Sur les Points Singuliers des Équations Différentielles Ordinaires du Premier Ordre¹

Tizuko Katō (加藤千鶴子)

Institut de Mathématiques, Faculté des Sciences, Université Ochanomizu

Nous considérons l'équation différentielle

$$x^{\sigma+1} \frac{dy}{dx} = \frac{P(x, y)}{Q(x, y)},$$

où σ est un entier positif et P(x, y) et Q(x, y) sont des polynomes en y sans facteur commun, leurs coefficients étant des fonctions régulières de x pour $|x| < \Delta$.

Posons

$$P_0(y) = P(0, y) \equiv 0$$
, $Q_0(y) = Q(0, y) \equiv 0$.

Désignons par $P_0'(y)/Q_0'(y)$ la fraction irréductible coïncidant avec $P_0(y)/Q_0(y)$, par α_i $(i=1,2,\cdots,m)$ les racines de $P_0(y)=0$, et par β_i $(i=1,2,\cdots,n)$ les racines de $Q_0(y)=0$ qui n'annulent pas $P_0(y)$. Le but de notre présent mémoire est à démontre le théorème suivant.

Théorème. Supposons qu'il n'existe aucune combinaison des résidus de $Q_0(y)/P_0(y)$ dont la somme est purement imaginaire, et soit y(x) une solution de (1). Alors, quand x tend vers 0 par valeurs positives, (i) ou bien elle converge vers une des racines de $P_0(y)=0$; (ii) ou bien il existe une suite decroissante $\{x_n\}$ telle que $y(x_n)$ converge vers une des racines multiples de $P_0(y)=0$.

Lemme 1. L'équation différentielle

$$\frac{dy}{dx} = -\frac{P_0'(y)}{Q_0'(y)},$$

où t est une variable réelle, n'admet pas de solution périodique.

S'il existait une solution admettant une periode réelle ω , cette solution décrirait une courbe fermée Γ dans le plan des y. Γ ne pourrait passer par aucun des zéros de $P'_0(y)/Q'_0(y)$, et on aurait

$$(3) 2\pi i \sum_{k=1}^{\nu} r_k = \omega ,$$

où r_1, \dots, r_ν sont les résidus aux pôles de $Q'_0(y)/P'_0(y)$ qui se trouvent à l'intérieur de Γ . $\sum r_k$ n'étant pas purement imaginaire par l'hypothèse, la relation (3) est absurde.

¹ Contribution from Department of Mathematics, Faculty of Science, Ochanomizu University, No. 8

Lemme 2. Soit F un ensemble fermé défini par

$$|y| \leq M$$
, $|y-\alpha_i| \geq \delta$, $(i=1,2,\dots,m)$,

où δ et M sont des nombres positifs quelconques. Il existe alors une valeur T telle que toute la solution de (2) prenant une valeur dans F pour $t=\tau_0$ ne peut rester dans F pour $0 \le t-\tau_0 \le T$.

Soit $\varphi(t)$ une solution qui prend une valeur y_0 dans F pour $t=\tau_0$. Si $\varphi(t)$ convergeait pour $t\to\infty$ vers un point η_0 différent de ∞ et de α_i , la fonction inverse serait régulière pour $y=\eta_0$, et t ne pourrait devenir ∞ , contrairement à l'hypothèse.

Si la solution $\varphi(t)$ restait dans F pour $t \to \infty$, on pourrait trouver une suite $\{t_n\}$ telle que $\lim_{n \to \infty} t_n = \infty$ et $\varphi(t_n) = y_n \to \eta(\varepsilon F)$. On pourrait supposer de plus que les points se trouvent sur une droite passant par η et que, en partant du point y_n , et parcourant la courbe décrite par $\varphi(t)$, on rencontre la droite la première fois en y_{n+1} . On aurait alors

$$(4) |2\pi i \sum r_k - (t_{n+1} - t_n)| \leq K |y_{n+1} - y_n|,$$

où $K = \max_{y \in F} Q'_0(y)/P'_0(y)$. $y_{n+1}-y_n$ tend vers zéro pour $n \to \infty$, tandis que $t_{n+1}-t_n$ reste plus grand qu'un certain nombre positif. Donc, l'inégalité (4) est contradictoire avec l'hypothèse.

Soit F' l'ensemble fermé défini par

$$|y| \leq M'$$
, $|y-\alpha_i| \geq \delta'$,

où M' et δ' sont des nombres tels que $M' > M + \varepsilon_1$, $0 < \delta' < \delta - \varepsilon_1$. La solution $\varphi(t)$ satisfaisante à la condition initiale $\varphi(\tau_0) = y_0(\varepsilon F')$, arrivera à la frontière de F' pour $t - \tau_0 = T(y_0)$. On peut faire correspondre à un nombre positif quelconque ε_1 un nombre positif $\delta_1(y_0)$ de manière que la solution y(t), telle que

$$|y(au_0)-y_0|<\delta_1(y_0)$$
 ,

satisfasse à l'inégalité

$$|y(t)-\varphi(t)| < \varepsilon_1$$
 pour $0 \le t-\tau_0 \le T(y_0)$.

La solution y(t) arrive donc à la frontière de F pour une certaine valeur de t moindre que $T(y_0)+\tau_0$. On peut extraire de F un nombre fini de points y_1, y_2, \cdots de manière que les cercles des centres y_k et des rayons $\delta(y_k)$ couvrent F. Alors, la solution qui prend une valeur dans F pour $t=\tau_0$ ne peut rester dans F pour $0 \le t-\tau_0 \le T=\max\{T(y_k)\}$.

Lemme 3. Soit F" un ensemble fermé défini par

$$|y| \leq M''$$
, $|y-\alpha_i| \geq \delta''$, $|y-\beta_j| \geq \delta''$, $(i=1,2,\dots,m, j=1,2,\dots,n)$,

οù δ" et M" étant des nombres positifs quelconques. Il existe alors une

valeur T telle que toute la solution de (1) prenant une valeur dans F'' pour $t=\tau_0$ ne peut rester dans F'' pour $0 \le t-\tau_0 \le T$.

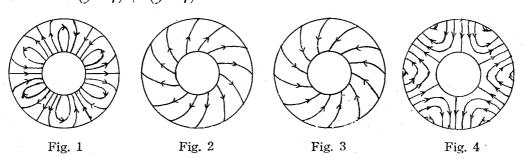
Soit $\psi(t)$ où $t=x^{-\sigma}/\sigma$ une solution de (1) prenant une valeur dans F'' pour $t=\tau_0$, et soit $\varphi(t)$ la solution de (2) telle que $\psi(\tau_0)=\varphi(\tau_0)$. Alors d'après le Lemme 2 $\varphi(t)$ se trouve à la frontière de F pour $t-\tau_0=T'$ ($0 < T' \le T$). Supposons que $M > M'' + \varepsilon_2$, $0 < \delta < \delta'' - \varepsilon_2$, $\varepsilon_2 > 0$. Si τ_0 est assez grand,

$$|\psi(t)-\varphi(t)| < \varepsilon_2$$
 pour $0 \le t-\tau_0 \le T'$.

 $\psi(t)$ se trouve donc à la frontière de F'' pour une certaine valeur de t moindre que T'.

C. Q. F. D.

Soit γ un zéro d'ordre ν de $P_0(y)$ et un zéro d'ordre μ de $Q_0(y)$, et si $\gamma = \infty$, μ et ν désignent les nombres analogues au point 0 relatif à l'équation en 1/y. Lorsque t est assez grand, la solution de (2) se comporte dans l'anneau assez petit comme sur les figures suivant que $\nu - \mu = \kappa > 1$, $\kappa = 1$ et $\Re \lambda > 0$, $\kappa = 1$ et $\Re \lambda < 0$, et $\kappa < 1$, où λ est la valeur de $-\frac{P_0(y)}{(\nu - \gamma)^{\nu}} / \frac{Q_0(y)}{(\nu - \gamma)^{\mu}}$ pour $y = \gamma$,



Nous allons maintenant démontrer le théorème. Soit $\psi(t)$ une solution quelconque de l'équation différentielle (1). D'après le Lemme 3, elle ne peut rester dans F'' lorsque $t \to \infty$. Elle ne peut entrer dans l'anneau de la figure 2. Si elle entre dans l'anneau de la figure 3, elle ne peut revenir à F'', et elle converge vers γ . Si elle ne converge pas vers un des points γ , l'ensemble L des points limites de $\psi(t)$ pour $t \to \infty$ contient au moins un des points γ , soit γ_1 , par exemple, les cas des figures 2 et 3, étant exclus. Si Δ_1 est un voisinage assez petit de γ_1 , la solution $\psi(t)$ traverse la circonférence de Δ_1 une infinité de fois. Soient b_1 , n ($n=1,2,\cdots$), les points où elle sort de Δ_1 . Nous supposons la suite $\{b_1,n\}$ convergente: $b_1 = \lim_{n \to \infty} b_1$, n. Sinon il suffirait la remplacer par une suite partielle convenable. Posons

$$\psi_1, n(t) = \psi(t+t_1, n) \qquad (n=1, 2, \cdots).$$

La solution ψ_1 , n(t), partant du point b_1 , n, entre dans un des Δ_1 , Δ_2 , \cdots , soit Δ_2 , la première fois en d_2 , n. Si t_1^n est la valeur de t où l'on a ψ_1 , $n(t_1^n) = d_2$, n, le Lemme 3 montre que $t_1^n \leq T$. La suite $\{\psi_1$, $n(t)\}$ $\{n=1, 2, \cdots\}$ converge dans l'intervalle $0 \leq t < \lim_{n \to \infty} t_1^n$ vers la solution $\phi_1(t)$ de

(2) prenant la valeur b_1 pour t=0. L'équation $y=\phi_1(t)$ $(0 \le t \le T')$ représente une courbe dans F'' dont les extrémités b_1 et d_2 se trouvent sur les frontières de Δ_1 et de Δ_2 respectivement. Mais on peut discuter de la même manière en remplaçant les rayons des cercles Δ_1 et Δ_2 par des nombres plus petits. On peut en conclure sans peine que la suite $\{\psi_1, \pi(t)\}$ converge vers $\phi_1(t)$ dans un certain intervalle $h_1 < t < h_1$, et l'équation $y=\phi_1(t)$ $(h_1 \le t \le h_1)$ représente une courbe joignant les points γ_1 et γ_2 .

On verra de même qu'il existe une suite des nombres $\{t_2, n\}$ telle que $t_2, n \to \infty$ et que la suite $\{\psi_2, n(t)\}$ où $\psi_2, n(t) = \psi(t + t_2, n)$ converge dans un certain intervalle $h_2 < t < k_2$ vers une solution $y = \phi_2(t)$ de (2) qui tend vers γ_2 pour $t \to h_2$ et un des points γ_i , soit γ_3 , pour $t \to k_2$, et ainsi de suite. Les points γ_i étant en nombre fini, on peut supposer qu'on revient, après un nombre fini de telles opérations, au point de départ γ_1 . Nous obtenons ainsi un nombre fini de solutions de (2): $\phi_1(t)$, $\phi_2(t)$, \cdots , $\phi_l(t)$ jouissant des propriétés suivantes,

- (i) $\phi_j(t)$ est regulière pour $h_j < t < k_j$ et tend vers γ_j pour $t \to h_j$ et γ_{j+1} pour $t \to k_j$, où $\gamma_1, \dots, \gamma_l$ ($\gamma_{l+1} = \gamma_l$) sont différents l'un et l'autre;
- (ii) Il existe une suite $\{t_j, n\}$ $(n=1, 2, \cdots)$ telle que $t_j, n \to \infty$ et que la suite $\{\psi_j, n(t)\}$ converge vers $\phi_j(t)$ dans l'intervalle $h_j < t < h_j$.

Le cas, où tous les points $\gamma_1, \dots, \gamma_l$ sont tels que $P_0'(y) \neq 0$, ne peut se présenter. Prenons, en effet, une solution $\phi_1'(t)$ prenant pour t=0 une valeur telle que

$$|\phi_1'(0)-b_1|<\delta_1$$
.

Si δ_1 est assez petit, $\phi_1'(t) = p_2$ se trouve pour une certaine valeur τ_1' de t sur la frontière de Δ_2 et on aura

$$|\phi_1'(t)-\phi_1(t)|<\varepsilon_1$$
 pour $0\leq t\leq \tau_1'$,

 ε_1 étant un nombre positif donné à l'avance. Supposons, par exemple, que le cas de la figure 4 se présente au point γ_2 . Nous pouvons comparer $\phi_1'(t)$ avec

$$\theta_2(t) = p_2 \left(1 + \frac{\lambda \left(1 - \kappa\right) \left(t - \tau_1'\right)}{p_2^{(1-\kappa)}}\right)^{\frac{1}{1-\kappa}},$$

pourvu que t décrive un chemin de la longueur finie sur lequel on a

$$\frac{1}{2}\delta_2 < |\theta_2(t) - \gamma_2| < 2\delta_2$$
.

Soit C_2 la circonférence de centre $\tau_1' - p_2^{(1-\kappa)}/(1-\kappa)\lambda$ et de rayon $|p_2^{(1-\kappa)}/(1-\kappa)\lambda|$. Sur cette circonférence, on a $|\theta_2(t) - \gamma_2| = \delta_2$. Au point $\tau_2 = \tau_1' + 2\Re \left(p_2^{(1-\kappa)}/(1-\kappa)\lambda\right)$, $\theta_2(t)$ est très voisin de b_2 si l'on parcourt un certain nombre de fois la circonférence C_2 . On a donc

$$|\phi_1'(\tau_1)-b_2|<\delta_2$$
.

Le nombre positif δ_2 peut être supposé aussi petit que l'on veut.

Soit $\Phi_2'(t)$ la solution de (2) prenant la valeur $\Phi_1'(\tau_1)$ pour t=0 où $\Phi_2(0)=b_2$. On peut discuter relativement à $\Phi_2'(t)$ de la même manière que tout à l'heure. On peut définir ainsi successivement les solutions $\Phi_1'(t)$, $\Phi_2'(t)$, \cdots , $\Phi_{l+1}'(t)$. Il existe alors une solution $\Phi_1'(t)$ qui coıncide avec $\Phi_1'(t)$ pour $0 \le |t| \le \tau_1$ et avec $\Phi_2'(t) = \sum_{k=1}^{j-1} \tau_k$ pour $\sum_{k=1}^{j-1} \tau_k \le |t| \le \sum_{k=1}^{j} \tau_k$. On aura

$$|\phi(t)-\phi(t+\omega')| < \varepsilon$$

pour $0 \le t \le \tau_1$, où $\omega' = \sum_{k=1}^{l} \tau_k$. Le nombre ε peut être supposé aussi petit que l'on veut. Soit τ un nombre quelconque dans l'intervalle $0 < t < \tau_1$. Désignons par E' la courbe fermée formée de l'arc $y = \phi(t)$ ($\tau \le t \le \tau + \omega'$) et du segment $\overline{\phi(\tau)}$, $\overline{\phi(\tau + \omega')}$. On aura

(5)
$$|2\pi i \sum_{k=1}^{\nu} r_k - \omega'| \leq K |\phi(\tau) - \phi(\tau + \omega')| < K \varepsilon,$$

où r_1, \dots, r_ν sont les résidus aux pôles de $Q_0(y)/P_0(y)$ qui se trouvent à l'intérieur de E'. ϵ étant un nombre positif quelconque, on en conclut

$$2\pi i \sum_{k=1}^{\nu} r_k = \omega',$$

ce qui est absurde.

C. Q. F. D.

En terminant ce mémoire, je remercie Professeur Masuo Hukuhara de la bienveillance sincere en me donnant de diverses suggestions profitables.