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Introduction and Summary

The investigation about the theory of vortex motion® with wvorticity
continuously distributed in the perfect fluid, was mainly carried out about
90 years ago, by Clebsch? and Helmholtz® etc., and soon after Kelvin® esta-
blished his famous circulation theorem. So it is considered that in these
periods of 19th century the theoretical study of the vortex motion reached
the vertex of its studies. In the following periods it was even said that
there were few contributions about theoretical studies of vortex motion
except Bjerknes’ circulation theorem® of baroclinic fluid.

Besides the only" useful method about analytical expression of vortex
motion in incompressible fluid, is Stokes’ stream function in the cases of
plane motion and axial symmetric one. Even in these cases soluble
ones are constrained to linear or some special types of partial differential
equations. Many people have considered that the theory of vortex motion
in perfect fluid reaches the limit of its analytical method.

Causes of the above-mentioned incorrect considerations may consist
in the following circumstances.

(i) Vector potential method* introduced by Helmholtz has been prevailed
in the theoretical view on account of his fame. But the application
of this method to vortex motion is incorrect as shown below.

(ii) In the treatment about the vortex motion of perfect fluid by the
method of his expression, Clebsch commited a gross mistake, as
pointed out in 5 of this paper. This fact prevented the theoretical
developinent of vortex motion by Clebsch’s expression. It is one of
the objects of this paper to rectify the above mistake.

‘1 Contribution from Department of Physics, Faculty of Science, Ochanomizu Univer-
sity, No. 7 '

2 This study was carried out under a Grant in Aid for Fundamental Scientific Research
from the Ministry of Education. '

3 The property of vortex motion to be discussed in this paper is limited to the one
with vorticity spread over a finite region. The fluid to be treated is perfect fluid, but may
be either compressible or incompressible one. ’

4 Vector potential with scalar potential display its full feature in electrodynamics, but
its roles in hydrodynamics are few as discussed in this paper.
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(iii) To solve generally the differential equations for vortex motion is
very difficult, because they have non-linear form.

(iv) The interest of hydrodynamical researches has been directed re-
cently to the turbulent problems on hydraurics and aerodynamics and
the high speed problems on aerodynamics.

However in the domain of meteorology the effects of rotation of the
earth to motion of the atmosphere are essential, by which effects its
motion may be transformed necessarily into vortex motion. So to solve
the fundamental problem of meteorological dynamics, in the first place,
we must treat the problem how to solve the vortex motion of perfect
fluid from the ‘pure theoretical point of view, especially the problem of

solution of non-linear type from the analytical point of view' (cf. 7).

While the author consulted the classical literature about vortex motion
such as Helmholtz and Clebsch, he has found the hope to solve and develop
these problems by amending their errors in the use of Clebsch’s expres-
sion and applying a method of contact transformation. ‘

In this paper, differing from the usual treatments of vortex motion, by

employing exclusively the method of Clebsch’s expression for velocity we
shall develop the theory of fliid motion with spread vorticity. In Part
I its general theory is developed. In 1-3 a preliminary note for fur-
ther discussions is delivered. In 4-5 the extension of Kelvin’s circula-
tion theorem and its relation with Bernoulli’s equation are also discussed.
By using Clebsch’s in 6-7 the partial differential equation for stream
function is transformed from the -second order to the first order, but
the general solutions of the latter will be discussed in the next paper.
Considering our following discussions this Clebsch’s expression seems to
be the most powerful method to accomplish the theoretical study of
vortex motion either in perfect fluid or in viscous fluid.® |

PART 1

General Theory of Vortex Motion in Perfect Fluld
by Use of Clebsch’s Expression

1 Equations of motion and continuity in perfect fluid

As a .preliminary note to treat the vortex motion, we shall sum up
the fundamental equations of perfect fluid here. In this report forces
to affect the fluid motion are assumed simply to be forces with a poten-
‘tial 2(=2(x,y,2)). Let us put on q («,v, w) the velocity fields, p the
pressure, and p the density, then equations of motion are as follows, in
either Lagrangian form or Eulerian form,

5 Discussions of vortex motion in viscous fluid and baroclinic fluid will . be treated in
later papers.
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da 1 . | g
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‘Especially in Eulerian form the acceleration is written as

daq _ 94 ., 99 ., 09 ., 00
dt ot 00X oy 02

Equation of continuity in Eulerian form is,

dp o o
a P4 | (1.2)

and in the special case of incompress‘ible fluid is
’ rq=0, | | (1.3)

Equation of continuity in Lagrangian form is

b 0D _q 14
Po 0 (a, b’ C) ’ ( )

and in the special case of incompressible fluid is

0(x,5,2) _ 1
2(ab o =const . (1.5)

"~ 2 Clebsch’s expression about velocity fields

(I) Comparison of different methods for the expression of velocity

To express the velocity of fluid motion in the form convenient to
the theoretical discussion, many methods such as those of stream function
and vector potential etc. are used as the expressions by the potential
function type. With respect to our special adoptation of Clebsch’s expres-
sion® of velocity among these methods we shall make clear its reason
in this section by comparing some important properties of three repre-
sentative methods classified as below with.each other '

a) Method of Stokes’ stream function,

b) Method by Clebsch’s expression,

c) Method of Helmholtz’s vector potential.
Usually the case a) is considered to relate to the case c) Though it is
right for plane motion, according to our opinion expressed in the following
discussions (cf. (ii), b)) it is also in close connection with the case b).

'So among relations of these three methods we shall discuss fully relations
between the case b) and c).

6 Descriptions of Clebsch’s expression are found in the textbooks on hydrodynamics such
as Basset,® Lamb,® Appell”? and Batemann,® but in the most . textbooks written in 20th
century there are no descriptions.
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(i) Conciseness for expressmg the quant1ty related to the vortex
For this point Clebsch’s method is superior.’

(ii). Applicability for obtaining special solutions :

a) Many two dimensional solutions for vortex motion known till
now, are derived by the method of stream function. These solu-
“tions are also derived by the method of Clebsch as shown in this

~ paper. '

b) Three dimensional squtlons for which vector potential method
should exhibit its feature, are scarcely obtained by its method.

" ¢) Clebsch’s method displays its features for three dimensional solu-
tions by the help of contact transformation. For two dimen-
sional solutions there are wider domains than the method of
stream function. So its applicability is far large.

(iii) General theory such as combined generalizations of Bernoulli’s
equation with Kelvin’s theorem is developed easily in the Clebsch’s
case, but in vain in vector potential method. (cf. 4 and 5)

(iv) Symmetry properties for the space rotation®
Clebsch’s expression has some properties resembled spinor symmetry,

which conserves property of vorticity for the inversion of space. Contrary
to this fact vector potential method does not exhibit true symmetry for
the inversion of space.

(II) Definition of Clebsch’s expression
Properties of Clebsch’s expression are not known for many hydrody-

namists, so we shall now describe this expression following the old
Bdsset’s® book, as its description is lacking in usual textbooks. }
Velocity fields q (%, v, w) in the general motion of fluid are divided into
two parts, one is well treated potential motion with scalar velocity
potential ¢ (x,y,2), and the other the remaining parts #/, ¢, w/, that is,

U=— ﬁggﬁ +u,’ Y= — _Qg +v,’ w=— —ai +w,, (2.1)
ox 8y 0z

As this division of the velocity' fields into two parts is not performed
uniquely, we can impose a relation upon #/, 2, w', for instance,

' ’ ’ / ! g N
u,(aw o )+v,<au _ aw>+w,(gL _ﬂ):o, (2.2)
8y 0z 0z ox 0x .oy

which is nothing but the condition that a total differential form
w'dx+v'dy+w'dz has a integrating factor. Then changing this total
differential form into a form «adB, where « and B are functions of
x,v,z and ¢, i.e, a=a(x,y,2,t), 8=8 (x,vy,2,t), we have,

7 Compare the description of 3 with that of vector potential method in the usual text
books as Lamb® etc.
8 Tts detail is discussed in Appendix.



66 ' T. SHIMOSE - NSR, 0.U, vol. 2

q- dr=udx+vdy+wdz= —d¢+ad}8 , (2.3)

which is the form discussed by Phaff. Then velocity fields are expres-
sed as

' 9 9 0
=—FVpt+alB, (V: , , )
b . ox ay 0z
4
U= v +a—aﬁ, (2.4)
ox ox
Or (= —gﬂ +a—2£,
Y Yy
w=— 07 1o 5
\ 02 02

Further, calculating the procession in a infinitesimal distance dr, by
using (2.4) we have again

q-dr=—dp+adB. (2.5)

3 Further propertiés of Clebsch’s expression

(I) Roles in vortex motion
As there are simple and close relations between the Clebsch’s
expression «, 3 and physical quantities appearing in the vortex motion,
we shall describe them in detail following Appell’s book” for the further
discussion of our theory in Eulerian case. :
1) Vorticity w (&, », &)
From (2.4) we have as vorticity i,

1 1

o= S VFxq= TVaxV,B,
/ 1 )
&= 7(“:\* Bz—az By) ’ (3-1)
OF = (e Bamate B3
C-_—*%—( xﬂy—ayﬁx)-

N

2) Direction of vorticity
Multiplying (3.1) into Fa or rg8

w-Fa=0 and " w-7B=0,

da ax ox R of B _
= O g 2B CE =0).
(6 o O e 05 =0) (600 0 5 e 27 =)

(3.2)
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So the vorticity is directed along the intersection of the two sur-
faces a=const. and B=const., whose surface normals are expressed
respectively by the vectors Fa and rg.

3) Properties of vortex surface

Any surface above mentioned is called vortex surface. Its
meaning is as follows. ‘

Taking a d1fferent1al procession dl 7 as (2.5) from velocity fields
v, we have,

dr=q-dr=—dp+ads.
Along the surface a=const.,
dI'=d(—e+apB). (3.3)

Then for the closed circuit on the surface a=const. total pro-
cesssions are,

4)df_=&§> d(—¢+a3)=o; (3.4)

So the surface a=const. is a vortex surface.
Next on the surface B=const. we have,

For the closed circuit on the surface 8=const.,

gfmr:{n d(—9)=0. 5)

So the surface B=const. is also a vortex surface.
(II) Geometrical consideration of Clebsch’s expression and generaliza-
tion of stream function by author’s view ‘
In order to understand correctly the geometrical meaning of Clebsch’s
expression and to make clear its relation with stream function, we shall
examine the geometrical behaviour of Clebsch’s expression «, 8 1n the
4—-dimensional space (x,y, 2, ).
The trajectory of fluid particles is expressed as a intersection of
the two surfaces,

Vi (x,y,2,t)=const. and Y, (x,y, 2 ¢)=const., (3.6)

‘where ¢t is considered to be a sort of parameter. These surfaces Yy, and
Vr, are considered to be those of moving parameter groups in the case
of the variation of constants, also. But these surfaces for the trajectory
are not determined uniquely. From the next consideration these quan-
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‘tities Y, and Y, may be taken to be generalizations' of the stream
function.? From the above definition the spatial parts of direction cosine
of the intersection are proportional to the velocities q.(#, v, w) of ﬂu1d
partlcles : .

q (u, v, w)=const, x (V\I}"lXV\[fz). S R (3.7)
- Taking another parameter surface orthogonal to this intersection as
B (%, y, z, t)=const., o - (3.8)

the velocities g are proportional to rg. Putting this constant of pro-
portion as «, we have

q:aVﬁzV‘hX?%, (3.9)

where «(x,y,z t)=const. is also a sort of parameter surface. If we
take another surface v (x,, z, t)=const., parameters ¥, and \[rz will be
expressed as functions of «, 8 and v as

‘I’l:\Pl (CK, 181 'Y) ’ ‘1’2:\11"2 (a7 B’ 7) . (3.10)

As the two surfaces (3.6) contain the trajectory commonly, d1fferent1at1nq
them with ¢ along this trajectory, we have,

d¥ry == oYy da + 6y dB + oYy, dy

dt oo - dt 8B dt oy dt ’ (3.11)
Ay, _n_ 0¥, da + 0V, dB + 0V, dy .
dt o dt 08 dt oy dt

Taking a special type without losing generality, Y,=v, ¥,=«a, we have,

0¥ o g 0V 0¥y :0 ,

b 0 '
S d“ aﬂd g (3.12)
thew da _o dv _g but ﬁ__#o .

dt o at

'Thén this form is fit for the expression .of barotrOpic flow.
It’is easily shown that the velocity expression of the form (3.9)
sat1sﬁes the equat1on of COl’ltanItY For

ra=F Py x ) y |
=P (P X PY) =P (VXV\Pz) ' (3.13)
=0. (as 7 xPy;=0 and VxV\Irz—O)

Spemal case I Plane motion .

9 Th1s expressmn was also cons1dered by anbouchmsky,ll) but he did not develop it
in-the d1rect10n of this paper. : ,
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~ Taking this plane as xy-plane and putting ¥,=2z, ¥,=1 (%, ») in (3.9),
we have, |
B _ oy

T T Ty
X Yy :
3.14
B _ o e
oy - o0x

This is well known Stokes’ expression of velocity by a stream function
Y¥. If we could choose arbitrarily ¥ (x,y) and B orthogonal to +, the
velocities by the above formula (3.14) satisfy the equation of contmurty
Special case II  Motion- on the surface for rotation. v
Taking x, p and @ as the co-ordinates of the surface of rotation,

where are p’=3y?+2% and qutan“lL and putting V=@, y,=1v (1, p),
z : '

we have for the velocity components #, v along x and p,

%= ._.qﬂ _6&. _— 7A1 B a‘lf
) 0x op
’ poor - (3.15)
R B _ 1 oy .
p 0y P 0x

This case is also'nothing but the one treated by Stokes’ stream function.

4 Energy relations with pressure (Modification of
Kelvin’s circulation theorem)

Assuming Clebsch’s expression for velocity fields g, we have as an
1nﬁn1te31mal procession in a direction dr as (2.5),

q- 8r~—8go+a8,8 . (4.1)
Differentiating it by ¢ along the path refering to fluid particles we have

() -a(f) s G ra(£).

On the other hand from equations of motion (1.1) for barotropic motion
under the action of external force with a potential 2 (x, y, 2), the accele-

ration J—%}; is replaced by

dq 1 ’ . ,
L =P 02— . 4.3
v patd | (4.3)

Further using next relations, where V= |q|,

qS(‘i,;) »q 8q"8< I; >

aa(%f> =5 (a %} ~ %aa,‘

(4.4)
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and intfoducing (4.3) and (4.4) into (4.2), we have,

V‘é do | ag 1 3 d“. |
0 — Fa ) dpHp= 88 4.5
o < 2 dt dt ) dt dt ( )’

Specially when the fluid is barotropic p=f(p), we have,

ap o V2 _dp ,,.dBY_ dB g, da ,
8<S ) + 3 o +a dz> 7 S % 38. (4.6)

These relations (4.5) and (4.6) correspond to the differential form of Ber-
‘noulli’s equation as shown in the next special cases.

The derivation of this formula (4.5) or (4.6) is compared Wlth that
of Kelvin’s circulation theorem. In his case the right-hand side and
the last two terms of left-hand side of (4.6) are summed up as time rate
of circulation. Then considering the above derivation, we know there is a
close connection® between Bernoulli’s formula and Kelvin’s circulation
theorem. This relation has been made clear for the first time by the
above description and it resembles to the relation for Lagrangian and
Hamiltonian functions of Dynamics (Bernoulli’s to H, Kelvin’s to L).

5 Special classification of flow pattern (Bernoulli’s
formula and its generalization)

With respect to the result above obtained (4 6), we shall examine
some special cases of the flow pattern.
(I) Potential flow -

dot g

In this case it is ; = O, i =0, and only ¢ is not zero then
(4.5) is
' Ve de Bp' :
S|lo2— — — + == =0. .
< 5 y ) A 0 (5.1)

.As the first term in the left-hand side of (5.1) is an exact differential,
the second term mu.t be an exact differential. Then p must be a func-
tion of the pressure p, i.e., this case is barotropic one. Integrating
(5.1), we obtain the following formula,

j—@ ro— VP _dp _onet (5.2)
p 2 dt

where the constant of right-hand _side is independent Qf x,v,2 and ¢
Considering the relation

10 Compare this relation with the note in the book of Prantl-Tietjens, Hydro- und

. Aeromechanik, Erster Bd. S. 178. Though they remarked the distinction between these
expressions, they did not explain the above relation.
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dp _ op. +u atp 49 0P 4 9P — 0P _yo ‘(5‘.‘2')
dt ot ox oy 20 ot ’
we obtain
, ‘ v
jiﬁ +o+ V' a‘p =const . (5.3)
P 2 ot R

This formula is nothing but the Bernoulli’s formula for barotropic fluid
motion with velocity potential @. It should be noticed that in (5.2) the
sign of V%/2 is negative, but in (5. 3) this sign is positive. Then (5.3)
is equivalent to the usual interpretation as the sum of kinetic energy and
potential energy £ etc.
(IT) Barotroplc vortex motion : :
As a second special case we shall consider the vortex motion under
the assumption that the right-hand side of (4.5) is the exact differential
form of a function f(a,B8) of @ and 8. The right-hand side of (4 5) is
expressed as _
A a8 ., da o ) 11 B "
o da— 0 88=—5((a,8). L (5.4)
Then in the formula (4.5) the term §p/p, which is apparently not an exact
differential, must be an exact differential, then p=p(p). So this type of
fluid flow must be also caused by barotropic motion. Integrating (4.5)
by using (5.4) along fluid path, we have,

A Lo VP _dp L dB | @) —cons
5;;(1)) + z gé +a'di +f (a; B)=const. (5.5)

The constant of the right-hand side is also independent of x,y,z and ¢.
Considering the relation (5.2’) we have finally the following result,

d. d
11 (i) 'In his book Basset® proved the results 702 =0 and 73 =0-in the general
barotropic flow following Clebsch’s paper, but these results are consxdered to be wrong by
comparing them with our descriptions in this section. '
D;. Dy.
(ii) In his book Lamb6) proved the results fD—: =0 and i =0, (in his book a=1, (5 p)

in the general barotropic flow, and these results are considered to contradict the assump-
. . D
tion of his next page, - :}= 0 etc

(iii) It is conceived that the wrong results of Lamb and Basset would be the cause to
interfere the study of the vortex motion in barotropic fluids.

(iv) Batemann® discussed the case of vortex motion of inviscid fluid, by taking a
Lagrangian function with a form similar to the above equation (5. 6). In his description in
p. 164 his adopting case is the special one of our results by taking f (e, B) =0, consequently
~z:; =0 and ~-Z?~ =0. This is the case Clebsch’s proof was incorrect, so the very limited
vortex motion is permitted. In p. 166 the special case of our result is treated by taking

f(a, B)=s2 etc.
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Xp(ﬁ) +2+ 4 — > at o +f (a, B)=const . (5.6)

This formula is regarded as a generalization of Bernoulli’s formula in
the case of barotropic vortex motion.
(ITI) General flow

In the general case that the right-hand side of (4.5) is not an exact
differential, the left-hand side of (4.5) is not also an exact differential.
Then the density is not a unique function of pressure, which is the
case .of baroclinic fluid. These flows are realized by taking some boun-
dary barriers prohibiting to flow cyclically. The pressure of some cyclic
flow at the starting point and the end point with the same space point
is not equal. This general case of baroclinic flow will be discussed in
later papers.

6 Soluble cases of incompressible flow

We shall examine the cases, where vortex motions of incompressible
flow are soluble analytically and compare their results with those in
classical literature.

Conditions to be prescribed for the flow pattern of incompressible
fluid are two. One is the continuity condition, which is expressed as
follows by using Clebsch’s expression

rq=r (arB)=0, : (6.1)

which is satisfied automatically in the case that (3.9) holds.
Otherwise (6.1) may be satisfied by the choice of two functions
h(x,v,2,8) and hy(x,9,2,1), if

and a=n2+7, “ (6.2)

where is
Pihy=nh; and FPh=\h;. , (6.3)
Then
v (aP B)Y=VF (hy hy— hV hy)=0.

Next the other condition that the density p is a unique function of
pressure, is by using the relation (5.4), as follows,

ag o, do s5_ —_of 5, O ‘
—EBa e o Sf(a,B)( T pa— 0 33). - (64)

.To simplify the affairs without losing generality, we can assume that
the surface a=const. contains the paths of fluid particles. Differentiat-
ing with ¢ along these paths, we have,
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da _ ) . (65
% , R , ( .5)
_ then f(a,B) is only a function of « and
dg__ df(a) | et
dt da o (6.6)

Or analytically the condition (6.4) is expressed as

do oo

= -V =V, - . .
&~ o Tare=0 6
dB _ 0B L. gy o
5 ot +q-rB=f"(a).

o

In the stationary case the relation o =0 is further assumed," for

as thé flow pattern is not ’changed, the surface a=const. is fixed in the
space. But ‘flf 15 not zero generally as the path of fluid particles go

. through the surface #=const., though a@f can be zero. Then the con-
ditions (6.7) are replaced by

q-Fa=—VFg-rat+arf-ra=0,
(6.8)

%f* —Pp - PB+a (FRP="(a).

“To satisfy the former condition of (6.8), it is sufficient that the surfaces
B=const. and @=const. are orthogonal to the flow surface a=const.,

rp-ra=0 and Fe-ra=0.

Then the latter of (6.8) becomes
Zf +a (FBY=f"(a), - (6.9)

if - 08 =const., then
ot

a(FRY=f"(a)—c. | (6,10) -

But it is not necessary to assume that the surfaces @=const. and
B=const. are orthogonal each other.
‘On the other hand from equation of continuity (6.1)

14 (aVB)—#V‘a - VPB+ar?8=0,
then E :
r’g=0.
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To obtain the analytical solutions of (6.10), it is necessary to assume
further a relation between two vectors 7a and 7B. This process may
be performed by adding the assumption to specify one of stream functions
¥, and v, some of whose examples are already shown in 3 (II). This
assumption corresponds to specify the flow pattern.

In these cases the equation (6.10) is transformed into the form

o o« ox _ :
(-2, b, e , ) =0, | (6.11)

‘which is the partial differential equation of the first ordér whose
examples are shown in the next section by d1scussmg the relation
between ¥ and «, 8 with stream function.

. 7 Relations between differential equation for the stream
function and that for Clebsch’s expression

In classical hydrodynamics the problem of vortex motion with the
vorticity spread over finite regions has been, treated -generally by the
method of stream function y. In this section as an alternative discussion
of Clebsch’s expression, we shall derive the differential equation for the -
«a from the condition imposed for the pressure in a special flow pattern,
utilizing the close relation between these methods of stream function
and our’s in 3. '

(I) Incompressible statlonary flow (two dimensional case)

For this case it is shown that the partial differential equation of
the second order about the stream function Y (x,y) is equal to the
part1al differential equation of the first order about « (x,y). Neglecting
the potential flow the velocity fields («,v) are expressed by both the
stream function ¥ and Clebsch’s expression « and 8 as follows,

Y
' (7.1)
0x oy

- The condition that the pressure for the stream function of two
dimiensional flow is unique, i.e., the condition of 1ntegrab1hty for the_
pressure, is as well known,” as follows

A A A F(\u) - (72
0x2 oy* ,

By considering the discussion of 3 (II), we shall assume that the
stream function is combmed with the a by the relation v=g(a). Then
(7.1) is
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oy o __ _(’Q_B_A
o =% (a) P
oy o Y] (7.3)
ay Z (@) oy ox ’

From (7.3) we obtain

v B, o a8 _, (or 0u 98, ox 08 ).

0xX  9x oy oy ox  ox oy oy

This relation expresses that surface Y =const. (or a=const.) is ortho-
gonal to the surface B=const. Replacing (7.3) into the left-hand side
of (7.2), ‘ ‘

P L P _ oa B _ oa 0B
9x2 ay:  ox oy oy ox

?

then using (7.3) we have,

1 C 2RI A N

(%) +(af) G ),

con31sts about « and 8 from (6.10), the left-hand side of (7. 2) becomes

As the relation

N, P
= Gla)= Fig).

ThlS equation is nothing but the formula (72 On the ~other hand
using (7.3), the formula (7.4) becomes ‘

(%) (58) = (£ + (5o

(2 (2 Y =6,

(7.5)

Thus in our case the partial differential equation of the second order (7.2)
" for the stream function { is replaced by the non-linear partial differential
equation of the first order (7.5) for the Clebsch’s «. Mathematically to
seek the general solution of the latter is possible analytically, contrary
to the former, which has solutions only for the special form of F(w,fr)
and its general solutions are not obtained analytically.

(II) Incompressible stationary flow (3-dimensional case with axial
symmetry) '
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In this case, including the typical Hill’s spherical vortex, we shall
take symmetry axis as x-axis, and let be p®=3’+2. The velocity
fields (z, v) (components of velocity along x-axis and p-axis) are expr-
essed as, using Stokes’ stream function v (x, p) and Clebsch’s expression
a(x,p) and B (x,p)

p—=— L 0V _ @ 8
p op p ox
(7.6
o 1 0% _a o8 B
P 0x P oy »

Then by.the same reasons as the case (I), we have that the partial
differential equation of second order for

62\1, Qz}[r — i_ ,Q,\k,,,: 10 7)

is equivalent to the partial differntial equation of the first order for

o N (0 V¥ a da _ o, | 1
<ax)+<ap o 0 =pG (@) (78

where is Y=g (a) and G (a)= “, F(g(a)) .

Appendix

Symmetry property of velocity expression expressed by
- groups of space rotation

o In this appendix we shall consider the symmetry property of the
velocity expression -of incompressible perfect fluid from the point of
view of the theory of group for space rotation. According to the
representation theory of space group, the co-ordinates x, y, 2z, the
velocity fields zi‘ v, w and the differential operators a, —c—y ——— be-
0x ay 0z
long to 0l-representatlon Then the symmetry property of the physical
quantities appearing in our paper is discussed as follows. :
(a) Equation of continuity .
The left-hand side of the equation of continuity in incompressible

fluid

Om 00 W g, (A1)

0x oy 0z
belongs to the g, representation in the three irreducible representatlons
produced from the product of two &;- representation

12 The solutions of (7.5) and (7.8) will be discussed fully in Part II following this paper.
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I X =+ I + 2.

The equation (A.1) expresses that the ¢, repesentation in the product
representation produced from the velocity and differential operators is
Zero. ’
(b) Irrotational motion
In the solution of irrotational motion

0w=— ,a_(p_, L op=— 0p. w= -8__’ . (A.2)

| 0x oy 0z -
the scalar potential ¢ is a «,representation. The right-hand side of
the above formula (A.2) is #;-representation and this expression coinci-
des with the representation of velocity (A.2).

(c) Expression of velocity by vector potential
In the expression of velocity by vector potentials (F,G,H)
oH _ oG oF  oH _ G _ 9F (A.é)

U= —— — ", V= e — o, W= ———,
0y 0z 0z ox ox oy

if we assume that F,G and H form a vector, i.e., ¢;- representation
the right-hand side of (A.3) is the &1 -representation in the product
representation

?91,X ?91‘—“192"‘ 291— +?90 o

But this is not equal to the velocity completely, - for, as shown in the
notation, the symmetry of these two expressions does not coincide for
the inversion of space. For the investigation of rotational property for
the vortex motion of fluid, the inversion property is important. How-
ever in the vector potential expression, in which F, G and H form a
vector, the property of velocity expression by this method does not
express the true symmetry property for the inversion of space. Alter-
natively, to make this property -hold, we must take F,G and H as
the ¢, -representation, whose type is-not used in the usual hydrodynamics.
So in the form of its usual employment this potential does not fit itself
to the expression of velocity in fluid motion.
(d) Clebsch’s expression ,
In the Clebsch’s expression the velocities #, v, w are expressed as

) v
u:aﬁa_ﬁ_ =\ op — 67\'
ox ox ox
o _, o N ’
v=o e =N S  — .
{ dy ay oy (A.4)
W OB O, N
\ 0z 0z oz
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where is a=N+x2 and B=tan /g, (A.5)
and the condition of continuity is expressed'as
AP — whA=0. _ (A.6)

If we assume that the two potentials A and u have the symmetry
property of spinor, which is well known in quantum mechanics, that
is, » and p have symmetry property of ¥j-representation, the above
equation may be considered as the ¢;-representation from the product
9%, 9% and 9;- representatmns

3, ‘<z£llx =5, Xz9 +a, Xﬂl—z90+z91+291+292.

If we assume that A and w compose a spinor, the above expression: of
velocity expresses true property for the inversion of space. As for the
symmetry property of « and 8 we must seek it from the relation (A.5)
and their symmetry property is not so simple as A and p.
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