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Introduction and Summary

Though recently many papers have been published about the non-
local field theory of elementary particles such as by Yukawa?, yet at
present these theories are too abstract to obtain definite results. On
the other hand Heisenberg’s new monistic theory® of field is considered
to tell us our objects to reach, but it is also far separated from the
present concrete theory. Then on our way to reaech this theory, there
must be many questions to discuss. At present one of the ways to
proceed on our theoretical studies about elementary particles, may be
to start, firstly, to discuss the relation between the following two theories
about the electron, which are founded on the wvalid experimental evid-
ences, and secondly, to unite these theories into one formulation. This
is the idea of the present paper. ~ '

The first theory of the electron is Tomonaga®-Schwinger’s? quantum
electro-dynamics in a relativistically covariant formulation on a dualistic
standpoint, (hereafter designated as T-S theory) which explains experi-
mentally anomalous magnetic moment of the electron and many radiative
reaction effects. “Contrary to T-S theory there is another important
theory of the electron proposed by Bopp®; which follows the school of
Dirac’s® and Mie"-Born’s® classical theories of the electron founded on
a monistic standpoint, and explains the experimental mass spectrum of
elementary particles, though it is qualitative. "So theoretically the latter
theory is rather interesting. Apparently it looks as if these two theories
were based on fundamentally different standpoints and do not fuse into
one formulation. ‘

‘In the present report the author introduces in the first place the
outline of Bopp’s- theory, which is necessary to develop our theory.
The different points of the above two theories are discussed and we
bring to light how the unified formulation of two theories is accomplish-
ed. Following these discussions we shall propose a field theory for the
above aim, which is nothing but a simple non-local field theory assum-
ing non-locality only in commutation relations of field quantities, and
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considering the expansion by a retardation parameter, but with different
interpretation about Lagrange function contrary to T-S theory. In our
formulation the 4-dimensional functionals constructed from various dynam-
ical quantities (as electromagnetic potential, spinor fields and especially
Lagrange function), vary following generalized Schrédinger equations of
motion. ' '

Then we shall show that Dirac’s wave equation with matter field
and Maxwell’s wave equation with electromagnetic field are derived
from the 1st order approximation about retardation parameter of our
simple Lagrange function, in which case it is derived also that the
instantaneous velocity of a particle is equal to light velocity. In the
2nd approximation of retardation parameter the wave equation of matter
field takes a generalized form of Dirac’s equation, which is slightly
different from the equations treated by Honl-Papapetrou and Bopp.
Thus it is shown that Bopp’s theory is transformed into a dualistic non-
local field theory with a simple formulation. But their full discussions
will be postponed till the following paper.

Though we have assumed non-local commutation relations with
respect to field quantities, and studied the non-local effects generated
from these commutation relations, we did not determine conecretely
these commutative functions in this paper. As in the generalized
Dirac’s equation the moments of these quantities with respect to retard-
ation parameter appear, these quantities will be determined by compar-
ing them with experimental results. In this point our theory is based
on phenomenological standpoint with respect to commutation relations.
Algo in the present paper the Heisenberg representation is used to
make clear the relation between Bopp’s theory and ours.

1. The outline of Bopp’s theory

In this section, to make easy to understand our theory, we shall
describe the outline of Bopp’s theory about elementary particles, but
the outline of T-S theory is omitted, because the latter is well known.

At first to describe the electromagnetic field of an electron following
the school of Mie-Born, Bopp assumed two field quantities ¢‘ Erregungs-
tensor ”’ Fu(x) and ‘‘ Feldtensor” fu(x), which are connected by the
relation, '

8L
Fop = , 1.1
Ay o .1

where Lagrange function L(x) is a function of field quantities f,, only
and defined by

L(z) = %‘S Fosl@ e (@ — ) fogla) e (1.2)
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In the last equation (1.2) s(x—=2') means the expanded action of fux(x),
in which non-loeality is expressed already.

After proposing this idea Bopp™ treated in detail the motion of an
electron in the formalism of classical electrodynamics from monistic
" standpoint. The path of a moving electron with a charge e is given

by z.(s), the magnitude of whose 4-dimensional velocity, /

| % = u,(s), (v =1.2.8.4) (z=7ict), (1:3)

is light velocity
u,’ = ¢, _ : / (1.4)

The electromagnetlc potential at output point z,, generated by this
charged partlcle is

A(w) = Ej (D (2)da, (L.5)

) . 1
where is =
'

2, —2,(8))"s

and g(r) is spreaded in =, showing non-local action, too.
' The variational principle for field quantities is

38 =0,

where following Born the action integral S is defined as follows,
- ij A (@ @)de . (1.6)
2c _

This form of the action integral is characterized by being contained
only interaction term and not the quantities of wu,(x) only, or A,(x)
only, further the action is direct and does not spread. The Lagrange

function L(z) defined by the relation with S, S = jL(x)dx, is derived
from (1.5), (1.6) as follows,

L(x) = %j Up(Uu(s—7)g(v)dr— %uu(x)A,ﬁ" (z), | a.mn

where an external field AP(x) is separated from A,(x). Then expanding
u,.(s—7) with respect to retardation parameter = We'have,

Lia) == AP (o) = (L) + B oo By, @)

where ‘is k, = jg('r)q-"dv- .

In the above expression the Lagrange function is only a function of |
the velocity, higher accelerations of an electron and not its electro-
magnetic field against Bopp’s first formulation (1.2). '
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‘The most characteristic property of Bopp’s electron theory is that
in the form of Lagrange function (1.8) derived from the simple action
integral as (1.6), k. and k. terms are contained in addition to a rest
mass term ko(mq,?). As this Lagrange function L(x) hes functions of
- not only a rest mass m,, but also higher accelerations 7, and @,, in
the action of external forces the inertia of an electron is different from
the rest case and the motion of an electron does not always return to
the equilibrium state after cutting off external forcey, falling into the
ingtable state”. The cause of this phenomenon is concerned with the form
of g(r), which expresses the effects of the reaction from another field.

'As regards the problem of second quantization, which is necessary
as the theory of elementary particles, Bopp selected a different means
from usual theory of field. He quantized the coordinate z, of a particle
as well ag its velocity wu,(x) separately, from the standpoint of particle’
dynamiecs, i.e., two sets of a conjugate quantized one, are z,, p, and
Uy, , BL . In this case the conjugate quantity p, of z, is distinguished

from the instantaneous velocity «, = u,(x). This is nothing but the

characteristic property of Dirac’s free electron, being pointed out by
Schrodinger™. From this property’ a particle in rest (p, =0) has
another internal degrees of freedom of the motion generated from wu,,
from which a particle has a mass pole and mass dipole moment, pro-
posed by Hénl-Papapetrou'”. Utilizing the discrete eigenvalues of these
quantized internal motions, Bopp explains qualitatively the mass spectrum
of the stable elementary particles (as masses of electron, meson and
proton, ete.). These characteristic properties of Bopp’s theory such as
the form of action integral (1.6) and the expression by retardatlon
parameter must be retained in our theory. :

2. The relatmn of T-S theory to Bopp’s and the standpomt
of our theory

Apparently T-S theory and Bopp’s are opposite in their standpoints,
one is dualistic and the other monistic, but according to the author’s
congideration, this opposition is not the principal point of difference
between the two theories. In Bopp’s theory the motion of an electron
is described by two kinds of quantities, the velocity wu,(x) and its
electromagnetic ‘fields A, (x). So Bopp’s theory is easily generalized to
dualistic theory by replacing u,(z) by j.(&) = Favudr (refer to 3).

One of the fundamental eritical points against the present quantum
electrodynamies such as the theory of Heisenberg and Pauli, suffering
from the divergent difficulties, is their peculiar standpoint ‘‘two free
fields and their mutual action,”’ (although in T-S theory these difficulties
are eliminated by artificial subtraction method of proper interpretation
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about two free fields.) This standpoint is evident in the form: of
Lagrange function, from which Dirac’s equation and Maxwell’s are
derived. The divergent difficulties will be caused by their dualistie
standpoint, ¢ two fields and mutual action,”” (not dualism of two fields).
Contrary to the above view, Bopp’s view is different and assumes that
there exists ‘‘only mutual action between velocity u, and its electro-
magnetic field of a point eleetron,” as shown in (1.6). So Bopp’s
theory does not fall into dualistic contradiction. In our theory this
Bopp’s opinion is adopted, i.e., our theory is based on the idea *‘there
exists only mutual action between two fields.”” This idea was discussed
by Feynman' some years ago, but he failed to discuss it further.
Secondly, it seems the prinecipal point of difference between the two
theories comes from the difference of the object to be treated. One
of the characteristic properties of T-S theory is, as was pointed out
by Dyson™, that by eliminating the reaction process by the mutual
action between different fields, the divergent difficulties are omitted.
But contrary to this, Bopp made much of these reaction processes
between different fields as retardation actions and introduced these

effects of retardation into the internal structure of an electron. So

the quantization of u, and & is nothing but the introduction of the

U _
effects of the retardation by t;le electromagnetic fields. These electro-
magnetic fields are quantized by particle mechanies through the above
quantities of a particle.

In our theory the main interest is directed to the retardation
effects of one field upon the other, (which is caused by non-local com-
mutation relations,) contrary to the usual theory of field, but the
formulation of our theory is constructed in the form of a usual simple
non-local field theory, only differing in the interpretation of Lagrange
function and the derivation of Dirac’s and Maxwell’s equations. The
Lagrange function of 1st order in our theory, which is transformed
from the initial simple form by the generalized equations of motion,
is essentially related with the non-local commutative functions. From
this Lagrange function of lst order with expansions by a retardation
parameter, generalized Dirac’s and Maxwell’s equations are derived. In
this point our theory also differs from the regulator theory with infinite-
ly many mixed fields, in each of which Dirac’s equation with different
mass is established.

3. Mathematical Formulation

In this section we shall describe at first relations between field
quantities' necessary to the formulation of our theory. Then whole

t In this paper Schwinger’s notations are used so far as not otherwise described.
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mathematieal formulations will follow. But our discussions are special-
ized to the mutual action between the spmor and electromagnetic field
of an electron'. :

1) Field. |
a) 4-dimensional electromagnetic potential field 4,(x),* (v =1,2,8,4)
'b) Spinor field Yu(x), Te(x) (= YFvy),
¢) 4-Hermite matrix v,, their commutation relations are v,v,+77,
=28,,, ,
d) Successive expansion by retardation effects. According to orders
of the retarded action from another field, the above fields are
expanded successively as follows,?

Au(x) = AP (x) + AP{(x)+ -+ - -
V(@) = PO(@) PP (@) + v o e i

- 2) Commutation relations of field quantities. |
Contrary to T-S theory, we shall assume non-loealv commutation
relations of field quantities as follows,* '

[A,(x), A(x)] = ichdunfle—a), .

» @), Ys(@)} = —igus(—2). (.1)
The functions f(x—2') and g.(x—=z') in (3.1) correspond to Schwin-
ger’s D(z—z) and Su(x—2), f to D, f® to DO ete., but our
flx—2') and g..(x—2') are considered to spread over certain inter-
vals of x—a', though their concrete forms are not yet defined here.

3) Current density and ‘equation of continuity.
The current density of spinor field is as follows,

1ec

Gul@) = S @)= F @rad @], 3.2)

equation of continulty is as follow.s,

3‘7',,,(56) =0. : (3.3)

9z,

- 4) Equations of motion. |
In this paper we shall describe the variation of field quantities

! This method will be applied to the elementary particles with other spin than
the electron.
2 As in this paper virtual processes are discussed, supplementary condition of
Ay () needs not be prescribed.
3 The upper suffix (0) indicates incoming ﬁeld
4 The meaning of bracket symbols is [4, B] = AB—BA, {4, B} = AB+BA The
brackets, in which comma are not contained, are used as usual.
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in the Heisenberg representation to retain the close relation to
Bopp’s theory, contrary to the usual application of the interaction
representation as in T-S theory. According to Dirac', generalized
equations of motion in the Heisenberg representatioi, which pre-
scribe the variation of a functional &) of certain dynamical
variables, is expressed by the introduction of Hamilton function
H(x) as follows,

- iﬁc&;—@ = [&(), H(x)_]wﬁc_f’%@. (3.4)

The relation between Hamilton function H(x) and Lagrange
function L(x) is expressed in a simple form, H(x) = —L(x), as
far as we are concerned with interaction terms only. Moreover
the concrete form of L(x) is assumed as follows like T-S theory,

LO@) = —HO) = -5, @)Aua) - G

H) Exaet and approximate solutions of equations_of motion.

Exact solution of (3.4) is obtained generally as a form of inte-
gral equation,

&0) = (=) =L | [&(a), H@)ldar, (3.6)

where dz' is the differential 4—dinr\16nsidnal volume.

When fuctional £&(o) is expressed in a form of 4-dimensional
integral about certain dynamical variable @(x) up to the 4-dimen-
sional surface o,

&o) = j o(a)da, | | 3.7)
solution about dynamieal Varia'ble o(x) takes the following form,!
#(@) = oOw)——|" [p@), Hi)ldar. 3.8)

Further when the approximate form (3.5) is assumed the above
solution takes the following form, '

#(@) = 9@+ = | [p@), G0N A )de - (3.9)

6) Examples of the solution.

a) When ¢(x) is electromagnetic potential 4,(x), after using com- |
mutation relation (3.1) we have in the 1st approximation, ‘

Aux) = A,‘f’(“’)"%‘ ;f (w—a)jO)da, (3.10)

which is the form of well known formula as the solution of in-

1 Tt is assumed the integrability condition is satisfied.
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homogeneous Maxwell’s equation.
'b) When ¢(x) is spinor field (), we have as above example,

Yal) = \lfé"’(x)ﬂ“%%Si Dos(0— ")V () AL () e’ (3.11)

.¢) When o(zx) is Lagrange function L(x), this case is very import-
ant, so after introducing the expansion by a retardation.para-
meter we shall treat its detail in the next section.

7) Expansion by retardation parameter.
Solution of equations of motion (3.8) about dynamical variable
takes generally the following form after introducing non-local com-
mutation relations,

plx) = <p(°’(x)-—§i G (' )da! (3.12)
where is = —%(m-x’)g,
c

and G(r), expressing a function of g,,(r) and f(r) of (8.1), is general-
ly large in the neighbourhood of + = 0, decreasing abruptly ac--
cording to the distance from + = 0. In this case the integral in
the right hand of (8.12) contributes to its value only in the neigh--
bourhood of = = 0. Then expanding (D(x’) into +’s powers,

o) = D) +75,29 9‘5”3@>+ e (3.13)
9z,

(e
’c)xw 2 axuaxv
Introducing (3.13) into (3.12) we have expansion formula by retarda--
tion effects as follows,

() = ¢<°>(x)—120¢(x)‘—121 k( &, x" + 3,39

jiA
Lo, o,

Voo

. 1o (3.14)
where is & = L[ WG(T)Tvdx'.;

Yv-—
From the property of G(r) any term containing higher k%, than k..
will not have important physical meaning. This expansion method
is peculiar against usual field theories and provides powerful means.
for our field theory.

8) Variational principle.

When we define the action integral S of the given system of
particles, wave equations of spinor field and electromagnetic field
are derived from the following variational principle,

8S = ajL(m)dx =0

3L oL
as 8L = Nra 8 G,+——8A
8"\!’0‘ \P‘ B\ya \I’ SA
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8L __ SL _ SL
=0, 22 =0, °Z
Vo Ve 3A,
From this variational principle generalizations of Dirae’s equation
and Maxwell’s equation are easily performed by the selection of a
 suitable Lagrange function, which is discussed in the next section.

Then.

4. Discussion of Lagrange Function

For the Lagrange function we shallv apply the preceding mathe-
matical formulation and obtain the next results. Applying (8.8) to
L(x) we have,

L) = L) —L | [L(@), H')ds, “D

replacing LO(x) and H"(x) of (3.5) into the right hand side of (4.1)
we have,

L) = L@+ - 1) Au(0), 4D Ao Nde. (4.2)

By computing the commhtati_on relation in the integral (4.2) following
Schwinger”, we have as expectation values,

2 <[jA,jA1 > = I3, 5’4, A"} > + <{4,5'} A, AT} >
= <[4, 571> <{4, A'} > + {5,5'} [4, A'],
+ <[7,51 >0 <{A4, A"} > + {4, 5"} [4, 4"
+ <[4, 1> <{A, A’} > + {4,5'}:.[A4, A, (4.3)

Then the integral (4.2) becomes as follows,
L(z) = LO@) + LY (x) + LY (x) + LY () + L) + LY (@). (4.4)
Each term of the right hand is tabulated in the' following téble.

Notation Name of term Integrand

LX) Interaction (1 particle, 1 photon) | <[7,71>1<{4, A’}>,

L®)(x) Self Energy {7,773, [4, A7),

L () Elmag. Field <[, §1>.<{4, 4'}>;

L)) Matter Field (1 particle) U, 7T HIA, A7+ <[4, 711>1<{4, 473>, -
L)(@) Matter Field (2 particles) {7,314, A",

One example of the expansion by retardation parameter, which is
the most interesting for our theory, is shown by L$(x) for 1 particle
case. After some calculations we have,

LY(z)=— j (T @ F(@— ) (@) + §(@)y, Fa— 2 )r,r(@) e,
4.5)
where is F(x—a') = {f'(xfm’)g“’(x~x’) +fNx—2)glx—2x")}.
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Expanding y.(z'), ¥«(x'), 7.(z') in the neighbourhood of x about retard-
ation parameter, we have, .

Yle) = @)+, T (5, Y Y .
o) =yt ra L (g L)t 09

8z, 0w,

Yula') = vp(x)+7'i',+%%+ ------ .
Further considering the relations,
Ve =1, Yoo =0, " nY=—7, 4.7y
and k= 2| F@rda,
2p!J -
we have as L{(x)

LY (@) = — kG (@) —klflf'(fv)%%—\b(x) -—kzv(x){——'?i +

8,

+x,2, }\}r(x) + congugate complex. , (4.8)

Other Lagrange functions of the 1st order are descriﬁed only about
their results,
1) Interactmn term
LY (:v) = ki @) v. v (x) A (x) A () + conjugate comp’ex, 4.9)
where is k) « S_wg(x—m’)doc’.
2) Self energy term
‘ LY (x) = const. (4.10)
3) Matter field term (2 particles) |
LY@ =—F E'%@NM@?#%%@% : (4.11)
where' K « | f(a—a')da. |

4) ElectrOmagnetm field term
’ L(l)(x)___ if/aAp.(ﬁC') EAu(x) k/// aA aAp‘((I;)
2% BxA 9wy om0z
e, waaxvaxa

. where is Kk = SZW“jG(m.—w')dx'

v!

i o — f =_1_ O o el o
(axpa . BuvD)G(x x') g Tr.lg (z T)’)’“g(x x')

C+gle—a)rgO@—a)r.] .
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5. Derivation of Dirac’s and Maxwell’s equations
and their generalizations.

The Lagrange function of up to the 1st order in the previous
section, retaining the expansion by retardation till the 1st order of =,
and neglecting L{P(x), LP(x), LY terms, takes the following form,

L(z) = L<°>(x) + L () + Ly (w)

- —g (o) Ay () — k"'aA“‘“’, 04,(®) _ k()
. 9(/' 395,\

- k,@(x):r;'“?«p*(x) + conju gate complex , (5.1)

Ly,
which is equivalent to the formula of Schwinger’s I (1.9)%, if

,3"=—%, lco=%, kl—% and @, = cv, (6.2)

From the above Lagrange function usual Dirac’s and Maxwell’s
equations are easily derived. The last equation of (5.2) is also required
by the equation of continuity (3.3). Its meaning is nothing but that
the instantaneous velocity of a particle is light velocity. '

The full Lagrange function of the 1st order up to the 2nd order
of = is obtained by summing the formulas (3;5) and (4.8)—(4.12), and
by applying them the variational principle (3.16), generalized Dirac’s and -
Maxwell’s wave equations will be obtained, which are no more linear
in (x) or A.(x). But we shall delay their full discussions to the.
next paper, including their comparison with Bopp’s generahzed Dirac’s
equation.
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