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Let y(¢), 0<¢<1, be a Markov process whose transition probabilities
F(s, x; t,y)=Pr.{y(t)<yly(s)=x} satisfy the following three conditions
introduced and studied by Kolmogorov [1] and Feller [2]: When t—s,
for an arbltrary 0>0,
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As was shown by Kolmogorov and Feller, F(s,x;t, y) then satisfies a
well-known partial differential equation of parabolic type in s, 2, and
these conditions (C,))—(C;) characterise a class of processes of continuous
type and distinguish it from others obeying discontinuous changes in
time. Under certain regularity conditions imposed on a(s, %), b(s, x)
Feller constructed the transition probability F(s, x;t,v) as the funda-
mental solution of the parabolic equation and proved that it satisfies
(C))—(Cs) and other naturally postulated conditions. On the basis of the
explicit expression of F'(s, z; ¢, y) obtained by Feller continuities of path
functions of y(t) were proved by R. Fortet [8] with many results con-
cerning boundary value problems of the parabolic equation. Concerning
the same problem S. Bernstein [4] introduced another method making
use of approximation by stochastic differénce equations. This method
has been recently improved by K. Ito [5], making use of his theory of
stochastic integrals with respect to the Wiener process «(¢), 0<t<1. He
has proved that if a(¢, ), b(t, x) are continuous in ¢, x and satisfy the
Lipschitz condition '

(1) la(t, ) — a(t :v')l+lb(t x)=b(t, ') |<Clw—2a'|,
then the stochastic integral equation
@ yO=w+ | e s@)de+ | b vE)daE

has the unique solution y(t), continuous with probability 1, and it is ®
Markov process satisfying (C))—(C;). By the use of Ité’s met'hod we
can prove classical results under weaker conditions and clarify intimate
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connections between these different formulations. As an application we
can generalize an “invariance principle” of Erdoés and Kac [6] to a
form applicable to the heuristic approach by J. L. Doob in the proof of
the Kolmogorov-Smirnov limit theorem. ‘

To solve (2) 1t6 used a method of successive approximation. The
following method of difference equations proves to be useful for a
later use.

Theorem 1. Let a(t, z), b(t, x) be two continuous functions satisfying
the Lipschitz condition (1). Consider o division of (0,1), A=A(t, b, =+ -,
o), 0= t0<tl<t2\ « <tp=1, and define variables yi, Yss ** % s Yns

Y= ?J0+0/(t0; Yo) AL, +b(tu, YAz,
Yo=Y+ (s, y) AL+ b1, y)Aw, ,

Yn=Yn-1+ 01> Y- A, + b(tn—n Yp-1)AZp_y 5 -
and ya(t), B 7 .
Ya®)=yu+ altu, y)E— 1)+, y.) (@) —2(t) ,
where o R A
x,,‘=w(tj,)k, ALy 1=y Ty-15- At\,_1=t?,—-t,,_1 R
<t<tus1 »
Then for every t, in the L’-sense, we have

Lim.y ()=y(@), p(A)=Max Afy 15
PCAY=0 :

1I=y=n |
where y(t) is the unique solution of (2).

Theorem 2. Let y™(t), 0<t<1, be a sequence of Markov processes whose
transition probabilities satisfy

© | @, aisrasy= (eate)ds,
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ly —2|<T+ 220 ,
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where e,—0, ¢,—0, eg——>0 respectively when p(A)—0, n— oo, §—0, a(s, x),
b(s, x) satisfy (1), ., b,, exist and are continuous. ‘
Then y™(t) converges in probability law to the solution y(t) of (2),
.., for any 0=<t,<t,<--- t;<l, and a, b,, v=0,1, ---, k, we have
Pr.{a,<y™(t,)<b,, v=0, 1, ce k} ‘
. >Pr.{a;,=y(t,)<b,, v=0,1, -+, k}, n>oo.
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This proves a result due to Bernstein [4] (c.f. also Khintchine [7],
p. 24). To prove Theorem 2 we make use of the following Lemma.

Lemma. If a(s,x), b(s,x) satisfy the conditions under Theorem 2,
and y(t) is the solution of (2), then

O F(exp [izy(t)]) —izE(exp [¥(t) + izy(®)]) ,
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v (@) =S:<a' —.bzi)cz;gr S:b’d:c‘(r), pra— g(f)) otc.,

o’ E(explizy(t)])/ovi @s continuous in y,.
Theorem 3. Let 4y (t) be a sequence of Markov processes which
satisfy the conditions under Theorem 2 and y(t) the solution of (1), then
%irf} Pr.{ f@®)<y™@t)<g(t), 0<i<1}

=Pr.{ fO)<y()<g(@®), 0<t<l},

where f(t), g(t) are arbitrary continuous functions such that f(t)<g(t),
0<t<1, f(0)<<go<g(0).

The proof follows the same line as in [6]. We can apply this
theorem to prove the invariance principle used by J.L.Doob [8] to
prove the Kolmogorov-Smirnov limit theorem. We have only to notice
that if F,(¢), 0<t<1, is the empirical distribution function constructed
from a sample of size » from a population with uniform distribution
over (0, 1), _ ,

YO =(Fot) =)V 75 n=1,2, ++-,
forms a sequence of Markov processes satisfying the conditions of
Theorem 2. '

Theorem 4. If the transition probabilities of a Markov process y(t)

satisfy -
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where a(s,x), b(s, x) satisfy the conditions under Theorem 1, then there
can be constructed from y(t), a Wiener process x(t), with respect to which
y(t) is given as the solution of the Ito equation (2).V

Since the second stochastic integral on the second member of (2) is
continuous as shown by It5, the sample function of y(¢) is almost
certainly continuous. Moreover, since the first integral is absolutely
continuous, continuity of y(¢) itself mainly depends on that of the second

one, and it will be easy to see that y(¢) satisfies the local law of the
iterated. logarithm

Pr. {hm ly(t+h)—y(@)] =b(y(®, t)}
w0 /25 loglogh™

These results on the continuity of y(¢) can be seen as a generalization
of corresponding ones duekto‘ R. Fortet, who proved them in the case
when F'(s, z; ¢, y) is the fundamental solution of a parabolic equation.
By the same theorem and Feller’s result [2], it can be seen that if
a(s, x), b(s,x) are differentiable then F'(s, x;¢,y) is differentiable w1th
respect to s, x. Details will be published elsewhere.
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1) After I have proved Theorem 4, It6 informed me that according to a letter to
It5, a similar result had been also obtained by J. L. Doob.



