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Since various ways of approaching the integration theory have been
studied from all points of view by many authors, nothing essential seems
left to be searched for especially in ‘the classical parts of this field.

Still we hope in this short note that there may be something novel
in the way of putting spemal emphasis on the additivity of integrals as
set-functions.

It is easily seen from the elements of ¢ calculus” that the whole
theoretical parts of integral calculus will be much simplified if the
existence of their primitive functions are assumed. This suggests the
way of replacing the above primitive functions by some suitable set-func-
tions having a certain relation to the given point-functions, so that the
whole theory may, at least.to a certain extent, be simplified and clarified.

1. Terminology and Notations. Let S be a fixed set in which
is given a completely additive class B of subsets —©S such that SeB.

Let m (X) be a countably additive measure defined for Xe B where

m(S)<+ oo, Further let us write Zn}Xj=X1+~--+Xn, instead of
i=1

w%.1 X if the sets X; are disjoint with each other.
To each finite partition 4 of XeB: X=X+ -+X» (XieB), we
may associate two numbers

o= D; Sup X{m (Xj;) and o,= 3;inf XTm (X;)

- where X/ denotes the set of the values taken by f on X.
We shall use, without making a special mention, the letters X, X,
etc., to denote the measurable sets only. .
2. Definitions and Theorems. Let us begin with the following
Theorem 1 To each bounded function f, not necessarily be mea-
surable B, theve exists a countably additive set-function F satisfving
the followmg condition :

(1) m(X) inf X < F(X)<m(X) sup X/ for every XeB.

Among such F(X), there exist the greatest and the smallest ones, which
coincide with inf, o, and sup, o, respectively, where the inf and sup

ave taken over all finite partition 4 of X.
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Proof. Since the proof is easy, only a brief sketch will be given
here. : ‘ . '

Let us first show that from the finite additivity of F follows the
countable one.

 We observe that if X=X;+X,+ -, then m (X):limﬁjlm (X;) which

nreo 1=

shows (X— élXj)j:m (X)— ﬁlm (X ;) — 0 (n—c0). But, by (1) we have
i= _ i= :

am (X—iin) S FX-31X) <bm(X—31X))
i= j= ' i=
where a < f(x) < b, whence we have

F(X)=5;F(X;)
since
F(X—,é XJ->=F<X>—.J_”§F<XJ-> :

Writing F (X)=inf, &, we find from (1), F(X)<s, from which we
also have F(X)< F(X). Since from the following obvious relation

m(X) sup X/ > o, > 0,2m(X) inf X/,

we see that F satisfies (1).

We have only to show that F is finitely additive, the proof of which
may be carried on in a ready made way, and is omitted here. We may
discuss about F quite similarly.

Can we take such a F'(X) as the definition of the integral of f
over X, without assuming further restrictions on f or F'? This is an-
swered negatively since, for instance, we can not deduce from the mere
condition described above the linearity of the integral. This is perhaps
“one of the chief reasons why S. Saks in his famous book, giving the
definition of integral of positive functions by F, has to reduce

‘linearity > to the case of the integral of simple functions, which gives
his construction an appearance of some complexity. In this respect, the
book written recently by Halmos is quite satisfactory.

We are now in a position to settle some restrictions on F or f.

If f is measurable on S, then, regarded as a function on Xe B, it
becomes measurable also on X, so that, by making ‘e-partition’ 4. of
X: X=X+ +Xm, where the diameter of X/ <e for j=1,-n, we
find ‘

(2) sup X4—inf X4<e (=1, ,n)

whence, for an arbitrary x; ¢ X
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(3) - inf Xfm(X])<f(XJ m(XJ)_xsup Xtm (X;).

| Now let F be any additive set-function, satisfying all the conditions of
Theorem 1.
By (1), (2), (3), we find

| F(X)—S3 £ (X5) m (X) | < 3 (sup X/—inf X9 m (X) < e m (X)

in which, making ¢ — 0, the sum 3} f(x;) m (X;) tends to F(X) which
shows also, that the function F is uniquely determined by f.

Thus we have the following

Theorem 2 For a measurable f, the set-function F of Theovem
1 is uniquely determined and

inf, o,=sup,a,.
Let 4.: X=X+ +Xm be an arbitrary e-partition of X. Forming the
sum Z f(x3) m(X;) for arbitravily chosen xJ € XJ (j=1,---, n), then

(4) hm S (X)) m (XJ) F(X)

In view of this theorem we can give the definition of integral of bound-
ed f over X, as follows:
we say f is integrable over X, if and only if F of Theorem 1, for all
X < Xy, is uniquely determined.

The value F (X) is called the integral of f over X and denoted as
usual by

F<X>=ij<x> am(X)= f.

Thus we see that, by Theorem 2, every bounded measurable function
is integrable and the integral given by (4) is also equal to inf,z=sup,
o4, which is identical with the ordinary one. -

If we write

'supd o 4= [f, infﬁﬁi{f

and call these the lower and the upper 1ntegrals of f over X, we find
easily

[ f=l s rse=] r<| s, _j_ngfXg.

According to our definition, the necessary and sufficient condition °
that f be integrable over X, is that, for every X < X,,

should hold.



Nov. 1951 On an Elementary Treatise of Integration 9

This apparently restricted condition may be relaxed as follows:

Lﬁ f=|_f

implies the integrability of f over X,.
According to the additivity of the upper and the lower integrals,

‘ T+ ‘Lﬁ-gf )=], 7= [ =0

in which two expressions enclosed in parentheses are =0 and ’consequ-
ently must be 0.

Also by the additivity, if f is integrable over X and Y (X ™ Y= 0)
then it is also integrable over X+ Y.

We shall denote the family of all the integrable functlons over S
by IS or 1.

In partlcular, I contains the class of all simple functions and the
characteristic function of every X — S, of which the integral is m (X).

We shall derive here some of the fundamental properties directly
obtainable from our very definition. By (1), we see first

l j f l < Hf H m(X) (boundedness)
X X
where |‘!fHX:§E)I() | f(x)] and
ij =0 for f=0 (mondtonity).

Next to show | |

f, gel=f+gel, cfel - for any constant ¢
and , .

| ro=| r+( ¢ and [ o= 7 (linearity)
we observe '

| rroz] ] = s+ e

an

= U< L(f+g>g [r+] 2.

which shows that, in the above inequalities, only the equal signs can
occur. :
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It is also easy to see that

S cf:cj f for any constant c.
X 'S

. Thus our integral is a bounded, linear functional defined over Ig
and, regarded as an indefinite integral, a m-absolutely continuous additive
set-function. :

3. Equivalence of our definition with the ordinary one.
Since, on these lines described above, we shall be able to derive all the
important properties to develop the integration theory, we may ask
ourselves if we have defined the integral for the class of functions wider
than that of measuable ones.

This will be answered negatively, namely from the uniqueness of F
will follow the measurability of f.

Consequently, by developing our theory not only directly from our
definition but also from the properties of measurable functions, for inst-
ance, from (4) of Theorem 2, etc., we may simplify the whole theory
fairly well.

To show that Is coincides with the class of measurable functions
on S, we shall make use of, for the sake of brevity, the propertws of
measurable functions.

- Since our integral is identical with the ordinary one for s1mple
functions, we have

7@ am(o=S1eim ()

where S=X,+ -+ X, f(x)=c; for x€ X; (j=1,", n).
By Egoroff’s Theorem or others, we can show that if { f,,} is a
sequence of uniformly bounded measurable functions and satisfies lim

fn (x):f<x), then we have nroo

6 tim| fu(x) dm (=] £ (3) dm (x).

Moreover, if f(x) =0 for xeS and js f(x) dm(x)=0 then f(x)=0

almost everywhere, namely
(6) F20, | f=0=m({x1f(x)+E0)=0

By the above preparation, we can prove the following
Theorem 3 If the function F of Theorem 1 is uniquely deter-
mined by f, then f is measurable.

Proof. Let 4 be a partition of S where S=X,+ -+ X» From
the assumption, we have
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inf, 3] sup X7 m (X;)=sup, > inf X] m (X)

which we shall denote by s. A
For each positive integer #, there exist partitions of S such that

(7) dn: S=X{P+ - +XP,  s— 1 S STm m (X9,
; n .

8) 4y: S=Y{+ - +YR, s+ _114_>Z'M;n> (¥,
where ' :
9)  my=inf (XY, MY =sup (Y)Y
We compose these partitions by putting Z{¥=X" ~ Y ¢ and find
S mXP) S Smy m(Z),
CEMPm(YP) =5 MY mZg),

where M and m{® are defined similarly after (9). -
Thus, we see that as the partitions of (7) and (8), we may choose
the same one, so that 4, will be replaced by 4.. Hence

(10) =L <Smp m(XP) S TMP m(XP) s+

Similarly, we may suppose that in the partitions 4;, 4,,--, each
preceding one is the refinement of the previous one. '

Defining simple functions fx (%) and f» (x) by
Jfa(@)=MP and f»(x)=m for xeX{ (j=1,-,k),
we observe
A=) =, SO =Lfo(x) <.
Writing .
;}jgnjn (x)=Ff(x) and lim fn (x)=f (),

we have, by
 MP = @) =mP for xeXP,

(11) FOZf(x)=f(x).

In view of (10), we find
limS Fu()dm ()= 1imj fu (%) dm (x)=s
S S —

from which also
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Iimg (Fu—fn) dm (%)=0.
S - . )

But, as f—;z—_fn"*f—" f, we must have, by the uniform boundedness
of {ﬂ—fh} and (7) | _
| F@—f ) dn@=0,

whence, in view of (11) and (6), we have at last

fx)=f(x)
almost everywhere on S, which completes the proof by (11).

Though we have discussed so far under the assumption that f be
bounded and the total measure of S be finite, these restrictions may, of
. course, be removed in a well known way, so that we shall net go ,furthf;rr.

As our references, one or two of the following books may be suf-
ficient : ‘
S. Saks: Theory of the Integrals (1937)

H. Halmos: Measure Theory (1950)
J. von Neumann: Functional Operators Vol 1. (1950)




