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Tn the classical theory of estimation, the efficiency of an unbiased
estimate a* depends on the parameter « chosen in the frequency function
(fr. f.), so long as we define it as {nE (a*—a) ~E (5 log f(x, a)/sa)}!
in the one parameter case.? For example, in the case of the normal
distribution with mean 0, and variance ¢?% there exists an efficient un-
biased estimate for o2 but not for . This situation cannot be justified
very well from the viewpoint where we are interested in the estimation
of the distribution itself, but not of parameters. In this paper we shall
give a condition to be able to choose a parameter admitting an efficient
unbiased estimate, and further show the uniqueness of such a parameter
under this condition. Throughout this paper the discussions will be
restricted, for simplicity, to the case of one parameter and of continuous
type. ’

1. Let A be a non-degenerate interval, and X, X, -+, X» a sample
of size » from a population with a fr. f. f(x; «a), which is derivable
with respect to « for all « and x, and for which there exist two integ-
rable functions Fj (x), .and F,(P) such that

[_—_"”f & e i<F1 (x)," and }.@éﬁ%ﬂ

5 < F:(P)

over the Wh{)le space of the variable x and of P=(x,, x,, ---, X») respec-
tively, where L(P; a)=1717%f(x;; ) is a likelihood function. And sup-
pose tha_t -

|7 (018 S Vo ) dn < o
—oo o

Further, supposz that a statistic a®(P) of a sample P in the sample
space Rx has a finite mean ¥ (a)=E, (a™)= jR a*(P)L(P; a)dP, with

its derivative d ¥ (a)/da, and also a finite F, (a*?).
Our principal tool will be the following two lemmas, which are
modifications of a theorem-in H. Cramér’s book 1), page 479.

1 Contribution from Department of Mathematics, Faculty of Science, Ochanomizu
University, No. 9
2 This definition of the efficiency will be found on page 482 in 1).



Nov. 1951 - . A Remark on the Efficient Estimation 19

Lemma 1. (i) For any function & (@) of a parameter «, the mean
square deviation of a statistic o (P) from the funchon ¢ (a) of the true
value o satzsﬁes the inequality

(a4 )
(1) Fala*(P)—¢ (@)= L da
‘ . = (olog f(x; )\ £, . )
, nj_;o( - > fx; a)dx
(i) The sign of equality holds here, for every a in A, if and only
(2) olog LP @) —(a) - (a* ()= ()

for all points P in E,—N,, where E,={P; L (P;a)>0}, and N, is a
set of measure 0 which depends on «.

The proof of this lemma can be carried out in the analogous way
to the one of Lemma 1 of 1), page 475, and hence is omitted here.

Lemma 2. Suppose that B is a set of all values o in A where
8 log L(P; «)/oa is constant at almost all Pe E,. If (2) holds for almost
all PeE,, and if 0f(x; a)/oc is a continuous function of o whenever
flx; a) >0, then W“=A—B is an open set and k(a) and ¢ («) must be
continuous functions on N. Here we can choose N, in (ii) of the above
Lemma 1 independently of a el

Proof. Denote the set {a; L(P; a) >0} be Bp, and the set {P;
L(P;a)>0} be E,, then Bp is an open subset of A because.of the
continuity of L (P; «) with respect to « for all P. Moreover, by the
assumption % is the set of the values «, for which there exist two dis-
joint subsets 4, 4,, with positive measures, of E,, such that

@)  inf QlRLPia) g, dlog LP;a)

Pe 4y o Ped» o

This condition is also equivalent to that there exist two disjoint subsets
D,, D, with positive measures, of E, and two real numbers a <5, such
that

(4) inf @Mﬂl >b>a>sup 2 log L(P: a)

Pe Dy PeDe2 o

Therefore, because of the continuity of 4 log L (P; a)/6x, we can see that
% is an open subset of A. In fact, let D, and D, be the sets with
positive measures, for which (4) holds. for an «, in %, and put
aw={p; (L8 LE) _ olog LPi )| ba
lo4 ‘ Lo l 2

and Pe E, for all a satisfying | a—ay| < ‘,L}m D,
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for every positive integer #, then /., 4»=D,, and hence there is an »
for which 4» has a positive measure. Therefore we can ses that, for

all ¢ in U'= {a;[a~—a{o[<*i;} ,

- dlog L(P; a) >~ inf alogL(P ao) b—a > a+b
Psd ox Pe D1 ox 2 2

Similarly we can see that there is a nelghborhood U” of ay, such that
for every « in U"”

atb o dlogL(Pia)
2 Pea’ o

where 4’ is a subset, with positive measure, of Dz Therefore U =U’ o U”

is contained in 9. .
Now let A’ be a denumerable subset everywhere dense in A, and

write N= U“ﬁ Y Nwz_, then the equation (2) holds for every «; in A’ and

for all P in E,—N, and hence % («) and ¢ («) are continuous on A~
Therefore the same results hold over the whole % by the continuity of
8log L(P; a)/aac as a function of «. Thus the lemma is proved.

The following theorem is fundamental in this paper.

Theorem: 1. If #log L(P; a)/oa is a continuous function of a'
whenever L(P; o) >0, then it is a necessary and sufficient condition for
exisience of a statistic o« (P), for which the sign of equality in (1) holds
with a continuous function ¢ (a) for all o in an open . mtei'val Icy,

that for all ael the distribution of the universe has a form
f(x; a)—exp (p (oz)u(x)%—q(q)—!—r(x)) in a set mw,,
=0 outside ., ,

- (5)

where m, has a positive measure, p (a) and q(a) are contmuously dzﬁ‘er
entiable, and the relation

"~ () | q' ()=¢ () P’ (a)

holds. o ' _— oo
Proof. Necessity. From Lemma 1 and 2, indefinite integrals of

the both sides of the equation (2) exist and are equal each other for all

points P¢ N. Thus we have

7 log L(P; a)=np (@) a* (P)+nq (a)+7* (P)
for all P¢ N, and « e Bp, where :
®  w@=|k@de, @)=k da,

and 7*(P) is an integration- constant. It follows that (6) holds. -
Now let R;, be the one-dimensional space of the i-th coordinate of
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the sample space R, and R{2; the (z— 1)-dimensional space of the other
rest ones of R, whose elements will be denoted by @=(xy, -, xi_y,
Xis1, o+, Xn). We shall take notations w,={x; f(x; a) >0} and 7r“:

e X e X, N R, R respectively, and smce L(P; a)=017" fxi; ), it
n-1
is evident that E,=msX --- X 7,. Moreover we shall denote P= (g, Xn)

by (x: @). By Fubini’s theorem, the one-dimensional measure of the set
Ni, o=1{xi; (xi, @) e N} is zero for every Qe R, except at most a set
Nz of (n 1)-dimensional measure zero. Therefore C

9) o flxi; a)=npl@)a* (x:; @)+ na(e)— zlogﬂxf” o)+ (i Qi)

holds for all x; in my—Ni, o, if Qi=(x?, -, xP, &2 - xD) is-ﬁxéd in

log £(57; )=53{ 3 Toaf (P; )

i 1, /=

m’—N;. Thus, by noting that 3 ﬁ
1,7

i=1j=

+log f (x5 )} Z log L (Pi; a) ‘we have for all P=(xy, %y, , Xn) e E,,
(10)  log L(P; a):g{logf(x,--; Q)
¢ =np (@) B a(w, @)+t (@)~ Slog L(Pi; )+ 357 (xi, Q1)

where P;=(x{”, €:). After n—1 points @, &, -, @»_; are arbitrarily
chosen in # P’ — N 7PNy, -+, Y= Nu_1, respectively, we take a point
Qn in (g — IV, Ql)x - X (ww “Ny-15 0, )— ». By such a selection of @,

@, o @n, Piyi=1,2,---, n—1, are in E,—N, and hence from (10) and
(7), we have \ :

a1 log L(P;a)
o .~np<a> {z (o Q)= S (P +na ()
| HEr e @)= 8@ ).

Therefore, for x,=x= - =xn=x e ma— i1 Ni, o, We have

nlog f(x; &)=np(a) u (x)+ng(x) +nr(x),

A 7 ' n-1 7 n=1.
where « (¥)= 21 a*(x, Qi)— Zl a*(P:), and nr (x)= 21 r*(x, Qz‘)—gﬁ(l?z');,
that is, denoting m,—\/%,; Ni, @; by m,, We can obtain (5). |

Sufficiency. From (5) we have for all Pewr, x -+ X m,=E,

12)  log L(P; a)=np (@) a*(P)+nq (a)—nr*(P),

where a.*(P)=(éﬂ (x}))/n, and r*(P):(é&f(xz))/@.: And by "thg\:yconr
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dition that p («) and ¢ («) are differentiable, the equation (2) holds for
Ew’—:'n'wx s Xy o

»n

In the case where the equation (2) holds for all E, without any
subset of exception the proof of the necessity can be rather easily carried
out than the above. In fact, to obtain (5) we have only to put x;=%x,
= . =x,=x in (7) and u (x)=a™(x, x, ---, x). ’

The form (5) of fr. f. has been discussed by B.O. Koopman 2), and
~hence we call it Koopman’s distribution. He has proved that (5) is the
necessary and sufficient condition for existence of a sufficient statistic in
the sample space of any size when E, is independent of «.

Now we can state the following

Theorem II. The value of p (a)in the form (5) is uniquely determined
by the value of q(a). Denote this corrvespondence by q(a)=T (p (a)), then
the moment generating function ¢ (0; o) of a* is given by '

(13) 9 (0; a)=exp[—n{T (6/n+p(a))—q(x)}].

| Proof. Integrating the both members of equation (5) and multiply-
~ ing by exp (—¢q(«)), we have

(14) Sﬂw exp ([J () 2t (x)) exp (r(x)) dx=exp (~q (a)).
Hence the value of g (a) is uniquely determined by the one of p («).
To prove (13), we transform the likelihood function L(P; «) into
(15) L(P; a)=exp[n{p (a)—p (a)}a*(P)+n{g(a)—gq(a)}]- L(P; ).
If we put §=n(p(c)—p (), and consequently ¢ (a)—q(ao)=T{8/n+ )}
—T{p(a)}, then (13) follows from the equation | L (P;a)dP=1.
Theorem III. If the sign of equality in (1) holds, and if 8 f(x;a)
oo is continuwous on o, then o«*(P) is an unbiased estimate of ¢ (a) with

variance ¢ (a)/p’' (), whenever P’ (a)F=0. Moreover, if o*(P)=const.
almost everywhere on E, , then the variance of o™ (P) is equal to zero.

Proof. From (o L(P; a)/oa)dP=0,

0= S” olog L(P; &) 1 (p. «) dP=F («)| (a*(P)—¢(éz))L(P;oé)dP,
ox oo

~'o

('oa
therefore, whenever k& (@)==0, ¥ (a)=F, (a*(P)) =¢(a).p
Moreover,

& (P =v(@f=E.( a*(P)— qb(a))ngw (910g L(P; ayoa) L(P; a) dP

3 T am indebted to Professor G. Maruyama for a remark leading to a simplification of
my original proof of this. ’
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| ={Eu(a*(P)—~ () )2 k(a},
that is, .
!
E. (a*(P) =4 (@)= F0).
Pla)
If a*(P)=const., then a*(P)= qb(a) almost everywhere in E,. There
fore the varlance of a*(P) is equal to zero.

In the rest of this section, we shall discuss how to choose a para
meter admitting an efficient unbiased estimate. For this purpose we
remember that : :

(16) T'(p (@)= gg"‘; =4 (@),

which follows from (13). Now suppose that T (@) has the unique in-
verse function S(8), and put V(8)= T(S (B)) then p (a)= S (gb(a)) q(x)
=V (qs(a) ), and therefore

flx; )= exp{S(B)u(XHV(B)M(x)}
L(P; )=exp{nS (8) «*(P)+nV (8)+ 5 7 (x2)}

where 8=¢ (a). Denote these functions on the right hand sides of the
last equations by fix; B8) and L, (P; B) respectively, then we have

olog L,(P;B) _ k(a)
(17) v d (a* (P)— B).
04

ag

From this equation the factor k(a)/T of the right hand side is unique-
o

ly determined by 8. We shall denote this factor by %;(8). = Thus . (17)
becomes :
olog L (P B) —p, (8) (a*—8).
s
This equation shows that a* (P) is an efficient estimate of @8, and that
such B is unique. Thus we have the following

Theorem IV. If T' (0) has the unique inverse function in Koop-
man’s distvibution (5), there exists a parvameter T’ (p (a)) having an

efficient unbiased estimate (il u (x,-)) / n, and such a parameter is unique.
£

Remark. If there exist two statistics a™(P) and 8*(P) for which -
holds the sign of equality in (1) with respect to some ¢ («) for any «
in A, then we can easily see from (2) that the relation

B*(P)=aa*(P)+b (@, b=constant)

holds almost everywhere in Rx». And, further, if «*(P) is an efficient
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unbiased estimate of «, then e a*(P)+56 is also the one of aa-+b.
Therefore we might say that there exists essentially only one efficient
unbiased estimate of distribution.

- 2. Examples. a) The variance ¢* of the normal distribution with fr. f.

S (x; 0)=(2mo?) " exp (— 4427 .

In this case we have T’ ()= —(26)"%, which has an inverse function', and
D(e)=—(26")7", and therefore T’ (p)=q” is a parameter, having an effi-

cient unbiased estimate ;};_.; x%/ n.

b) Pearson’s type II’I distribution. Writing

f(x; 0)=(I (@) 2 Pe*, x>0, a>1,

we have p (a)=a—1, and T’ ( p (a))———l*’ (a)/I" (). This is the parameter,
for which g‘.log xi/ n is an efficient unbiqsed estimate of size . |

c) Pearson’s type III distribution. Writing

f@; )=(a/I W) 2 e, >0, A>1, a>0.

then p(a)=—«, and T’ (p)=—nr/a, which is the parameter having an
eﬁcient unbiased estimate Enx, /

i=1

d) For Pearson’s type 1V distribution with fr. f.
f(x; @)=e"%G () - exp (—tan 1x) - (1+42)-*/2+1,

where. G (a)= f:e‘ sin *4 dt, —oo <t < o, we have p (&)z —a/2+1, g(a)
=G (@), and u ()= log (1+4?), therefore T’ (p)=—2G (a), the efficient
unbiased estimate of which is 2 log 1+x2)/

Many other distributions of this sort are found in Pearson’s - type,
- which can be transformed into Koopman’s one. ‘
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