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Résumé .

The theory of quantization in non-canonical formalism, recently
given by Feynman and Schwinger, is discussed and another new attempt
for it is proposed in the case of particle dynamics. The classical rela-
tion between Lagrange and Hamilton coordinate variables is the starting
point of our discussion. By requiring that the infinitesimal transforma-
tion of the above relation is a unitary one, the quantization for particle
system is performed. This method of quantization is different from
either of the above theories, but closely connected with them.

Introduction

The theory of quantization for mechanical systems of particles or
wave field was principally accomplished, in canonical formalism, by
Dirac, Heisenberg and others more than twenty years ago. Recently,
however, two representative theories have been proposed for quantiza-
tion in non-canonical formalism : one is Feynman’s theory®® funda-
mentally treating them with the concept of particle’s path, the other
Schwinger’s®® mainly based on a variational principle for Lagrange
function. In the course of our investigation, in which mutual relations
between Lagrangian and Hamiltonian formalism were treated among
classical mechanics and these two theories, we have attempted another
new method of quantization in non-canonical formalism. Our theory,
which is based on the statement that the transformation of the coordinate
of a particle into its parametric expression is a unitary transformation,
ig closely connected with the above two theories, especially with
Schwinger’s, but is different from either of them. In this paper we
shall discuss the quantization in particle dynamies by our new method,
the application of our method to quantization of wave field being
postponed to our later paper. ’

1. Feynman’s and Schwinger’s quantized theories and our point of view

As the starting point of our theory we shall discuss, in this section,
assumptions and procedures of quantization appeared in Feynman’s and
Sehwinger’s theory, and make clear our point of view for the quantiza-

D Contribution from Department of Physics, Faculty of Science, Oéhanomizu
University, No. 11. :



‘56 . .T. SHIMOSE and C. FuJiTA NSR. 0.U, vol. 4

tion, which has a close relation with the above two theories. But as
we are interested only to make clear our method, the discussion about
quantization is limited to the domain of particle dynamies, in which
one particle moves one-dimensionally.

Feynman’s theory. In his quantized theory Feynman took up all
possible paths of the particle, paths not prescribed by classical equations
of motion being contained too. In his theory the following two
postulates are assumed for each path. ‘

1. The phase of probability amplitude @ associated with each path

is proportional to the action integral S

2 2) .
(D:'e ]I'S ’ (1)

where S is an integral of Lagrange function L(g, *,¢) taken. over
- the arbitrary path from ¢ to ¢,

s=\rr@ava. @

2. 'The probability amplitude for each path is ruled by the principle
of superposition, so that the transition probability P from one point
P, to another point P, is given by

P=| o5 . 3)

all possible paths from P; to P,

- As a result of his introduction of the idea of particle’s path, the
relation between quantized theory and classical mechanics was made
clearer than before. However, because of difficulties existing in
the process to take up the summation for all possible paths appeared
in Eq. (3), the whole extent of special problems to be treated by his
method was limited to a very much narrower domain. Further, Feynman
developed the calculus of ordered operators and expressed concisely the
above summation. In the examples of his ordered operators® we have
had many suggestions for our method of quantization.

In the first place we shall accept this idea of particle’s path from
Feynman’s view, but give up to make each path associate with the
phase of an action integral, and derive it from more fundamental
principle obtained by modifying Schwinger’s theory.

Schwinger’s theory In his theory the variational principle for an
action integral was applied under the next postulate 1. and the varia-
tion was taken up to prescribe the transformation.

1. The variation of an action integral S of the motion for a particle
is carried out, considering effects of variations in the boundary
domain.

as:agtl Ldt= Stl SLdt+ | Lot |}
to to 0

2) In our paper h means Planck’s constant divided by 2.
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t { oL d 8L>} o aptt
= — ogdt+ | PA L—Pg)ot|; ,
o o~ (5 ) ude 1Pag+ (L~ Pt

 where - Ag=0dq+¢dt and P—=03L[3q ,
| —|PAq+ (L~ Pg)ot|}, @)

if the path consists with egquation of motion.
2. The variation of the transformation function <l¢"'(t)|q’(t)>> and
the variation of S are connected as :

A<Q”(t>.)IQ’(t1)>=—;;~<Q”(tz)IAS(tz, £)lg’ (t)> )

The above-mentioned quantization process 1. of Schwinger’s, as
pointed out by Dyson®, related closely with the uncertainty of physical
quantities in the boundary, but as the uncertainty principle is not
fundamental one, his postulate 2. should be replaced by a more funda-
mental principle (for example by the commutation relation between p
and ¢). So to place the results followed from this uncertainty principle
in the position of fundamental assumptions seems not to be appropriate.
Moreover, on the occasion of making a variation of the action integral,
Schwinger has introduced the substantial variation Ag of the coordinate
of a particle in addition to the usual variation of ¢, and made use of
the variation relation ' )

Ag=0q+qdt , (6)
aceording to the usual view of classical mechanics. This relation is
rather to be situated at the starting point of our theory than connected
intimately with our point of view about quantization. '

As the meaning of this relation he interpreted further Hamiltonian
formalism as the following : “the case Ag=0, i.e., the eigenvalues of
the old and new operators are the same, the change in the operator d¢
being just that to counteract the natural change in the eigenvalue which
would result from the system’s carrying out its motion.” But he did
not develop further his interpretation about the relation (6).

Finally, by using the variation in the boundary domain, Schwinger
derived the next relation as the infinitesimal unitary transformation of
the operator :
ihdéq=[q, PAq—(P§-L)ot] .» (M
Later it will be seen that this relation corresponds to our result (3.4).

We shall take up the relation (6) as one of the fundamental postu-
lates for quantization and interpret it as the relation to determine the
transformation property of Lagrangian formalism to Hamiltonian. In
our theory we shall make utmost efforts to the development of this
relation, and in the next section make this relation correspond to an

3) By bracket we mean [4, B]l=AB~-BA.
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infinitesimal transformation of the coordinate ¢ of a particle into a new
coordinate @, a group of path parameters,
dq=0Q+got , ®)

where the @ is a funection of path parameters («, B, ---) or of these
parameters and time ¢, acecording to our point of view. _

This relation (8) is a mere relation of transformation between
particle’s coordinate and path’s parameter, but when we require that
“the transformation specified by the relation (8) is an infinitesimal
unitary transformation,” an important change happens for the interpreta-
tion of this relation. It will be seen in the next section that at the
same time as this requirement is satisfied, the process of quantization
is performed and the commutation relation characteristic of quantization
(commutation relation between coordinate and momentum) is determined.
In our theory as is seen from the above discussion, our whole construc-
tion for quantization is made up by assuming that the idea of particle’s
path is taken up and the transformation of the coordinate from
Lagrangian formalism to Hamiltonian is connected with the idea of
path, and further this transformation is connected with the concept of
unitary transformation.

2. Mutual Relation between Lagrangian and Hamiltonian Formalism
in Classical Mechanics.

In order to make clear the distinction between dynamical variables
of Lagrangian formalism and those of Hamiltonian in classical mechanics,
and to make it a preliminary for the quantization in non-canonical
formalism in the next section, first we shall consider one-dimensional
motion of one particle by treating its path with the method of space-
time descriptions, following Feynman’s view for the quantization in
non-canonical formalism. For that description of the particle’s motion
under the equal dynamical condition, which is called, as is well known,
Lagrangian formalism, the time-change of the coordinate ¢ for each
path may be expressed as below

g=q(a, ?), : 1)
where « stands for a parameter distinguishing different classical paths,
for example an initial coordinate or initial velocity.

Next we shall consider a transformation of the coordinate into its
parameter «

(9, )—>(a, 2) « 2)

As shown below the basis for all our discussions will be constructed on
this transformation. By this transformation a group of path curves
on the (g¢—t)—plane is transformed into another group of straight lines
parallel to ¢-axis on the («, t)-plane, (cf, Fig. 1).
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t

pression for this transformation to a of=const.

certain extent, we should make pro-
perties of its infinitesimal transforma-
tion clear, which is specified by the
following expression,

the variation of ¢,

8g=%5a +
o

the meaning of the expression (3) being
On the (¢, t)-plane the
variation dq denotes the difference of
two neighbouring points, P,(«,t) and

as follows.

P,(a+da, t+ ot),

in Fig. 2.

ton variable

In the following we shall show
that, when 3¢/oa of Eq. (3) does not
contain ¢ explicitly, Eq. (3) is equal to

Q.

ot

by considering

5, 3)

which are situated ol = const,
closely on two different paths « and '
a+oa respectively. The first and the
second term of Eq. (8) are indicated
Lately, this analysis will
gserve to the interpretation of Hamil-

Eq. (1.6) of Schwinger’s variational R Fig. | 1.

case, and when 3q/oa depends on

t

t+dt

P, (x+8x t+Jt)

2.

both
a and ¢, Eq. (8) is transformed finally

into the form of Eq. (1.7) of

Sehwinger’s.

Case 1. When 9¢/oa is a function of
a only and does not contain the time
t, we shall introduce a new variable

Q by
_\"2a,4
Q S da %
then Eq. (3) becomes
0q=0Q+ qdt, (Where Q=g—g) .
| @

As compared with Schwinger’s variational theory, the relation (1.6) can
be made equal to Eq. (4) by replacing as

for this equation.

0g—>Aq and 0Q—dq

In his theory this relation determines the relation
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between Lagrange and Hamilton variables. So in this paper we
~shall take up so that this relation has the same meaning as Schwinger’s,
but expressed by a distinct expression for each variable, Lagrange
variable being denoted by small letter ¢ ete., and Hamilton variable by
capital letter @ ete. '

Case 2. When 23q/oa depends on o and ¢, we shall introduce a new
variable Q(«, t) by taking as :

Q3
oaa oa’

but 2Q/ot being undetermined. Then the infinitesimal transformation is

sqla, £) =L sa + ot ,
5104

=0Q+(4—Q)ét , -
or 0q — (ot=0Q—Qot , (5)

Egs. (4) and (5) determining the relation between Lagrange and
Hamilton variables in classical mechanics. As we do not so far specify
the Hamilton variable P conjugate to @, these relations do not play an
important role in classical mechanics, but by combining the definition
of P with unitary transformation the whole situation becomes quite
different in quantized theory. '

3. Quantized Theory in Non-canonical Formalism

Starting from the classical relation (2.5) between Lagrange variable
g and Hamilton variable @, we shall proceed into the quantized theory
of these variables, in which all variables are interpreted as operators.
In order to interpret the @ as Hamilton variable we must, further,
introduce a Hamilton variable P conjugate to Q. But we do not adopt
the usual classical way, in which P is defined as '

p=2L 1)
oq

at the starting point, but take up another way, the relation (1) being
derived as its consequence. In classical mechanics a transformation of
Hamilton variables (P,, @) to another variables (P, @) is defined as a
contact transformation and in quantum mechanics it is specified as
unitary transformation between operators. At the same time as defining
this unitary transformation of @ we shall be able to introduce correctly
thg conjugate Hamilton variable P, contrary to the usual way. When
a unitary transformation between operators @, and @ is expressed, as
is well known, by a transformation function U as-

Q=U0Q,U",
the infinitesimal unitary . transformation of operator @ about unit
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transformation is expressed as
ih3Q=[Q, F] (Where' Q=Q,—6Q and U=1-—%F>, @)

while the relation (2.5) constituting our starting point is expressed as

3Q=(3q —0t) + Qot 3)

In order to proceed into the quantized theory, we must expect that
‘the relation (3) is the same form as the relation (2). So we shall require .
that the nfinitesimal transformation (3) is an infinitesimal wunitary
transformation and take the form of (3). By fulfiling this requirement
we shall perform the quantization in Hamiltonian formalism as follows.

By introducing two new operators P and L, which are non-com-
mutative with @ and satisfy the commutation relations

[P, Q]=ﬁ, (L, Q=" 29 | @)
¢ ot

Eq. (8) may be written in the form of an infinitesimal umtary trans-
formation

ih6Q=[Q, Poq— Pgot+ Lot] . G
Of course we obtain again Eq (5) by putting as
F'=P(6q—qot)+ Lot 6)

in Eq. (2). Then Eqgs. (2) and (3) become equivalent. Let us compare
Eq. (5) with Eq. (1.7) obtained from Schwinger’s variational principle.
Then we find that the same relation (5) as Schwinger’s is obtained by
our method without making use of variational method, except that in
our notation the distinction between Lagrange and Hamilton variables
are made explicitly. »

It is a fundamental assumption for us that L appeared in Eq. (4)
must be interpreted as the usual Lagrange function of Lagrange vari-
ables ¢, ¢ and time ¢, which is analogous to the first postulate (1.1) of
Feynman’s theory. Thus we may assume implicitly that the @ has the
same phase as Eq. (1.1) in the non-quantized formalism. To obtain the
relation (1) from Eqg. (5), we may proceed as below by making use of
the method of Feynman’s calculus of operators.® According to his
method Eq. (5) is integrated operationally into the following exponentlal
form

igzopdq h3 (Pg-~ L)dt ) Fdgt- S (Pq—L)dt

Q(C\% t)=ehl Qo(xo, to)e h (1)
This operational form means that P beCOmes Eq. (1) by the Feynman’s
principle of superposition for ordered operator, where L is expressed as
a function of ¢ and ¢, analogous to the classical prmmple of statlonary
phase by Rayleigh. Then @ becomes - : :

?

@ ) (o 3 (¢ :
d Pdg+—\ Hd
Q(a,t)—ehs Pdg- hSHtQu(ao, tye ~ Jupta fL ae ®)
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where H stands for

H={P{~L}, .. ©
if ¢g=/f(P) is obtained by solving Eq. (1) for ¢. Thus the important
fact for our theory that the relation (1) should be derived as a result
of our assumption, has been verified.

In Schwinger’s theory an assumption which makes the system
quantized, is prescribed about the connection between the variation of
unitary transformation function and that of action integral as Eq. (1.5).
As our effort for quantization is coneentrated upon the transformation
of the coordinate, contrary to Schwinger’s view, in our theory, the
process of quantization is achieved in Eq. (4), i.e., the sufficient con-
dition to equalize the relation (3) and (5). Even this mere comparison
of Schwinger’s quantized theory with our’s will make it easy to under-
stand the fact that the above-mentioned process is nothing but a
quantization process. _

Next, we shall discuss some special cases of variations ¢, d¢ and
0@, analogous to Schwinger’s treatment.®

Case 1. Suppose now Jt=0; this case corresponds to a reshuffling
of operators on the surface t=constant. In this case we have simply
8q=0Q. Then we have again the commutation relation (4) of P and
@ from Eq. (5).

Case 2. Let us investigate the case of Heisenberg representation
by putting dg=0. In this case we must change the sign of the left-
hand side of Eq. (5), according to the usual meaning of Heisenberg
representation. Then we have from Eq. (5)

L dQ -

which constitutes the well-known equations of motion in Heisenberg
representation. While the equation (10) determines the total variation
for the time change of the operator @, under the condition dg=0, the
latter of Eq. (4) determines the partial derivative of the operator Q.

Case 3. For the expression (5) we shall consider one more special
case

sq=got and 6Q=Q0¢ . (11)

For this case we have from Eq. (5)
2L —1q, 17, 12)

which is the equation of motion for the Hamilton variable @ in
Lagrangian formalism, and expresses again the latter of Eq. (4).
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