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In his book «“Varidtés Abéliennes,ét Courbes Algébriques”, A. Weil
has proved that every Abelian Variety is generated by a finite number

~ of Curves (cf. prop. 30, § IX of the book). We shall show in this paper

that every Abelian Variety is generated by one Curve. This will be
one of basic tools for the investigation of Abelian Varieties. Using
this, and applying Chow’s result on Jacobian Varieties, we shall gene-
ralize his celebrated theorem® to arbitrary Ab°11an Varieties in the
forth-coming paper

§1

Let V* be a complete Variety and X"*! a Subvamety of the pro- .
duct U™" of V and another Variety U”. Then X7+ defines on ¥V an
algebraic family of Curves {X (M)} parametrlzed by U. We assume
that the following conditions are satisfied by {X(M)}.

" (i) {X(M)} covers V, i.e., projection of X on V is V,
(ii) there is a bunch B on U such that when Me U-B, M is
' simple on U, X(M) is defined and is a non—smgular Curve,
and contains no multiple Point of V, -

(i) {X(M)} has a base Point N Whlch is simple on V.

Now we shall prove the ,

Proposition 1. Let f be a function on V with values wmn an Abelian
Variety A. Assume that f induces on X(M,) (Myc U—B) a constant.
Then f is a constant. (For the deﬁnition of the function, see (A)-§ I,

O 1)

Proof. Let Z be the graph of f and K a common field of defini- -
tion for V, U, X, A, Z and M, over which 3B is normally algebraic.
Let MxP be a generic Point of X over K and Y’*!' the Locus of
MxPx f(P) over K. We have pru«vY=X and the projection of Y
on VxA is Z. Consider the mterseetmn

1) We shall use the the same terminologies and conventions as in Weil’s books,
“Foundations of Algebraic Geometry’’ and ‘“Variétés Abéliennes et Courbes Algéb-
riques’>. We shall denote the former by (F) and the latter by (A).

2) This theorem says that when I' is a non- -singular projective Curve defined over
a field k, the Jacobian Variety itself is defined over %, and can be immersed in a pro-
jective space. For this, see W.L. Chow: ‘“‘Algebriac system of positive cycles in an
algebralc Varlety” ‘Amer, Journ. vol. LXXTI.
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. (M,xVxA)~Y. |
It is easy to see that every Point in this intersection is of the form
M, x P’ x¢& where P e X(M,) and &= f(P’). Since f induces on X (M,)
a constant, it follows that the only component in the above intersection
is Myx X(M;)x§&. Hence

(Myx V'x A) Y=M,x X(M,)x &'
Let M be a generic Point of U over K and put
(MxVxA)-Y=Mx Y(M).

Let Ux V'x A be a representative of Ux V'x A on which M,, Y, X(M,),
have representatives M,, Y, X(M,), £. Then Y (M) has a representative
Y(M) on VxA. Let MxPxé& be a generic Point of Mx Y (M) over
K(M). Then, it is a generic Point of ¥ over K by (F)-VI, th. 11 and
so (M, &) is a specialization of (M, &) over K. Let C be the projection
of Y(M) on A. Denote by C* the uniquely determined projective cycle
determined by C. Then the above argument shows that there is a
specialization C* over (M, &) — (M,, &) with reference to K such that
a certain component C*' of C* has a i*epresentatiVe C: on the same
affine space as C and that C; constains £.9 ‘ C
Let & be a Point of C;. Then &” is a specialization of & (the Point

whose representative is ) over M — M, with reference to K. Extend
this specialization to a specialization P — P” over K. Then M,x P”
is on X(M,) and so f(P”)=¢&" since P” is simple on V" by our assump-
tion (cf. (A)-§II, th. 6). But as f is constant along X (M) and as P”
is s1mp1e on X(M,), we must have

o f®=FP)=¢.
- This proves that C;=¢" and so dim C=0. Therefore it holds
(M x V><A)- Y=MxX(M)xE&.

Thus f must be constant along X (M).

Now, let P and Q be two 1ndependent generie Pomts of V' over
K, then we can find two generic Points M and R of U over K such
that X(M) and X (R) contains P and Q respectively. Since N is a
base Point of {X(M)}, simple on ¥V, on X(M) and on X (R), it follows

that
f(P)=f(N)=f(R),

by (A) § II, th. 6 by what we have proved above. This completes our
proof. -

3 For the definition of the specializations, see P. Samuel’s “Thése”, Paris, 1951,
or T. Matsusaka’s ‘‘Specialization of eycles on a projective Model’’, Mem. Col. Sei., Kyoto
Univ., Ser, A, 1951, The dimension of the cycle is not altered by specializations.
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Proposition 2. There is always an algebraic family. of Curves on
V' satisfying conditions (7), (i), (it2) when V is a mormal projective
Variety. Moreover, when V is defined over k, we can find such a famzly
that U and every component of B are defined over F.

Proof. Let k be a field of definition for ¥ and L¥ the ambient
projective space of V. Let L¥"! be a generic linear Variety over
. K and put :
C=V.L* "1

Then C is a non-singular Curve, and every Point of it is simple on V.9
Let > u ;i X;—v,X,=0 1Li4Ln—1) be the set of defining equations
for L”"'=L,,. Then for non-special values (¢) of (u), L,V is
defined, is non-singular and every Point of it is simple on V. As k
contains infinitely many elements, we can take (c) from k. After
‘applying a projective transformation, if necessary, we may assume that

Loy V

is defined, is non-singular and that every Point of it is simple on V.
Further, if H is the hyperplane defined X,=0, we may assume that
V-H is defined. Let L"”' be the (n—1)-dimensional projective space.
Considering (1, v,, -+, v,-1) as a representative of a generic Point M

of L"! over k, we can find a Subvariety X" of L**x V such that
pr[X-(Mx V)]=X(M)=V-Le,s, (ct. (F)-VIIL, th. 12).

Then the conditions (i) and (ii) are satisfied by the algebraic family
{X(M)} defined by X". Let N be a Point of V-L¢.~H. Then N
is contained in every member of {X(M)}.. Moreover, by our assump-
tion on L,,, N is a simple Point of V. Thus, (iii) is also satisfied by
{X(M)}. The rest of our assertion follows immediately from our
observation made above.

§2
We shall say that an Abelian Variety A is generated by a Variety

V' when there is a function f defined on V with values in A and a
set of a ﬁnite number of simple Points (P, ..., P,) such that

SP)+ -+ f(P)=¢

is a generic Point of A over a common field of definition K for A, V,
and f. If that is so, we shall also say that f generates A.

Theorem. Let A™ be an Abelian Variety generated by o Variety
V, and k be a field of deﬁmlm'on for V. Then A is generated by a

H Cf. Y. Naka1 ““On the section of an algebraic variety by the generic hyper-
plane”. Mem. Col. Sci., Kyoto Univ., Ser. A, 1951,
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Curve Y on V and we can choose Y so that it is deﬁned over the
algebraic closure of k.

Proof. After applying a normalization, if necessary, we may assume
the existence of the algebraic family of Curves {X(M)} on V satisfy-
ing the conditions (i), (ii) and (iii) by prop. 2. Let f be a function
on V with values in A generating A. Let M’ be a Point of U—93
such that f induces a function fxm). We may assume that there is
a Point Q on X(M’) with fX(M)(Q) f(Q)=0, where 0 is the unit
element of A.

Let B" be the Abelian Subvariety of A™ generated by X(M') and
f> that is, generated by X(M’) and fxm). There is the Abelian Variety
C"" on ‘A such that B~ C is a finite subgroup of A by (A)-§ VII,
th. 26. By (A)-§ VII, prop. 25, there is a homomorphism y of A on
C and a homomorphism B of A on B such that B.y=7.8=0. It is
clear that C is generated by V and 7-f=g, which is a function on. ¥
with values in C. Let P be a Point of X(M’). Then f(P) is a Point
of B and hence can be written in the form f(P)=j8-¢, Where £is a
Point of A. It follows that :

| g(P)=7-f(P)=r-(8-8)=(r+B)-£=0.
Hence g induces on X(M’) the constant O. By prop. 1, ¢g is therefore

a constant function on ¥ and so B must be A. The rest of the proof
follows immediately from prop. 2.




