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In 1948 S. Kakutani [1] has proved the following
Theorem The infinite product measures m*=Pe_,m,,- and m*"
- =Prmy, if each pair (m,, m,) has absolute continuity one cmother, are
either. absolutely continuous or singular ome another, accordmg as- the
infinite product I3 ,p(m,, m,) is >0, or =0, where

(1) Pl )= Vmfdoymdw)

In this paper we shall give another proof of the above theorem. This
proof is based on the idea of a theorem of Lyapunov [2], [8] which is
closely related to our studies in statistics [4], [5], [6]. In the problem
of testing simple hypothesis m against m’, the power y of the most
powerful test depends only on its size «. This mapping (a—7) is
written as y(a;m,m’). (This is named ‘separation function’ in [4].)
We have proved, in [5], that lim,,.7(a;m", m'")=1, (0<a<1), where
m”® and m'" are the direct product measures of = measures m and
m’ respectively (see [4]). This result is a special case of the above
theorem, where m and m' are independent of n. The two curves
y=r (@;m, m’) and y=1—7y (1—a;m, m') form the boundary of the con-
vex and closed set L of the points (Jp(w)dm, jgb(w)dm’) for all meaSur-
able functions ¢(w) (0 < ¢(w) < 1), and, moreover if 7 and m’ are both
non-atomic, L coincides with the set of the points (m(E), m'(E)), which
has been considered by Lyapunov [2] in a more general way. In the
statistical languages ¢(w) is a randomized test, and ‘E is a non-rando-’
mized one. In Section 1 of the present paper we shall study propertleS'
of the class £ of all I’s. In Section 2, we shall prove Kakutani’s
theorem stated above by the properties of €. In the last section, we
shall discuss whether the absolute variance of the difference of two
measures can be used instead of the function p.

1. Definitions and Properties of &. A measurable space (Q, B) is
a set Q and a s-algebra® B of subsets of Q, and w is an element of Q.
If m and m/ are two probability measures®” both defined on the same

1) This is Hellinger’s integral

2) A g¢-algebra of sets is defined as a non-empty class of sets closed under the for-
mation of ecomplements and countable unions (see [7]) '

¥) For simplicity, we shall omit the word ‘‘probability’’ from ‘‘probability measure”
in the rest of this paper
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space. (Q, %), then the plane set L of all the points
o Sgb(a))dm, qu(cu) dm’)®

is named an 2-set of a pair (m,m’), where ¢(w) is a B-measurable
function (0 < ¢p(w) < 1). :

Theorem 1. The $-set of any pair of measures is i) convex, 11)'
Y

closed, iii) contained in the square O=[(x,y)|0< o<1, 0<y<1], iv)

symmetric to the center (%, %), and V) contains the segment I=[(x, x)]

0<x< 1]

Proof. We shall only show ii), since the others are clear from :

the properties of ¢(w), ,
‘ By Radon-Nikodym’s theorem, there exist a B- measurable functlon
f(o) and a B-measurable set S of m-measure zero, such that

(2) | ' ()= f@)dmtm'(E ~3)

holds for every B-measurable set E. By using f(a)) and S, We‘cv'a‘n“
define a B-measurable function ¢, .(w) for real k(0 ékéoo) and c

(0=<c¢<1) as follows: for k< oo,

g , if flw)>k or if weS,

P, (w)=1 1, if flo)<k and if » ¢S,

[c, if f(o)=Fk and if w¢S,

and for k=oo,
¢, if wesS,

¢“’°(,‘°)={.1, if wéS. |

Since, for any B-measurable function ¢(w) (0 < ¢(w) =< 1), we: have

S¢(w) dm’ —k S (w)dm ZS%, {w)dm’ ;ksqsk 'c(w)dm;*)\ |

we can easily show that the boundary of the Z-set of the palr (m, m’)

is the set of all points . o
ftdoram, o dorim) ana (1—»§¢k,c<z»>dm, 1= g et

for all £ and ¢. Thus we see that L-set is closed.

Before we discuss the relation between a pair of measures and its

¥-get, we shall introduce some concepts related to the Lset.

The class of all sets L satisfying the conditions i)-v) of Theorem 1
will be denoted by 8. The set B,(L)=[(x,y)|y—ke=infe, e (7—kE)]
~L is a point or a segment, where the line y—Fkx=inf, n)ei(77+k5)'5)

' Integral sign omlttmg any limits is understood as that over the -whole. space,
on which the measure is defined

% "This inequality is essentially that of Neyman and Pearson in the theory of.;

statisties [8]
5) When k—oo it means that z= supce,meré= 1
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supports L (0 <k < o). Especially, By(L) and B.(L) are the parts of
the lines y=0 and x=1 respectively, which are contained in L.
Defining

Fz(log k) =8UPy)e 507>
and

. ‘ F(log k)=SUp..) e 5y¥s
we can easily see that ’ : :

, ,
(3) Fi)={_car ), —co<t<on,
If L is an g set of (m,m’), and if m’ is represented as (2), then hold

Fyt)=m(lo| fl@) <e']) and Fi)= m' ([0 f(w) < ¢T—S).

These functions F'i(t) and F';(t) are called [-functions of L. Consider the
set X= =[—o0, o]® and the smallest s-algebra I, containing all intervals®
in X. On the measurable space (X, 3), we can define measures. m;
and m; from F; (t) and F; (t) such as A

mL([-—oo, t])=FL(t), mz([-—oo, t])::F;(t)’ for < oo,
and mz([—oo oo J)=my([—oe, co])=1.

Thus we have obtained

Theorem 2. For any element L of L, there emsts a pgir of mea-
sures on a mesurable space, whose L-set coincides with L. .

. Lemma 1. For any pair of measures m and m’ deﬁmng L of g,
the length of a segment Bi(L) equals to either V'm([w]| f(w)=k]P+m/ ([o|
Sf(0)=Ek]—S) or m'(S) accordingly as k<oco or =oo.

From this Lemma 1 follows

Theorem 3. Let L be the Z-set of a pair of measures m omd m'.
m and m' are i) identical, ii) singular one another, and iii) absolutely
-continuous one another, if and only if 1) L=I, ii) L=0, and iii) each
of Bo(L) and B.(L) consists of a single point, respectively.

By the product £-set L,-L, of two &-sets I, and L,, we mean the
L-set of a pair (m,x m., mixm;) defined on the direct product measur-
able space (leﬂl, B, xB,), if L, and L, are respectively the L-sets of
my and m] on (Q,, B, and of m, and m, on (2, B>

Theorem 4. The product -set L,-L, of S-sets L, and L, s mdependent
of the measurable spaces and the measures which define L, and Ls. '

- Proof. Suppose that L, is a £-set of (my, m;), and that we have a
Radon-leodym’s representatlon '

-6 By interval [~o0, t] we mean the set of all real numbers =< ¢ and a point —oc

7 By the direct product of measurable spaces (2, B;) and (2, B,), we mean the
set of all pairs (w;, wy), w € 2;, @, €02, and the smallest s-algebra containing all sets
E,\x B,, F;&c%, EzeéBz, and by myxmy; We mean the extensmn of mlme(Elez)
=m1(E1) mz(Ez) onto By x B, s ‘ :



July 1952 - A Theorem of Kakutani on Infinite Product Measures 13

m;(E)=SE Fidm, £miE ~S,) for all Ec%,,

where f, is a B,-measurable function and S; is a B,-measurable set of
m,-measure zero (¢=1, 2), then

my X ’m,;(E)=S Fifd(my X my) +my X m;{(ﬂl‘x S,~ S; % ‘Qz)/\E} :

holds for all E e 3B, xB,. Therefore the (-functions Fr., and Fie:, are
‘as follows: - - N

Fer(Q)=1m X my([(1, @3) | fil®,) fo,) < D), |
) F;l;Zg(t)=mi X m;([(wh @,) | f1(@,) fow,) < €]—8; X Q,—Q,; X Sy),

which can be also written in the following forms:

Frn(®=|_Fit—9dF.(),
(4) L B
F;l.,;g(t)=g_wFLfl(t~s)dFI’2(s).

These equations show that the product L,- L, by means of (m, X m,, m; X my)
coincides with that by means of (myxm;,, m; xm;), that is to say,
L,-L, is independent of its defining measures. )

In the sequels we shall write: L, > L,, when L, is a subset of L,,
and a sequence L,, L,, --- of L-sets are called monotone, when L, =<
L,<---or L[,>L,>--- holds. If [, <L,<.-., then we shall denote

e L2 by lim L,, and on the other hand, if L, >L,>---, then we

shall denote (Un (Uz.L,)® by th It is evident that lim L, of a mono-

tone sequence of L-sets is also an &-set, = ,
Theorem 5. If m*=L;_m, and m*’¥€(§;7=~1m; are infinite product

measures,” and if L* and L, are L-sets of (m*, m*') and (m,, m,) res-

pectively,  then '

II L, —hm L-L,-...-L,=L*.

Proof It is suﬂﬁclent to prove that for every E in QS =P B,
and ¢>0 there exist an integer N and an E" ¢ $,.,B, such that '

(5) o | ()~ (B, 1mn)(EN)I<e,
and : *
(5') | () — (B J(ET) | <e.

From the definition of the infinite product measure, we can choose,
for any >0, two sequences {E,} and {E;} of disjoint cyhnder sets
such that

8,9 J denotes the union, N\ the meet, and bar = the closure operation in the

sense of the plane topology
) This definition of the limit coincides with that glven in [9], as a special case -
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‘ }j"?ﬁ(Ei)<m*(E)+s,’

and ,
‘Z m'(Ej)<m* () +e,

where 7 and m’ ‘are defined in the footnote 11) :

Since E, ~ E are at most enumerable, we shall denote ﬁhem by Ey
(k=1,2, ...), and see that \JiLE/>E, Sim(E N Ziglm(E}), and
Zk,_lm’(E )é Z, 7m/(E;). Henee there exists an integer . N;>0 such
“that

. V-
S () —m*(E) | <e,
ke=

and

kzl (B ) —m*(E) |<e:

hold.” Since E;’s are cylinder sets, and are disjoint each other, there
exist an integer N >0 and E¥ B2, B,, such that

Ny
lc\=/1E’;,=EN X (%;;N +1 Qn)’ )

and hence we have

'z:m(E") (BL_m, JEF)-

‘and

ZM’(E") B (E),

‘which imply (5) and (5').
As a preparatory of Theorem 6, we need the following lemmas.
Lemma 2. If B, is a o-subalgebra of a o-algebra B of sets in Q,
and if m; and m; are measures defined on the measumble space Q, 3B)
as follows

my(E )= m(E) and ml(E) ’(E) for all E’le .‘Bl,
where m and m' are measures defined on (Q, B), then the L-set L, of
(m,, my) s contained in the ~set L of (m,m’), i.e.
L,> L.

1) The infinite product measure is defined as follows: Q%= SBlgl.O,z is the set of
all sequences (o, ®g, ...), Wy € 2,, B¥=P_, B, is the smallest s-algebra containing all
cylinder sets C=E x EyX ... x B X 2p41X 2ry2x ..., and m*=P5_, m, on (2%, B¥) is a
measure’” ’ :

mHBE)=infupy-u 52 m(Ey), ,
where m(E,) is the finitely- additive measure such that m(C)=my(EY)... mn(En)
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Proof. Thisis trivial, since B,-measurable ‘funétion D)0 P (0) < 1)
is also. B-measurable, and its integral with respect to m, (or m;) equals
to that with respect to m (or m’).

"Lemaxma 3. Let Lo—llmL If Bi(L,) conszsts of a s"ongle pmnt (a:o,
%), then any sequence of poznts (x,, yn) hds (@, ¥o) as its limit point, i.e.

limz,=xz,, and limy,=y,,

where (x,,vy,) e B,(L,) for every n.

The proof of this geometrical lemma W111 be omltted Applying
this lemma to [-functions, we ean see '

Lemma 4. L,=lim L,, if and only if

lim F'p, () =F. (¢)
and o
li_szn(t)=on(t)

hold for every continuity point of Fi.

The following theorems in this. section are used as the starting- .
point of discussions in the next section.

Theorem 6. The class £ has the following propertzes

“ 1. a) For any pair of elements L, and L, of &, there exists one

and only one product L,-L, in S. o
' b) If L., L, and L.€ 8, then (L,-L,)- L;—Ll (L, L3)
¢) L-L, =L, LfordnyL and L, in L.
d) -There ewists one and only one element ‘denoted by I such tkdt

I-L=L : for every Le&.
e) There exists one and.only one element, denoted by O such thdt
0-L=0  for every Le&.

f) If L,-L,=0, then L,=0 or. L =0.
II. There exists a relation (denoted by <) for some pair L and
L, in & which satisfiies
a) If L, <L, and L, < L,, then Ll—L
b) If L < L, and L,< L,, then L, < L;.
c) L<L L.
d) If L, gL,, then L, L<L Lfoo* all Le.
e) IL=0 for every L in L.
f) For Li==0 and L,==1, L,>L,-L,.»
TII. For any monotone sequence of elements Ly, L, ... in. &, there
emsts an element, denoted by 11m L,, such that

' a) th L.

1) If L=</ holds, but.-not L=L', then we write L <L’
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b) lim (L,: L,)=Ly-(lim L,).
c¢) lim Lw=lim L,, if Ly, Ly, «.. 98 a subsequence of Ly, Ly, . ...

d) If {L,} and {L,} are monotone séquénces, and if there exists an
integer N >0, for which L, = L, holds when n = N, then

lim L, >1lim L, .

Proof. I. a) is obvious by Theorem 4. For b), it is sufficient to
see that the (-functions of L,-L,-L; are ‘

oo

Frnn®=| | Futt—r—9ar,mir.),

— 0o

and
F’Ll.zg.,:s(t)zg_m S_mFgl(t—-r'—-s)dF'Lg(r)dF'Ls(s).

But these are obvious from (4). e¢), d), e) and f) can be easily seen
by Theorem 3 and (4). N :

AI. a), b) and ¢) are clear. d) can be easily shown by the re-
presentation (4). And the definition of I and O gives e).

From Lemma 2 we have L,> L,-L, for any &£-sets I, and L,. In
fact, if L, and L, are 8-sets of pairs of measures defined on (Q, B) and
(Q’, B’) respectively, then L,-L, is the L-sets of the pair of measures
on (2xQ/, BxPB’), and L, is regarded as the L-sets of the pair of
measures on (2 xQ’, B”), where B"=[ExQ' |EeB]CBxB’.

Moreover we shall show that if L,=L,-L,, then L,=0 or L,=I.
From (3) and (4), we have

Fa=|" || arumlarse),
and o _
| earuy="_e{| ear,mlar,e),
that is,
&) | |_arue)ar o= {[ arum jar,e,
and ' '

t—s

(7) S:{St R (7) }szg(s)zg"_;{ S o AF () }szﬁ(s).

t—-8

Remembering the definition of F;, we can easily see that equations (6)
and (7) hold at the same time if and only if F, has a jump one at
t=0 or F';, is constantly one, i.e. L,=I or L1=O:

III. It is sufficient to prove b). Denote li:n L, by L*, F; by F,,

(n=0,1,...), and F,, by F,. From the representation (4) of the
product we can see that ‘

\
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Frgo®)=\" Fit—5)dF (o),
and | '
Fron(®=|_Fut—s)dF, (),

and that, by Lemma 4, for every continuity point ¢ of -F*
| Bm F(t) =F ().

Therefore, since F(¢) is a bounded monotone funection of ¢, lim,..
Frpn, () =1lim, .. [ Fy(t—s)dF,(s) = [ F,(t—s)dF (s)=F.rx(t), and hence
lim, . F; ., (6)=F"7.x(t) hold for every continyity pomt t of Iy L*(t)
Thus the proof of our theorem is accomphshed

Suppose that &, & and &, are the following subsets of 8: the
element of & is a parallelogram with its vertices (0, 0), (a,0), (1, 1)
and (1—a, 1), the element of ¥; is that with its vertices (0,0), (1, a),
(1,1) and (0,1—a) for 0 <a <1, and the element L, of &, is a set
whose B,(L,) and B.(L,) are either of length one or zero.

Theorem 6’. IV. There ewist three subsets £, L, and &, of £
which satisfies the following conditions : :

a) Fach p(m’r of &, & and &, howe only two common elements I and O.

b) If L, L'e&,, then L-L'€ If we take £, or ¥; instead of L,

the similar proposztwns kold

¢) For any element Le &, there exist three elements Ls(e 23), Li(e &)

and L,(€8,) such that

‘ L=L,L;-L,,

and such a decomposition is unique.
Proof. Clear. o |
Now we shall proceed the discussion of the relation of a function

p(m, m’) and the g-set L of (m,m’). Suppose that m and m’ are mea- -
sures having the relation (2). For these measures we define

o, m')=\V/F dm.
If two pair (m,, m,”) and (m, m') of measures define the same g-set L,
then .

p(my, my)=p(m, m')
holds, sinee p(m, m’) is written as

p(m, m") .—.Set/z ar.(t)
kby the use of the (-function F,. Consequently we can regard p(m, m’)
as a function of L only, and denote it by e(L).

Theorem 6”. V. The function p(L) on £ satisfies the following
conditions :
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a) 0<p(L)<1 for all Leg, -

b) p(L)=1 if and only if L=I, and p(L) 0 if and only if L=O.
¢) P(Ly- L)=p(L)P(L;)-

d) p(linm L,y=lim,,.o(L,) for every monotone sequence Li, L, ...

e) If L'>L, then p(L')>p(L). o
Proof. a), b) and ¢) are ‘clear. Let L*<limL,. By Lemma 4

lim, ..F; (t)=F«(t) holds for every continuity point. Hence lim,..
p(L,)=lim, .. [e"?dF; (t)=[e"*dF«(t)=p(L*). At last we shall prove e).
‘Suppose that the line y—kx+¢=0(c>0, >k—1) intersects with the
boundary of L at two points (z,, ) and (x,, ¥.): We define the cut-off
Lset of L by the line y—kx+¢=0 as the common part L’ of L and
the strip [(x,y)| —c<Ly—kax<1—c—k]. Let ¢, and ¢, be real numbers
such that F (t,—) < a < Fi(t) and F(l,—) <o < Fit,) hold for the
Ifunctlon F; of L. Since the (-function of L’ is

=g, if tlgt<10g — Y
(U—:L‘l

Fo){ =m, if log YTV <y,
2?7.——371

, =Fi(?), otherwlse,
we have

/(L) _—_F S AR (b)

L= ( St_: + S"" )eﬁlZdFL(t) + etllz(xl _FL_(t1)) + etQIZ(FL(tZ)‘__ wz) + V(yg . yl)_(xz - wl)

(e e

that is to say, if L’ is a cut-off ¢-set of L, then e(L/ )>p(L) Generally,
since for any L’>L there ex1sts a monotone descendmg sequence of

L, such that
L< L g L,

llm L,=L',

and L,.. is a cut-oft g-set of L”, 1t follows from d) that p(L')>p(L)
holds.

2. The Abstract discussion of the class & In this section we shall
state three theorems related to the class €, the last two of which cor-
respond to Kakutani’s theorem.

Theorem 7. Suppose that a sét 8 sa,tzsﬁes I-I1T of Theorem 6, and
that L., L,, ... are the sequence of element of &, any. one of which does
not co'mc@de with the element O. By wmttmg

M H Li“"LL 'Ln’
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and
== h.m H Li == II L,, ’
. m i=n%+l {=n+1
we have B
' | lim M, 4=0
if and-only if : : , '
(8) ~ limN,=1I.

Proof. Since {M,},-1,5... and {N,},_,,... are monotone sequences in
¢, lim M, and lim N, exist. From the fact that, for n<m,
: _:}7} - 7 A :"*“v i

M, Np=Li-Ly+...Lo-(lim IT L)

~lim LoLasoo Do Loweno i le (B of III)
>lmM, ( f) of II and d) of IIT)
it holds that ) I ‘ ‘ o |
Mn-li’"mNm=li”r‘n M, N, 7 ( b) of III)
| ;lilli. ( d) of III)

Therefore we have
(lim N,)- (lim M,) = lim M,.

On the other hand, the reciprocal inequality holds from e), d) of I and
e), f) of II. ‘Hence .

(lim N,,)-(lim M,)=lim M,
holds. From f) of II, we have
' limN,=1 or limM,=0.

If lim Mn=0, then for any » we have

M, N,=M,-(Lim IT L)= ~lim M, ( 11 L) ( b) of III)

m i=n+l

= lim M,, = O.

However by the assumption of our theorem, ‘there is no » such that
M,=L,+L,++-- L,=0. Therefore from f) of I we have

lim ﬁ L@=Nn=0 for every n, -

m f=n+l
that -is to say, ,
IimN,==1I.

Thus we see that lim N,=I and lim M,=0 are not compatible, which
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accomplishes the proof of our theorem. :
Theorem 8. Suppose that a set £ -has propertves IV of Tkeorem 6’
in addition to I-IIL of Theorem 6. If L, Ly, ... €2, then []l L, EB
(On taking 8 or L instead of L, this theorem also holds.)
Proof. We shall prove only the cage of g, We ecan assume

Iy .L,==0 without any loss of generahty In this case we. have, by
Theorem 7, o S

lim I L,=1.

7% i=n+l

From e¢) of IV 17 Li can: be decomposable 1nto sz(e 533), sz (eL) and

t=n+1

Li(e &,), which shows, by the fact that L, e Ea,
Ly =L, L3, L, ,=L; and Lj_,=Lg.

Therefore we have Lj=Lj=1I for every n, that is to say, II7,.L;€¥8,
holds for every n, especially for n—0.

Corollery. If L,=L-L-L%, where L 623, Ls € and La&'gw, then
IIL—(IIL)(IILS)(H’L

Theorem 9. Suppose that & satisfies I-V. II;..L,=0:if and only
of II5-.p(Ly,)=0. : '
Proof. From c) and d) of V We have

p(]] L,)= p(hm ]I Li)——hmp(ﬂ Li) hm II p(Li) = II .O(Ln)

This equality implies our theorem

3. The relation between P(m, m’) and the absolute variance. Let
L be the £-set of a pair of measures m and m’, where m and m’ have

the relation (2). And denote the absolute variation of m — m’ by d(m, ’),
that is,

'd(m,m{) S[l fldm-l—m(S)

This function d(m,m’) of two measures m and m’ may be considered
as a metric in a set of measures.

. . ‘Lemama 5. d(m, m') depends only on L~mlz0l_equal-s to- -

2max [x—y]|.
(x,ZDEZ

Proof. Clear

From this lemma, we may erte d(m, m’)=d(L). We. consider now
" some examples of p(L) and d(L). - -

_ Example 1. p(I)=1, d(1)=0.

- Example 2. p(0)=0, d(0)=2,
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Ezample 3. Denote a hexagon with vertices (0, 0), (u, 0), (1 1— u),.
1,1), 1—u,1) and (0, %) by Lh(u) (0<u<1). Then we have
P(La(w))=1—u, d(Ly(u))=2u

E’xample 4 Denote a parallelogram w1th vértlces (O 0) (u+v v),-
1,1) and (1— u—v, 1—v) by Lyu,v) 0=u=1, 0=<=v=<1-—%). Then
we have " L '

P(Ly(u, v))=Vv(v +u) +V1—v)(1—u—v),
d(Ly(u, v))=2u.

For v——12u, we have

o(Lo(w, W_)) _viza, a(Ly(w 15 “))=2u‘

Theorem 10. For any pair of measures m and m’, the inequalities

(9) '1—-0“mT’”72gp(m,m'>g/1—{M}z

o
hold.
Proof. Denote

S(u)=[Lld(L)=2u].
Since, for any L in ¥(uz), there exists an L,(u,v) such that L<L,(u, v)

and since Vo(u+v) +V(1—v)1—u—v)<V1—u, 1—u= P(L (u, 12u)>

< p(L) holds for every L in g(x). On the other hand, since L,(u) con-
tains every L in (), 1—u=p(L,(x)) =< p(L) holds for every L in L(u).
Theorem 11. 1) A necessary condition of II5.; P(m,, m,)> 0 ts that
S {d(mg, my)}? converges. 2) A sufficient condition of Ii—i p(my,, my)> 0
is that .. d(my, m,) converges.
Proof. 2) is obvious from the inequality (9). 1) is easily seen
from the following inequalities:

”_{d(mm mn)}z =1- {p(mm /n/l'n)l'2

= (1 P(mm mn))(l + (1, my))
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