which is an Abelian Variety. Put 2z X...xz,=x; %
cee XL+ UY1 X eee XY, and ¢ the Chow-Point of >z,. By [W-3]-th.1, and
by our prop.7 we have *

K(&, 7)=K(E,=K(, ().

Hence &-7=¢ defines on € the law of composition. It is associative
since the law on I" is associative and the above law is normal. Let
)/ X .. Xx, be 2 Point on I°, then to this, there corresponds in the
unique way, the Point on ¢ — the Chow-Point of >x; — and to a Point
& on C, there corresponds only a finite numbers of Points on /°. Let
D be a projective Variety defined and normal over k, birationally equi-
valent to U over %k, having the property enunciated in prop.5, rela-
tive to U, C and the function g defined by g(u)=¢&. Let u,# be the
corresponding generic Points of U and D over k. Then by prop.5,
there is a function f defined on D with values on C such that f(#)=¢
and that when Z is the graph of f,

(D x&)~Z

has no component having the greater dimension than zero. Moreover,
f is defined at every Point of D. Let w be a generic Point of U over
k such that (wx L)- (O T)=wx >z, and v, v, and w, w be corresponding
generic Points of U and D over k. #xvXxw has the Locus X over £k
since we may assume that k(u, v)=Fk(u, w)=Fk(v, w). The law defined on
D by X is clearly normal. Let #’ x%' be arbitrary Points on D and
consider the intersection (&' xv'xD)~X. Let #'xv xw’ be a Point of
that intersection. As f(@)=¢, f(¥)=7, f(w)=¢ and as &-7=¢, it holds
J@') - f@)=f(w'). Hence w’'xf(w’) must be contained in (D xf(w")~Z
and this intersection has no component of greater dimension than zero.
This proves that the intersection (' xv’ x D)~X has no component of
greater dimension than zero. The same holds for (@ xDxv')~X,
(Dxu’' xv')~X and from these we conclude that D is an Abelian Va-
riety by prop. 6. q.e.d.
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Let V be a normal Variety defined over a field k& in a projective
space and {X} a regular maximal algebraic family of positive V-divi-
sors. We may assume that {X} has a rational divisor over k. Then
by prop. 3, the associated-Variety W of it is defined over k. Let X
be a generic divisor of {X} over k£ and M the Chow-Point of T(X) of
the associated-Variety of | X|. Then M has the Locus U over k and
moreover, it has a normal law of composition defined over k (ef. [M-2]-
lemma 4 and prop. 8). Hence, as U is birationally equivalent to the
Picard Variety of V (ef. [M-2]-prop. 10, th.2 and [M-3]-§ 2), the Picard
Variety of V can be constructed in such a way that it is defined over
k and can be immersed into a projective space.
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