
Doctoral Dissertation, 2015

Imbibition of Micro-Patterned Surfaces

OCHANOMIZU UNIVERSITY

Advanced Science,

Graduate School of Humanities and Science

Marie TANI

March, 2016





Contents

I Introduction 2

1 Introduction 3

2 Capillary Phenomena 6

2.1 Surface tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Laplace pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Contact between three phases: wetting . . . . . . . . . . . . . . . 10

2.4 Capillary length κ−1 . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Fluid Dynamics 13

3.1 Equation of motion of fluid . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Typical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 2D Couette flow . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 2D Poiseuille flow . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.3 (3D) Hagen-Poiseuille flow . . . . . . . . . . . . . . . . . . 17

3.3 Viscous friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 2D Poiseuille flow . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.2 (3D) Poiseuille flow . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Lubrication approximation . . . . . . . . . . . . . . . . . . . . . . 20

II Previous Study 22

4 Capillary Rise 23

4.1 Force balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Energy minimization . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . . 28

i



5 Imbibition of Micro-Patterned Surfaces 31

5.1 Overview of previous studies on imbibition of micro-patterned sur-

faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Imbibition of micro-patterned surfaces with “long and sharp pillars” 38

5.2.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.3 Experiment and theory . . . . . . . . . . . . . . . . . . . . 42

5.3 Imbibition of micro-patterned surfaces with “short and round pillar” 43

5.3.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.3 Experiment and theory . . . . . . . . . . . . . . . . . . . . 47

III Present Study 48

6 Capillary Rise on the Surface of a Leg of a Small Animal and

Artificial Surface Mimicking It 49

6.1 Capillary rise on the surface of a leg of a small animal . . . . . . . 49

6.1.1 A small animal wharf roach . . . . . . . . . . . . . . . . . 49

6.1.2 Dynamics of capillary rise on the surface of a leg of wharf

roach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Capillary rise on artificial surfaces . . . . . . . . . . . . . . . . . . 58

6.2.1 Artifical surfaces mimicking the surface of the leg of a

wharf roach . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2.4 Comparison of experimental results and theory . . . . . . 66

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 Imbibition of Open Capillary 73

7.1 Open capillary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2 Overview of the experiment . . . . . . . . . . . . . . . . . . . . . 74

7.3 Statics and dynamics of bulk liquid column . . . . . . . . . . . . . 76

7.4 Dynamics of length of precursor film . . . . . . . . . . . . . . . . 81

7.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.5.1 Color changes of the BTB solution . . . . . . . . . . . . . 84

7.5.2 Expression of GFP . . . . . . . . . . . . . . . . . . . . . . 85

ii



7.5.3 Advantages and disadvantages of the devices with open

capillary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.5.4 The scaling law as a guiding principle . . . . . . . . . . . . 90

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8 Summary 93

Acknowledgement 95

Appendix 96

A Contact angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.1 Dynamical contact angle . . . . . . . . . . . . . . . . . . . 96

A.2 Contact angle hysteresis . . . . . . . . . . . . . . . . . . . 97

B Tanner’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

References 98

iii





Part I

Introduction

2



Chapter 1

Introduction

If someone likes coffee, he might have cried with a coffee spot on his important

document. Coffee immediately penetrates into the paper on his desk when he

falls down a cup of coffee on the desk. The coffee spot grows up with decreasing

its velocity, and then finally stops growing. On the other hand, coffee probably

becomes some spherical drops on a new tablecloth instead of penetrating into it

when he falls down a cup of coffee on the tablecloth. As shown in these examples,

wetting phenomena are familiar to us in daily life. Physical understanding of the

dynamics of penetration or the controlling of wettabilities of materials is useful

for us.

In nature, there are various surfaces that have some advantages in wettabil-

ity. For example, lotus leaves repel well water drops with their super-hydrophobic

surfaces. These super-hydrophobic surfaces are composed of the micro structures

on the surfaces [1]. Micro structures enhance their wettabilities (hydrophobicity

or hydrophilicity) compared with smooth surfaces made of the same materials;

hydrophobic surfaces with micro structures become super-hydrophobic surfaces,

and hydrophilic surfaces with the same structures become super-hydrophilic. In

nature, not only lotus leaves, but also other plants [2], insects [3, 4], and ani-

mals [5, 6] have advantages in wettability originating from their micro-patterned

surfaces.

On the other hand, a micro-patterned surfaces that imbibies liquid efficiently

would lead to broad technological applications for liquid transport in areas rang-

ing from microfluidics and biomedical mixing devices to fuel transport. Exten-

sive studies on micro-patterned surfaces have been devoted for understanding

and controlling specific wetting properties such as super-hydrophobicity [7] and
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leophobicity [8]. Accordingly, such textured surfaces have allowed various ap-

plications, which include microfluidic devices [9, 10] such as liquid drop trans-

port [11, 12, 13], controlled and patterned film coating [14, 15], and slippery

pre-suffered surfaces [16, 17, 18]. In particular, combinatorial mixing of small

amounts of liquids [19, 20, 21] has recently become more important than ever

from various needs in chemistry, biology, medical sciences and pharmaceutical

industries [10, 22, 23, 24] especially when liquids are expensive, as in the cases

of DNA microarray [25, 26, 27, 28] and crystallization of proteins [29, 30].

Therefore, partly because of inspirations from nature and partly because

of some demands in applied fields, in addition, owing to recent technological

progress, wetting phenomena on micro-patterned surfaces have extensively been

studied for both hydrophobic [7, 31] (or oleophobic [17]) and hydrophilic (or

oleophilic) surfaces; in particular, imbibition of textured surfaces, which are sur-

faces covered with an array of micro pillars, has actively been studied. Quite

frequently, the imbibition length z scales with the square root of elapsed time t

in the viscous regime (in which gravity and inertia are negligible) [14, 32, 33],

while another scaling law z ∼ t1/3 has also been found for capillary rise into

corners [34, 35] and for imbibition of textured surfaces with short and round

pillars [36]. Similar and other slowing down dynamics of imbibition have also

been found in the cases of polygonal penetration into textured surfaces [14], ink

spreading on papers [33], and so on.

Capillary rise in tubes, which may be one of the simplest cases of imbibition,

was studied around 1900’s, but imbibition dynamics has actively been studied

still in these days because of its importance and various unsolved problems.

Washburn published an article in 1921 [37], in which he reported a scaling law

for the viscous regime of capillary rise; rising height z scales with the square root

of elapsed time t, i.e., z ∼ t1/2. This scaling law is well known as “Washburn’s

law”, however, it is sometimes called “BCLW imbibition law”, for example in [38],

because the scaling law had also been reported by Bell and Cameron in 1906 [39],

and Lucas in 1918 [40]. Although Bell and Cameron did not take into account

liquid features, e.g., surface tension and viscosity, Lucas did that and reported the

same scaling law as Washburn’s one. Anyway, after Washburn’s article in 1921,

many related works have been reported. Then, studying imbibition dynamics of

textured surfaces has become more active than ever by virtue of the technological

progress in these days, while there are still many unsolved problems; for example,
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the difference between the exponents appearing in the scaling laws, t1/2 and t1/3,

seems to be caused by geometries and sizes of the micro structures on the surfaces,

but the cross-over between the exponents has yet to be found.

With this background, we experimentally and theoretically investigate imbi-

bition of two different types of micro-patterned surfaces: one is the surface of

a leg of a small animal (wharf roach) and surfaces mimicking it [6] (chapter 6),

and the other “open capillaries” [41] (chapter 7). For the former, a unusual non-

slowing down dynamics was found for capillary rise on the surface of the leg of a

wharf roach (imbibition dynamics generally slows down with time). Motivated

by this unusual feature, we fabricated artificial surfaces partially mimicking the

surface of the leg, and then confirmed that a composite model developed by us

well describes experimental results for capillary rise on the artificial surfaces. For

the latter, we carried out experiments with open capillary channels whose cross-

sections are rectangular shapes on a submillimeter scale, and then confirmed that

our scaling laws well describe the experimental results both for the statics and

dynamics of liquid column and for the dynamics of ”precursor film”. Further-

more, we demonstrated two applications in order to show capabilities of devices

that utilize open channels and that are driven not by pumps but by capillary

force.

The present thesis is organized as follows: in the rest of part I, capillary phe-

nomena (chapter 2) and fluid dynamics (chapter 3) are briefly reviewed. Then,

in part II devoted to previous works, we discuss the statics and dynamics of

capillary rise (chapter 4) and previous works on imbibition of textured surfaces

(chapter 5). Finally, in part III, we investigate imbibition of two different types

of micro-patterned surfaces (chapter 6 and 7) as mentioned above.
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Chapter 2

Capillary Phenomena

Capillary phenomena are phenomena that are observed at interfaces between two

immiscible liquids or between liquid and gas. Capillarity plays important roles in

various fields of science, industry, and so on. In this chapter, some fundamental

examples of capillary phenomena are reviewed on the basis of the textbook [42].

2.1 Surface tension

A liquid flows readily; yet it can adopt extremely stable shapes. For example,

a soap bubble or an oil droplet in water forms a perfect sphere if it is so small

that the effect of gravity is negligible. The interface looks like a membrane on

which some tension opposes deformations. This macroscopic “tension” is called

“surface tension”.

The origin of surface tension is, however on a microscopic scale, comparable

to the sizes of molecules. Liquid is one of the three phases of matter (solid,

liquid and gas states). The phase transition from gas to liquid occurs when

the interactive force between molecules (intermolecular force) is stronger than

thermal agitation. Here, we shall denote the cohesive energy of a molecule in a

liquid bath by U . A molecule on the surface loses a half of the energy, i.e., U/2,

because it loses a half of molecules attracting it (Fig.2.1). When the size of a

molecule is a, and thus the surface area per molecule is a2, the energy loss per

unit surface area is equal to

γ ∼ U

2a2
. (2.1)

Here, γ is called “surface energy” or “surface tension”. Its unit is J/m2.
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 air

liquid

Fig. 2.1. a molecule in the liquid bath and that on the interface

The surface energy of most oils is about 20mJ/m2 because interactions are of

van der Waals type, which are comparable to thermal agitation, i.e., U ∼ kT . On

the other hand, the surface energy of water is larger because of hydrogen bonds;

γ ' 72mJ/m2. Similar to these, the interfacial energy between two immiscible

liquids A and B is characterized by interfacial tension γAB. The interfacial tension

of water-oil surface is γwo ' 50mJ/m2.

Here, we describe another meaning of surface tension on a macroscopic scale.

In order to minimize the surface energy, liquids tend to minimize their exposed

interfaces. Now, let us consider the situation in which some force is added to liq-

uid and its surface increases by dA. Then, the required work δW is proportional

to the number of molecules moved from the inside of the bath to the surface,

i.e., proportional to the increased surface area dA. Thus,

δW = γ dA, (2.2)

where γ is surface tension. As a result, surface tension is also regarded as the

energy needed to increase the surface by unit area.

Surface tension can be also regarded as a force per unit length (capillary

force). This may be clearly understood from the fact that the unit of surface

tension is rewritten as J/m2 = N m/m2 = N/m. Here, we describe the following

experiment in which γ manifests itself as a force (Fig.2.2): (1) make a rectangular

metal frame; (2) put a mobile rod on the rectangular frame; (3) dip the frame

into a bath of soapy water and make a soap film inside of the frame (regions

of both the left and right sides of the mobile rod); (4) break the soap film at

one region (the right side of the mobile rod in Fig.2.2); (5) then, the mobile rod

7



moves spontaneously in the direction where the surface area of the film decreases

(in the left in Fig.2.2). If we try to keep the film surface constant, we have to

pull the film in the opposite direction (in the right in Fig.2.2) with a force F .

When we move the mobile rod by a distance dx (see Fig.2.2), the liquid receives

work

δW = F dx. (2.3)

The increasing surface area dA is equal to 2ldx, where l is the width of the frame

defined in Fig.2.2 and the factor 2 reflects the presence of two interfaces: the

upper and lower surfaces of the film, i.e., the contact length of the mobile rod

and the soap film is written as 2l. Eq.(2.2) and eq.(2.3) lead to

F dx = γ 2l dx, (2.4)

namely,

F = γ 2l. (2.5)

Thus, we can regard γ as a force per unit length.

l

γ dx

soap film

a mobile rod

 rectangular frame

air

A

Fig. 2.2. Manifestation of surface tension γ as a force per unit length. The soap film (indicated
as gray region) pulls the mobile rod put on a parallel side of the rectangular frame in order to
decrease the surface area of the film.

2.2 Laplace pressure

Surface tension is the origin of the overpressure existing in the interior of drops

and bubbles; pressure jumps up across a convex surface or interface. This pres-
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sure jump is called “Laplace pressure”.

Let us consider an oil drop in a water bath (Fig.2.3). In order to minimize

the surface energy, the drop takes a spherical shape of radius R. As the radius

increases from R to R+dR (Fig.2.3), the work δW originating from the pressure

and capillary force is described as

δW = −po dVo − pw dVw + γow dA, (2.6)

where dVo = 4πR2dR = −dVw and dA = 8πRdR mean the increases in the

volume and surface area of the drop, respectively. po and pw are the pressures

in oil and water, respectively, and γow is the interfacial tension between oil and

water. From the condition for mechanical equilibrium δW = 0, it follows

∆p = po − pw =
2γow

R
. (2.7)

Eq.(2.7) implies that the smaller the drop, the greater its inner pressure.

In general, the hydrostatic pressure jump across the interface between two

immiscible liquids, i.e., Laplace pressure ∆p, is written as

∆p = γC = γ

(
1

R
+

1

R′

)
, (2.8)

where γ is the interfacial tension, C = 1/R + 1/R′ is the mean curvature and

both R and R′ are the radii of the curvature of the surface.

R

po

pw

dR

oil

water

Fig. 2.3. A spherical oil drop in a water bath. The pressure in the oil drop po is larger than
that in water pw. The pressure jump ∆p = 2γow/R is called ”Laplace pressure”.
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2.3 Contact between three phases: wetting

When we put a water drop on a quite clean glass plate, the drop completely

spreads over the plate. On the other hand, the same water drop put on a plastic

plate remains stuck in place. Thus, there are two regimes of wetting: total

wetting and partial wetting (Fig.2.4). They are distinguished by “spreading

parameter”;

S = ED − EW , (2.9)

where ED and EW are the surface energies per unit area of dry and wet surfaces,

respectively. By rewriting both energies as ED = γS and EW = (γSL + γ),

spreading parameter S can be represented as

S = γS − (γSL + γ), (2.10)

where γS, γSL and γ are the interfacial tensions of the solid-air, solid-liquid and

liquid-air interfaces, respectively.

S > 0 S < 0 

θ E  

Total wetting Partial wetting

Fig. 2.4. Two wetting regimes for sessile drops: total (complete) wetting (left; spreading
parameter S > 0) and partial wetting (right; S < 0).

When spreading parameter S < 0, the drop does not spread and forms at

equilibrium a spherical cap resting on the substrate with an angle (Fig.2.4). This

angle is called “(equilibrium) contact angle” θE. (In this thesis, we do not treat
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“dynamical contact angle”, and hence the contact angle θ always means the static

or equilibrium contact angle θE. In addition, we do not consider “contact angle

hysteresis” in this thesis. Details are found in Appendix A.) Furthermore, the

surface is said to be a hydrophilic (or oleophilic) surface when θE < π/2, and

hydrophobic (or oleophobic) when θE > π/2. On the other hand, when S > 0,

the liquid spreads completely on the substrate in order to lessen its surface energy,

and thus θE ' 0.

The contact angle is determined by balancing the forces per unit length at

the contact line (Fig.2.5), namely

γ cos θE = γS − γSL. (2.11)

This formula is called “Young’s law”. By virtue of Young’s law, the spreading

parameter eq.(2.10) is written as

S = γ (cos θE − 1) . (2.12)

From this, it is clear that the contact angle θE can be defined only for the case

of spreading parameter is non-positive; S ≤ 0.

 

θ  
E   

γ 

γ
SL

 γ 
S

 

solid

liquidair

Fig. 2.5. Force balance at the contact line. γS , γSL and γ are the interfacial tensions of the
solid-air, solid-liquid and liquid-air interfaces, respectively.
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2.4 Capillary length κ−1

When one of the ends of a thin tube is touched with a surface of a liquid bath,

the liquid rises up inside the tube if the liquid wets well the tube, and stops rising

at a certain height because of gravity. This phenomenon is called “capillary rise”

(details are in chapter 4). As shown here, gravitational force becomes important

only when the characteristic length of the phenomenon becomes larger than a

particular length called “capillary length” κ−1. Capillary length κ−1 is estimated

by comparing Laplace pressure γ/κ−1 and hydrostatic pressure ρgκ−1 at a depth

κ−1 in a liquid;

κ−1 =

√
γ

ρg
, (2.13)

where ρ and g are the liquid density and the gravitational acceleration (i.e.,

g = 9.8 m/s2), respectively.

Values of capillary length κ−1 are about 2 mm: 2.7 mm for water and 1.5 mm

for PDMS (polydimethylsiloxane). For characteristic length r < κ−1, the effect

of gravity is negligible, thus the liquid behaves as if it is in a non-gravitational

environment. On the other hand, when r > κ−1, the effect of gravity is important

for the phenomenon, so that the regime is called “gravitational regime”.
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Chapter 3

Fluid Dynamics

In this chapter, we shall review the equations of motion of an incompressible

viscous fluid and their solutions for some typical cases related to the present

works. Contents of this chapter are based on textbooks [43, 44, 45].

3.1 Equation of motion of fluid

The equation of motion of a viscous fluid with unit volume are so-called “Navier-

Stokes equations”. In the case of an incompressible viscous fluid (Dρ/Dt = 0),

Navier-Stokes equations are written as

Du

Dt
= −

1

ρ
∇p + ν∇2u +

1

ρ
K. (3.1)

Here, we take into account the continuity equation, i.e.,

Dρ

Dt
+ ρ(∇ · u) = 0 (3.2)

or that for an incompressible fluid, i.e.,

∇ · u = 0. (3.3)

Here, u, ρ, p and ν = η/ρ are the velocity, density, pressure and kinetic viscosity,

respectively, of the fluid. K is the external force per unit volume. D/Dt is time

derivative in the Lagrange description, i.e., the sum of the partial differentiation

in time and convective terms;

Du

Dt
=

∂u

∂t
+ (u · ∇)u, (3.4)
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or
D

Dt
=

∂

∂t
+ (u · ∇). (3.5)

We can describe the motion of an incompressible viscous fluid with initial

and boundary conditions in principle since the numbers of unknown functions

(three components of u and p) and equations (three components of eq.(3.1) and

eq.(3.3)) are equal.

3.2 Typical examples

Now, we shall analytically solve the incompressible Navier-Stokes equations for

a few fundamental and typical examples.

At first, we shall consider a uni-directional flow of velocity u = (u, 0, 0)

without external force, i.e., K = 0. Here, we take a rectangular coordinate

system x = (x, y, z). In this case, the continuity equation eq.(3.3) becomes

∂u/∂x = 0, namely u does not depend on x. In addition, y and z components of

eq.(3.1) become ∂p/∂y = 0 and ∂p/∂z = 0, respectively, namely p depends only

on x. Thus, x component of eq.(3.1) is written as

∂u

∂t
= −

1

ρ

dp

dx
+ ν

(
∂2u

∂y2
+

∂2u

∂z2

)
. (3.6)

Since u is independent of x and p is independent of y and z, each term should

spatially be constant and should be written as a function only of time;

∂u

∂t
− ν

(
∂2u

∂y2
+

∂2u

∂z2

)
= −

1

ρ

dp

dx
= α(t). (3.7)

Here, α(t) is an arbitrary function of t. In the case of a steady flow (∂u/∂t = 0),

eq.(3.7) becomes (
∂2u

∂y2
+

∂2u

∂z2

)
=

1

η

dp

dx
= −

α

ν
, (3.8)

where α is constant.

As a result, the velocity of a uni-directional flow, i.e., u = (u(y, z, t), 0, 0), is

analytically determined as the solution of eq.(3.7) or eq.(3.8) with some initial

and boundary conditions.
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3.2.1 2D Couette flow

Let us consider a two dimensional steady flow. If we take z-axis such that the

flow velocity is constant in the z direction, eq.(3.8) becomes

d2u

dy2
=

1

η

dp

dx
= −

α

ν
. (3.9)

Its general solution is instantly obtained as

u(y) = C1 + C2y −
α

2ν
y2, and p(x) = p0 − αρx, (3.10)

where C1, C2 and p0 are constants of integration determined from the boundary

conditions. If the flow is enclosed between two smooth parallel planes at y =

y1, y2 (y2 > y1) and the planes move in the x direction with constant velocities

U1 and U2, respectively, we can determine C1 and C2 as follows:

C1 =
U1y2 − U2y1

y2 − y1

−
α

2ν
y1y2, and C2 =

U2 − U1

y2 − y1

+
α

2ν
(y1 + y2). (3.11)

Here, we imposed a non-slip boundary condition, namely the liquid moves to-

gether with the planes, on the boundary.

In the case of no pressure gradient (α = 0), and planes y1 = −d and y2 = d

(d > 0) move with velocities U1 = −U0 and U2 = U0 (U0 > 0) as depicted in

Fig.3.1, eq.(3.10) with eq.(3.11) becomes

u(y) = U0

y

d
, and p = p0. (3.12)

In this case, the velocity profile is linear as shown in Fig.3.1. The flow is called

two dimensional “Couette flow”.

3.2.2 2D Poiseuille flow

In the case of non-zero pressure gradient (α > 0), and both planes y1 = −d and

y2 = d do not move (U1 = U2 = 0) as shown in Fig.3.2, eq.(3.10) with eq.(3.11)

becomes

u(y) = U0

1 −

(
y

d

)2
 , U0 =

αd2

2ν
, and p(x) = p0 −

2ηU0

d2
x. (3.13)
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0

x

y

-d

d
U
0

-U
0

Fig. 3.1. Two-dimensional Couette flow

0

x

y

-d

d

U
0

Fig. 3.2. Two-dimensional Poiseuille flow
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In this case, the velocity profile is parabolic as shown in Fig.3.2. This flow is

called two dimensional “Poiseuille flow”.

In general, two-dimensional uni-directional steady flows are described as su-

perpositions of two-dimensional Couette flows and two-dimensional Poiseuille

flows.

3.2.3 (3D) Hagen-Poiseuille flow

Let us consider a three-dimensional steady flow in a pipe of an arbitrary cross-

section (the same along the axis of the pipe, however). We use a cylindrical

coordinate (x, r, θ) instead of a rectangular coordinate (x, y, z). Let the x-axis

be the direction of the axis of the pipe. With cylindrical symmetry (∂u/∂θ = 0),

eq.(3.8) becomes

d2u

dr2
+

1

r

du

dr
=

1

η

dp

dx
= −

α

ν
, (3.14)

where α is constant. Its general solution is

u(r) = C1 + C2 log r −
α

4ν
r2, and p(x) = p0 − αρx, (3.15)

where C1, C2 and p0 are constants of integration determined from the boundary

conditions. The continuity of the velocity yields C2 = 0. We take the non-slip

boundary condition on the wall of the pipe, namely u = 0 at r = a with the

radius a of the pipe. In the case of non-zero pressure gradient (α > 0), eq.(3.15)

becomes

u(r) = U0

1 −

(
r

a

)2
 , U0 =

αa2

4ν
, and p = p0 −

4ηU0

a2
x. (3.16)

The velocity profile is paraboloid as shown in Fig.3.3. This three-dimensional

flow is called “Hagen-Poiseuille flow” or “Poiseuille flow”.

3.3 Viscous friction

In this section, we shall estimate the mean velocity and viscous frictional force

of 2D and 3D Poiseuille flows.
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Fig. 3.3. (Three-dimensional) Poiseuille flow or Hagen-Poiseuille flow

3.3.1 2D Poiseuille flow

The mean velocity (the velocity averaged in the yz-plane in Fig.3.2, i.e., averaged

in the cross-section of the flow) is obtained as

〈u〉 =
1

2d

∫ d

−d

u(y)dy =
2

3
U0 =

αd2

3ν
. (3.17)

Here, u(y) and U0 in eq.(3.13) were used. Thus, the pressure gradient α is written

as

α =
3ν〈u〉

d2
. (3.18)

From the definition of α (eq.(3.8)), the viscous frictional force working on the

volume 2dxz is estimated as follows:

Fη = −
∫∫∫ (

dp

dx

)
dxdydz

=

∫∫∫
ραdxdydz

= ρ
3ν〈u〉

d2
2dxz

= 6η
〈u〉
d

xz. (3.19)

Therefore the viscous frictional force per unit volume is

fη = 3η
〈u〉
d2

. (3.20)
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3.3.2 (3D) Poiseuille flow

In the case of (3D) Poiseuille flow (Hagen-Poiseuille flow), the mean velocity 〈u〉
is obtained as

〈u〉 =
1

πa2

∫ a

0

u(r) 2πrdr =
1

2
U0 =

αa2

8ν
. (3.21)

Here, u(r) and U0 in eq.(3.16) were used. Thus, the pressure gradient α is written

as

α =
8ν〈u〉

a2
. (3.22)

From the definition of α (eq.(3.14)), the viscous frictional force working on the

volume πa2x is estimated as follows:

Fη = −
∫∫∫ (

dp

dx

)
rdrdθdx

= ρ
8ν〈u〉

a2
πa2x

= 8πη〈u〉x, (3.23)

or

Fη = 4η
〈u〉
a

2πax. (3.24)

The latter expression means that the viscous friction is proportional to the vis-

cosity η, the velocity gradient 〈u〉/a and the lateral surface 2πax of the pipe.

Hence the viscous frictional force per unit volume is

fη = 8η
〈u〉
a2

. (3.25)

Furthermore, the flow rate is written as

Q = 〈u〉 πa2 =
παa4

8ν
= −

πa4

8η

dp

dx
. (3.26)

This implies that the flow rate is proportional to the pressure gradient dp/dx, a4

with the pipe radius a, and η−1 with viscosity η. This formula was independently

founded by Hagen (1839) and Poiseuille (1840, 1841) from experiments. Thus,

the formula is called “Hagen-Poiseuille law”.
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3.4 Lubrication approximation

In this section, we shall approximately solve Navier-Stokes equations with “lu-

brication approximation”.

Let us consider a thin and incompressible film as depicted in Fig.3.4. The

film thickness e is quite small compared with the variations in other directions.

Here, we assume that the velocity of the flow depends only on z, and thus

∇2u =
∂2u

∂z2
. (3.27)

This assumption is reasonable since the velocity of thin flim is limited to a small

value with a non-slip condition at the liquid-solid interface. Furthermore, the

inertia term in Navier-Stokes equations is negligible compared with the viscous

term in most cases when the velocity is small. Thus, Navier-Stokes equations

(eq.(3.1)) become 
∂2ux

∂z2
=

1

η

∂p

∂x
= −

α(t)

ν
,

∂2uy

∂z2
=

1

η

∂p

∂y
= −

β(t)

ν
,

(3.28)

where α and β are functions only of time t. Here, we considered the case of non-

external force; K = 0. Such an approximation used here is called “lubrication

approximation”.

x

z

e

U
0

0

e

Fig. 3.4. Poiseuille flow in a thin liquid film whose thickness is e.

If we take the x-axis in the direction of the flow, i.e., we write the flow velocity
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as u = (u(z), 0, 0), eq.(3.28) becomes

∂2u

∂z2
=

1

η

∂p

∂x
= −

α(t)

ν
. (3.29)

Now, we can analytically solve this equation with the boundary conditions: u = 0

at z = 0 and ∂u/∂z = 0 at z = e. As a result, we obtain as follows:

u(z, t) = U0

1 −

(
e − z

e

)2
 , U0 =

α(t)e2

2ν
, and p(x, t) = p0−

2ηU0

e2
x. (3.30)

Thus, the mean velocity (the velocity averaged in the yz-plane in Fig.3.4) is

obtained as

〈u(t)〉 =
1

e

∫ e

0

u(z, t)dz =
2

3
U0 =

α(t)

3ν
e2 = −

e2

3η

∂p

∂x
. (3.31)

Then, the viscous frictional force working for the volume xye is estimated as

Fη = −
∫∫∫ (

∂p(t)

∂x

)
dxdydz =

3η〈u(t)〉
e2

xye = 3η
〈u(t)〉

e
xy, (3.32)

and the viscous frictional force per unit volume is written as

fη = 3η
〈u(t)〉

e2
. (3.33)

Furthermore, the flow rate Q is written as

Q(t) = 〈u(t)〉exy = −
e3xy

3η

∂p

∂x
. (3.34)

Finally, it is to be noted that Stokes equations are written as

∂u

∂t
= −

1

ρ
∇p + ν∇2u. (3.35)

Here, only the convective term (∼ u2) of Navier-Stokes equations is ignored in

the case of small velocity u (Stokes approximation). When the flow is steady,

the equation becomes the same as eq.(3.8).
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Chapter 4

Capillary Rise

“Capillary rise” might be one of the most well-known phenomena. When one

makes an end of a narrow tube touched with mostly wetting liquid, the liquid

rises up inside the tube, and then the liquid stops rising at a certain height. The

statics and dynamics of this phenomenon have experimentally and theoretically

been understood. In this chapter, we theoretically discuss the statics of the

above phenomenon, i.e., the final height of the liquid rising, and the dynamics

of the phenomenon in the viscous regime by three ways: force balance, energy

minimization and Navier-Stokes equations.

4.1 Force balance

In this section, we describe the statics and dynamics of capillary rise by discussing

force balance.

The driving force of the phenomenon is capillary force, which is written as

Fγ = 2πγR cos θ, (4.1)

where γ is the surface tension, R is the radius of the capillary, and θ is the

contact angle between the liquid and the tube at the top of the proceeding liquid

column. The liquid stops rising when gravitational force Fg of the liquid inside

the tube equals to the capillary force Fγ. Fg is written as

Fg = ρgπR2h. (4.2)

Here, we assumed that the volume of the meniscus is negligible, thus the liquid

inside the tube was regarded as a liquid column of the radius R and the height
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h. This is a reasonable assumption when the final height h is sufficiently larger

than the capillary radius R, i.e., h À R. ρ is the density of the liquid and g

is the gravitational acceleration. By balancing Fγ and Fg, the final height h is

given by

h =
2γ cos θ

ρgR
. (4.3)

This is called “Jurin’s law”. From this law, it follows that the final height h is

inversely proportional to the capillary radius R. In the case of complete wetting,

namely when the contact angle θ is zero, the final height becomes

h =
2γ

ρgR
. (4.4)
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Fig. 4.1. Capillary rise. (a) The statical state and (b) dynamical state of capillary rise.

For the dynamics, we shall focus on the viscous regime here. In this regime,

the effect of viscous friction is important compared with the effect of inertia and
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gravity. Thus, the dynamics is determined by the competition of the capillary

force Fγ working as the driving force and the viscous friction Fη. The former is

Fγ = 2πγR cos θ as discussed above. The latter, the viscous friction is obtained

as

Fη = 8πηV (t)z(t). (4.5)

where z(t) is the rising height, V (t) is the mean velocity, and η is the viscosity

of the liquid.

Because the inertia is negligible in this regime, the liquid moves uniformly

with the mean velocity V (t). Hence the rising height z(t) increases with the

mean velocity V (t), i.e., V (t) = dz(t)/dt. As a result, the rising height z(t) is

obtained as

z2 = Dt, (4.6)

where D is the imbibition coefficient (diffusion coefficient) defined by

D =
γR cos θ

2η
. (4.7)

This scaling law has been known as “Washburn’s law” or “BCLW imbibition

law” (details in chapter 1). In the case of complete wetting, namely when the

contact angle θ is zero, D is written as D = γR/2η.

4.2 Energy minimization

In this section, we discuss the statics and dynamics of the capillary rise by energy

minimization.

To consider the final state of capillary rise, let the same assumption as in the

previous section hold, namely the volume of the meniscus of the liquid inside the

tube is negligible because the final height h is sufficiently larger than the capillary

radius R. As the rising height increases from z to z+∆z (from (a) State 1 to (b)

State 2 in Fig.4.2), the energy of the liquid column increases by

∆E = ∆Eγ + ∆Eg. (4.8)

Here, the first and the second terms on the right-hand side are differences of the
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surface energy and the gravitational potential energy, namely,

∆Eγ = (γSL − γS)2πR∆z

= −γ cos θE2πR∆z (4.9)

∆Eg =

∫ z+∆z

z

ρgz′πR2 dz′. (4.10)

Here, Young’s law (γSL + γ cos θE = γS) was used in order to obtain the second

equality of the ∆Eγ; R is the radius of the capillary tube, γSL, γS and γ are the

surface energies of the solid-liquid, solid-air and liquid-air interfaces, respectively,

and ρ is the density of the liquid. By integrating ∆E from z = 0 to z = h′, the

total energy for the liquid column of height h′ is obtained as

E(h′) = −γ cos θE2πRh′ +
1

2
ρgπR2h′2. (4.11)

By minimizing this energy, the final height h is obtained as follows:

∂E

∂h′

∣∣∣∣∣
h′=h

= −2πRγ cos θE + ρgπR2h = 0,

and hence,

h =
2γ cos θE

ρgR
. (4.12)

In the case of complete wetting, the final height is written as

h =
2γ

ρgR
. (4.13)

For the dynamics in the viscous regime, both the variation of kinetic energy

and the gravitational potential energy are negligible because those are sufficiently

smaller than the viscous dissipation. In this case, the total surface energy ∆εγ

due to the increase of the wetting area is lost as the viscous dissipation ∆εη.

Thus, the sum of these energies is always zero, i.e.,

∆εγ(z) + ∆εη(z) = 0,

or equivalently

−γ cos θE2πR V (t) + kη

(
V (t)

R

)2

πR2 z(t) = 0,

26



P
o

is
eu

il
le

 f
lo

w

m
ea

n
 v

el
o

ci
ty

 V

g

θ

ri
si

n
g

 h
ei

g
h

t 
 z

2R

ρ, η

γ

SL

S

γ

γ

ρ, η

P
o

is
eu

il
le

 f
lo

w

m
ea

n
 v

el
o

ci
ty

 V

gθ

ri
si

n
g

 h
ei

g
h

t 
 z
+

∆
z

2R

ρ, η

γ

SL

S

γ

γ

ρ, η

∆
z

(a) (b)

 elapsed time t t+∆t elapsed time 

Fig. 4.2. Two states of the capillary rise. (a) State 1 (the rising height is z at the elapse time
t) and (b) State 2 (the rising height is z + ∆z at the elapsed time t + ∆t).

and hence,

V (t) z(t) =
2γ cos θER

kη
,

where η is the viscosity of the liquid, z(t) is the rising height, V (t) is the mean

velocity, and k is a numerical constant whose order is unit. Here we assumed

that entire liquid inside the capillary tube moves uniformly in the z-axis direction

with the mean velocity V (t). Thus, the rising height z(t) increases with the mean

velocity V (t), i.e., V (t) = dz(t)/dt. In this case, the rising height z(t) is obtained

as

z2 = Dt where D ∼ γR cos θE

η
. (4.14)

In the case of complete wetting, the imbibition coefficient D is written as D ∼
γR/η.
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4.3 Navier-Stokes equations

In this section, we shall investigate the statics and dynamics of the capillary rise

with the incompressible Navier-Stokes equations with lubrication approximation,

where the inertia term is ignored. If we take a cylindrical coordinate (r, φ, z) and

write the flow velocity as v(t) = (0, 0, v(r, t)), the incompressible Navier-Stokes

equations with lubrication approximation are written as

0 = −
∂p

∂z
+ η

(
∂2v

∂r2
+

1

r

∂v

∂r

)
− ρg. (4.15)

Here, p, η and ρ are the pressure, viscosity and density of the liquid, respectively.

Since the pressure at the top of the liquid column is written as

ptop = p0 + ∆p, (4.16)

where p0 is the atmospheric pressure and ∆p is Laplace pressure, namely the

pressure jump across the liquid-air interface at the top of the elongating liquid

column;

∆p = −2γ cos θ

R
. (4.17)

Here, θ is the contact angle between the liquid and the capillary tube at the top

front and R is the radius of the capillary tube.

The statics of this phenomenon is described by taking v = 0 in eq.(4.15) and

then integrating it with respect to z from z = 0 to z = h∫ h

0

∂p

∂z
dz =

∫ h

0

−ρg dz,

or equivalently,

ptop − p0 = −ρgh,

and hence,

2γ cos θ

R
= ρgh. (4.18)

Consequently, the final height h is written as

h =
2γ cos θ

ρgR
, (4.19)

or

h =
2γ

ρgR
(4.20)
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Fig. 4.3. Capillary rise. (a) The statical state and (b) dynamical state of the capillary rise

in the case of complete wetting.

In order to describe the dynamics in the viscous regime, we ignore the grav-

itational force because it is sufficiently small compared with the other terms in

eq.(4.15). In this case, eq.(4.15) becomes

∂2v

∂r2
+

1

r

∂v

∂r
=

1

η

∂p

∂z
= −

α(t)

ν
, (4.21)

which is similar to eq.(3.14) except the time dependence of p and v. Hence, we

obtain solutions v(r, t) and p(z, t) from u(r) and p(z) in eq.(3.16). Furthermore,

the relation between the pressure gradient α(t) and the mean velocity 〈v(t)〉 is

obtained as

α(t) =
8ν〈v(t)〉

R2
, (4.22)

which is similar to eq.(3.22). Thus,

− (ptop(t) − p0(t)) =
8η〈v(t)〉

R2
ztop(t), (4.23)
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where ztop(t) is the height of the front of the elongating liquid column, namely

ztop(t) is the same as the rising height in the two former sections (sec.4.1 and

sec.4.2). Here, the liquid column elongates homogeneously because we ignored

the inertia. Thus, the mean velocity 〈v(t)〉 is regarded as the elongating velocity

of the liquid column, i.e., 〈v(t)〉 = dztop/dt. Moreover, we can write the pressure

at z = ztop as ptop = p0 + ∆p with ∆p = −2γ cos θ/R as mentioned above. As

a result, we can obtain the following relation between the rising height ztop and

the elapsed time t:

2γ cos θ

R
=

8η

R2

dztop

dt
ztop(t),

or

ztop

dztop

dt
=

γR cos θ

4η
,

and thus,

z2
top = Dt with D =

γR cos θ

2η
, (4.24)

or

D =
γR

2η
(4.25)

in the case of complete wetting.
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Chapter 5

Imbibition of Micro-Patterned

Surfaces

By virtue of a recent technological development, the imbibition of micro-patterned

surfaces has actively been studied. In this chapter, we overview previous studies,

and note open problems and capabilities in this field. Then we shall detail two

previous studies especially relating to the present works.

5.1 Overview of previous studies on imbibition

of micro-patterned surfaces

A water drop put on a hydrophilic micro-patterned surface, on which an array of

micro pillars is placed, penetrates between the micro pillars on the surface some-

times with a non-spreading macroscopic reservoir as seen in Fig.5.1 (isopropanol

and ethanol are used instead of water in Fig.5.1). The dynamics of the above

phenomenon in the viscous regime is described by Washburn’s law or BCLW

imbibition law; the imbibition length L scales with the square root of elapsed

time t (details are in chapter 4). Thus, the macroscopic shape of the imbibition

area is isotropic and homogeneous, while it changes a transient octagon and then

a square in the final regime where the elongating length becomes comparable to

the scales of the pattern (Fig.5.1). Here, the free liquid-air surface indicated by a

blue arrow in Fig.5.1 becomes larger with spreading of the drop differently from

the case of capillary rise in tubes, but the thickness of the imbibed liquid film

remains comparable to the pillar height H.
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free liquid-air surface

(c)

(b)(a)

Fig. 5.1. Spreading of a drop put on a micro-patterned surface. (a) A schematic diagram
and a photograph of a micro-patterned surface. Cylindrical pillars of the radius R and the
height h are placed by the lattice distance d and the inter-post spacing l on the surface.
(b) A side view of the spreading of an isopropanol droplet on a micro-patterned surface.
The blue thick arrows indicate that the liquid penetrates to the textured surface with a non-
spreading macroscopic reservoir. The parameters of the surface are d = 100µm, R = 25µm and
H = 30µm, respectively. The scale bar is 1mm. (c) A series of pictures of the spreading of a
millimeter radius liquid droplet after released on the surface (t = 0). The drop rapidly adopts
an initial circular shape (t ∼ 2ms), then adopts inhomogeneous shapes; a transient octagon
(∼ 300ms) and a final square shape (∼ 2, 100ms). A blue arrow indicates the free liquid-air
surface increasing with the spreading of the drop. These pictures were taken from obliquely at
an angle of approximately 45◦. The liquid is ethanol and parameters of the textured surface
are d = 100µm, R = 25µm and H = 60µm. The scale bar is 1mm. Whole of the figures are
reprinted from [14].

32



free liquid-air surface

(b) (c)

Fig. 5.2. Writing with ink on a paper and the system mimicking that. (a) Images of an ink
tail on the paper: A blot generated by holding the pen at a fixed position for about 2 seconds
(top view), and an end of the line drawn with the pen (tilted view). Here, a modern fountain
pen and a rice paper are used. The scale bars indicate 1mm. (b, c) Blot formation on a
super-hydrophilic surface which is an artificial surface mimicking a paper. (b) Top view of a
liquid film emerging from a tube (which is out of focus) on a super-hydrophilic surface. The
blue arrow indicates the free liquid-air surface increasing with the spreading of the drop. The
scale bar is 1mm. (c) Scanning electron microscope (SEM) images of the artificial surface, on
which an array of micro pillars is placed. The individual pillars are cylinders whose height h,
diameter d, and arranged pitch s are 10-20µm, respectively. The scale bar in the main panel
and the inset is 80µm and 15µm, respectively. Whole of the figures are reprinted from [33].
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When one spills ink on a paper, it penetrates into the paper and a spot of

the ink becomes bigger. Or, when one is thinking what he should write with a

pen, the ink makes a spot on the paper. After he starts writing, the width of the

line depends on how fast he moves the pen. Both of these typical geometries,

i.e., spots and lines, are results of the penetration of the ink into the paper. To

understand details of this situation, Kim et al. modeled this situation as the

system with a capillary (as a pen), a micro-patterned surface (as a paper) and

liquid (as ink) (Fig.5.2) [33]. Authors of this article reported that the extension

of the radius r of the spot is obeyed by a scaling law which is similar to BCLW

imbibition law; r ∼
√

t with the elapsed time t. Here, the area of the free liquid-

air surface indicated by the blue arrow in Fig.5.2 becomes larger with spreading

the liquid, however the thickness of the imbibed liquid film does not change; the

thickness is comparable to the pillar height h.

When we make a hydrophilic micro-patterned surface perpendicularly touched

with the horizontal surface of a liquid bath as shown in Fig.5.3(b), the liquid rises

up between pillars. Further in this case, the dynamics of the imbibition in the

viscous regime is described by an extension of that of the capillary rise in a tube;

the rising height z scales with the square root of elapsed time t. In this case, the

curvature of the elongating free liquid-air interface indicated by blue arrows in

Fig.5.3 hardly changes with proceeding of imbibition (Fig.5.3(c)), although the

surface is concaved by d ∼ b as shown in Fig.5.3(d) (Details are in sec.5.2).

In all of the three previous works reviewed above, the dynamics of the im-

bibition in the viscous regime is described by scaling laws which are similar to

BCLW imbibition law; imbibition length z is proportional to the square root of

elapsed time t. However, another scaling law, z ∼ t1/3, has also been found for

imbibition dynamics of different type of textured surfaces.

The scaling law z ∼ t1/3 was reported by Obara and Okumura in 2012 [36].

They observed the capillary rise on textured surfaces on which an array of short

and round submillimeter pillars is placed. Differently from the case of textured

surfaces decorated with long and sharp-edged pillars as shown in Fig.5.3, the

thickness of the imbibed liquid film decreases with rising height as shown in

Fig.5.4(c,d). As a result, imbibition height z scales as t1/3 (Details are in sec.5.3).

The scaling law z ∼ t1/3 has also been found for capillary rise into a sharp

corner: a wedge formed by two vertical smooth plates (Fig.5.5(a,b)) [35], a cor-

ner obtained by two contacted cylindrical rods (Fig.5.5(c,d)) [34], and a corner
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Fig. 5.3. Capillary rise on the micro-patterned surface. (a) A SEM image of a silicone surface
decorated with an array of micro pillars whose radii, heights, and pitches are b = 1.3µm,
h = 26µm and p = 10µm, respectively. The scale bar indicates 50µm. (b) A schematic image
of the experiment. When an end of the micro-patterned surface is perpendicularly touched with
the horizontal surface of a liquid bath, the liquid rises up between pillars. (c, d) Schematic
images of the progression of the liquid into the forest of pillars. The thickness of the liquid
film is comparable to the pillar height, although the surface is concaved for d ∼ b as shown
in (d). The blue arrows in (b-d) indicate the free liquid-air surface. (a) and (c) are reprinted
from [32], and (d) is reprinted from [46] ( c©2009 EPJ; with kind permission of EPJ).
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(c) (d)

free liquid-air surface

Fig. 5.4. (a) and (b) Overview and magnified view of a textured surface on which an array
of short and round submillimeter pillars is placed. (c, d) Schematic images of the horizontal
cross-section during imbibition. Imbibed liquid film is thinner at the top (c), and thicker at the
bottom (d). The blue arrows in (c, d) indicate the free liquid-air surface. All of these figures
are reprinted from [36].

obtained between flexible walls [49]. In these cases, the free liquid-air surfaces

indicated by blue arrows form shapes like tongues as shown in Fig.5.5, i.e., the

area of the horizontal cross-section of the rising liquid decreases with the increas-

ing of the height. This means that the smallest viscous scale identified as the

wall distance along the liquid surface decreases with the height. As a result, the

rising height z scales as t1/3.

As discussed above with several previous works, the exponents appearing

in the scaling laws of the imbibition dynamics seem to depend strongly on the

shapes of the increasing free liquid-air surfaces (In the case of capillary rise in

tubes, the liquid-air surface remains constant). However, the cross-over between

these exponents has yet to be found. Furthermore, the fact that the imbibition

dynamics generally slows down with time as ever seen might be a problem for a

long-distance transportation or a viscous liquid transportation1.

1Quite recently, non-slowing dynamics has been found for imbibition of textured surfaces
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(a)

free liquid-air surface 

(b)

free liquid-air 

surface 

free liquid-air surface 

(d)(c)

free liquid-air surface 

Fig. 5.5. (a, b) Capillary rise into a wedge. (a) A wedge of angle α formed by two vertical
plates. Thin lines illustrate equilibrium capillary rise. (b) Horizontal cross-section of (a).
Liquid is confined in the region OCBDO. (c, d) Capillary rise into a corner formed by two
cylindrical rods. (c) A schematic image of the experiment. (d) A typical sequence obtained
with Plexiglas rods of the diameter 30mm and a silicone oil V20 of the viscosity 20mPa s and
the surface tension 20mN/m. The blue arrow in each figure indicates the free liquid-air surface.
Figures (a, b) and (c, d) are reprinted from [35] and [34], respectively.
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In the next two sections, we shall review details of the third work (by Ishino

et al.) [32] and the forth work (by Obara et al.) [36], which are especially related

to the present works.

5.2 Imbibition of micro-patterned surfaces with

“long and sharp pillars”

Here, let us review a study by Ishino et al. [32]: imbibition of micro-patterned

surfaces with “long and sharp pillars”.

5.2.1 Experiment

An end of the sample is gently touched with the horizontal surface of a liquid

bath as depicted in Fig.5.6.

The sample, a micro-patterned surface, is fabricated from silicone wafer by

using techniques from microelectronics (photolithography and deep reactive ion

etching). Because this technique allows one-directional selective etching of sili-

cone wafer, we can obtain textured surfaces on which slender and sharp edged

micro pillars are placed as shown in Fig.5.7. In addition, we can independently

choose the values of the geometries, namely the radius b, height h and pitch p of

the pillar. In this experiment, they fixed the pillar radius b ∼ 1µm and the pitch

p ∼ 10µm, but changed the pillar height h = 1− 26µm. Furthermore, with their

surfaces, gravity is negligible during centimeter-sized imbibition experiment even

if the sample whose size is order of centimeters is placed vertically.

As liquids, silicone oils with various viscosities η were used. Because silicone

oil wets the sample well, the liquid rises up in the forest of micro pillars. They

found that the rising height z scales with the square root of elapsed time t;

z2 = Dt where D is the imbibition or penetration coefficient. The values of

the coefficient D obtained from experiments with various pillar heights h and

viscosities η are plotted in Fig.5.8.

on which long and sharp edged pillars are placed with linear gradient of pillar density [50].
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Fig. 5.6. Schematic images of the experimental setup. When an end of the sample is touched
with the horizontal surface of a liquid bath, the liquid rises up in the forest of the pillars against
gravity.
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Fig. 5.7. A typical sample: a silicone surface decorated with an array of micro pillars whose
radii, heights and pitches are b = 1.3µm, h = 26µm and p = 10µm, respectively. The bar
indicates 50µm. This figure is reprinted from [32].

Fig. 5.8. Imbibition coefficient D is plotted as a function of the pillar height h for various
viscosities of silicone oils (viscosities η are 4.6mPa s (triangles), 9.5mPa s (crosses), 19mPa
s (diamonds), 48mPa s (squares) and 97mPa s (circles), respectively). D increases with the
pillar height h before saturating at large heights. This figure is reprinted from [32].
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5.2.2 Theory

The imbibition coefficient D is theoretically obtained in the following. Here, they

assumed that the thickness of the liquid film is comparable to the pillar height h.

This assumption is reasonable when the pillar radius b is sufficiently smaller than

the pillar height h (b ¿ h) as reported in [46]; the liquid is pinned at sharp edges

of pillars so that the difference δ between the film thickness and the pillar height

is estimated to be comparable to the pillar radius b, i.e., δ ∼ b. In the case of

b ¿ h so that δ ¿ h, we can assume a liquid film of the thickness h propagates

during imbibition. With this assumption, the difference of the surface energy per

unit width while the liquid film propagates by a distance dz is written as

dE = {(γSL − γS)r + γ}dz. (5.1)

Here, γSL, γS and γ are the surface tensions of the solid-liquid, solid-air and

liquid-air interfaces, respectively, and r is the roughness of textured surfaces,

i.e., the fraction of the actual surface area to the projected surface area; r =

1 + 2πbh/p2. With Young’s law (γ cos θE + γSL = γS) and the assumption that

the equilibrium contact angle θE between the liquid and the substrate is zero,

eq.(5.1) is written as dE = (1−r)γdz. Since the roughness always satisfies r > 1,

dE < 0 is obtained in the case of complete wetting. Thus, the driving force per

unit length is written as

Fγ = −
dE

dz
= 2πγ

bh

p2
. (5.2)

Now we shall estimate the viscous friction. Differently from the case of capil-

lary rise in a tube, two main origins are possible here. One is the friction between

the liquid and the bottom solid surfaces. In this case, the viscous friction force

per unit width is written as

F1 ∼ η
V

h
z, (5.3)

where z is imbibition length and V is the mean flow velocity V =dz/dt. The

other is the friction between the liquid and the lateral surfaces of pillars. In this

case, the viscous friction per a pillar is written as f ∼ η(V/b)2πbh. Thus, the

viscous force per unit width is written as

F2 ∼
f

p2
z ∼ η

V

b

bh

p2
z. (5.4)
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Although both frictions F1 and F2 should be present and oppose the motion,

let us assume that one of them is negligible when F1/F2 ∼ p2/h2 is sufficiently

larger or smaller than 1. Hence, we can distinguish two different cases:

i) For short pillar (h < p), the dominant friction arises from the bottom solid

surface, i.e., the friction is written as F1 (eq.(5.3)). From the competition of it

and the driving force Fγ (eq.(5.2)), the rising height z is written as

z2 = D1t, (5.5)

where

D1 =
4π

3

γ

η

h2b

p2
. (5.6)

ii) For long pillar (h > p), the dominant friction arises from the lateral surface

of the pillars, i.e., the friction is written as F2 (eq.(5.4)). In this case, the rising

height z is written as

z2 = D2t, (5.7)

where

D2 =
γb

η
(ln (p/b) − 1.31). (5.8)

Here, a numerical coefficient for the friction of a liquid progressing in a collection

of cylindrical pillars was used [47].

In both regimes, the rising height z is proportional to the square root of

elapsed time t; z ∼ t1/2.

5.2.3 Experiment and theory

Then, they compared experimental results with theories. The dynamical coef-

ficients D = z2/t obtained from each experiment, are plotted as dimensionless

quantities D/D2 as a function of D1/D2 (Fig.5.9). Here, D1 and D2 are theoret-

ical values calculated from the formulas discussed above (eq.(5.6) and eq.(5.8))

with parameters of textured surfaces. Fig.5.9 shows a good agreement between

experimental results and theoretical prediction. First, all the data are collapsed

onto a single curve. In short pillar region (h < p), namely D1/D2 ∼ h2/p2 ¿ 1,

D/D2 increases as D1/D2 increases until D1/D2 = 1, thus D ∼ D1, which is

expected by theory. Then, in tall pillar region (h > p namely D1/D2 À 1),

D/D2 saturates at a value around 1 as D1/D2 increases, namely D ∼ D2, which

is also expected by theory.
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Fig. 5.9. Experimental dynamical coefficients D as a function of a dimensionless quantity. The
different symbols are for different silicone oils (different viscosities) as indicated in Fig.5.8, and
the dotted line expresses the theoretical prediction. This figure is reprinted from [32].

5.3 Imbibition of micro-patterned surfaces with

“short and round pillar”

Here, we shall review a study by Obara et al. [36]: imbibition of micro-patterned

surfaces with “short and round pillars”.

5.3.1 Experiment

Similarly to the experiment performed by Ishino et al., the sample is fixed per-

pendicularly to the horizontal surface of a liquid bath, then gently touched with

the surface. In addition, they carried out experiments with the sample fixed with

some tilt angle θ measured from the horizontal surface. Namely, the former case

corresponds to the case of θ = 90◦. By tilting the sample, we can change an

effective gravity G as

G = g sin θ, (5.9)

where g is the gravitational acceleration, i.e., g=9.8 m/s2.

The samples are fabricated from copper substrates by a recently proposed
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method reported in [48]. With this method, the surfaces on which an array of

short pillars with round edges are placed are obtained as shown in Fig.5.10. The

resulting surfaces are analyzed by using a microscope VHX-1000 (Keyence) and

obtained an averaged profile as shown in Fig.5.10(d). As liquids, silicone oils

with various viscosities η were used.

Fig. 5.10. (a) and (b) Overview and magnified view of a textured surface A. (c) Magnified
overview of textured surface B. (d) Average section of the textured surface A (solid line) and
B (dashed line). All figures are reprinted from [36].

5.3.2 Theory

The imbibition length x is theoretically described in the following: The incom-

pressible Navier-Stokes equations with lubrication assumption are written as

0 = −
∂p

∂x
+ η∇2v − ρG. (5.10)

Here, p is the pressure written as p = p0 − γC with the atmospheric pressure p0,

the surface tension γ of the liquid, and the curvature C (C > 0) of the liquid-air

interface. Thus, the scale of the first term of the right-hand side of eq.(5.10) is

written as γC/x with the imbibition length x. v is the velocity of the flow.
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Since viscosity and gravity are equally important in this experiment, the three

terms in the right-hand side of eq.(5.10) are assumed to be of the same order.

Thus, by comparing ρG and γC/x, the local curvature at the imbibition front is

estimated as

C '
ρGx

γ
. (5.11)

Furthermore,

ρG ' η∇2v or
γC

x
' η∇2v, (5.12)

is also derived from comparing two of the three terms in eq.(5.10). With the

mean velocity V = dx/dt, eq.(5.11) and another assumption that the Laplacian

in eq.(5.12) scales as C2, i.e.,

|∇2| ' C2, (5.13)

both the first and the second equations of eq.(5.12) result in the same equation

x = αt1/3, (5.14)

where

α '
(

γ2

ρGη

)1/3

. (5.15)

It is convinced that eq.(5.13) is a reasonable assumption in the following way.

From eq.(5.11), it is easy to see the local curvature C of the imbibing front

increases as the imbibition length x increases. In other words, the characteristic

length, i.e., the film thickness at the imbibing front, is estimated as C−1, which

scales as 1/x. On the other hand, |∇|−1 has a physical meaning of the thickness

of the liquid film where Poiseuille flow develops. Thus, the film thickness at

height x is written as |∇|−1 ∼ C−1 ∝ 1/x, which is different from the case of

sec.5.2 where the thickness of the imbibed liquid film is comparable to the pillar

height.

By introducing the capillary length a =
√

γ/(ρG), eq.(5.14) is renormalized

as

x

a
'

(
t

τ

)1/3

, (5.16)

where τ is the characteristic time scale defined as τ = ηa/γ, whose order is a few

ms or less.
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Fig. 5.11. Collapse of the data obtained from surfaces A and B (shifted downward by a factor
of 10 to avoid overlap with the data from surface A) with yet another data set ”B 10cS 90◦”
for demonstrating error bars (also shifted to avoid overlap). The errors in the vertical axis are
always smaller than symbol size and those in the horizontal time axis are visible only at very
early time (t/τ ≤ 10−4). This figure is reprinted from [36].
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5.3.3 Experiment and theory

They compared experimental results with theories in Fig.5.11, where eq.(5.16) is

tested. As predicted by the model, all of the data from both surfaces A and B

collapse well onto a line whose slope is one-third. Here, the collapsed data from

surface B are shifted downward by a factor of 10 to avoid overlap with the data

from surface A.

The good agreement between the experimental data and the theory supports

the assumptions, i.e., eq.(5.11) and eq.(5.13). In addition to this, the authors

justified these assumptions by visualizing the film thickness although details are

not described here.

The scaling law (eq.(5.14) with eq.(5.15), or eq.(5.16)) is independent of the

pillar radius b, height h and pitch p. In other words, the imbibition dynamics is

independent of the details of the geometry of the textured surfaces when pillars

on the surface are short and round. Furthermore, the radius of curvature C−1

is determined by eq.(5.11) because this is the only natural local length scale

available in the present case (the flim thickness is no longer comparable to pillar

height).
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Part III

Present Study
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Chapter 6

Capillary Rise on the Surface of

a Leg of a Small Animal and

Artificial Surface Mimicking It

Recently, it has been known that some plants [1, 2], insects [3, 4] or animals [5, 6]

have micro structures on their skin. Imbibition of those surfaces and of artifi-

cial surfaces mimicking them has actively been studied not only from biological

interests but also from physical or fundamental interests. Furthermore, physi-

cal understanding of the dynamics of such phenomena probably gives us useful

guiding principles for applications in various fields. Here, we shall describe imbi-

bition of the surface of a leg of a small animal, wharf roach (Ligia exotica), and

artificial surfaces partially mimicking it on the basis of the result in [6].

6.1 Capillary rise on the surface of a leg of a

small animal

6.1.1 A small animal wharf roach

Wharf roach (Ligia exotica) is a small animal living by the sea (Fig.6.1). It has

seven pairs of legs called “pereiopods”. It is an ancient animal; its biological

structure is quite old. In particular, it breathes through gills at its stomach.

Thus, water is essential for it to survive. On the other hand, water can become

a reason of its death because it can not swim for a long time. Namely, wharf
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(b)

(a) (c)

(d)

Fig. 6.1. A small animal wharf roach, Ligia exotica. (a, b) Pictures of wharf roach (a) taken
by M.T. at Enoshima, JAPAN and (b) used in the study [52]. (c, d) Illustrations of wharf
roach: (c) side and (d) ventral views. (b-d) are reprinted from [52].
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roach needs appropriate amount of water to survive. To achieve this, it uses its

VIth and VIIth legs. When it brings these two legs together, and put the tip of

the unit in a water pool, water rises up between these legs. This phenomenon is

similar to what we can see during eating noodles with chopsticks; if one brings

his chopsticks together and put their tip in the soup, the soup rises up between

chopsticks, although capillary rise between the legs seems to have an advantage

for water transport compared with that between chopsticks because the outer

surfaces of the legs have special paths for water transportation differently from

rather smooth surfaces of chopsticks.

The outer surfaces of the VIth and the VIIth legs are the followings (also see

Fig.6.2): both the VIth and the VIIth legs have an unguis and six podites. There

are hollow structures called “gutter” (indicated by the black arrow in Fig.6.2(D))

on the 1st and the 2nd podites of the VIth leg and the 1st and 80% of the 2nd

podites of the VIIth leg. There is a path connecting the 1st podite (including

the region with gutter) to the 5th podite on the outer surface of the VIth leg,

while there is no gutter on the 3rd, 4th, and 5th podites. The path is covered

with many micro structures (cuticular protrusions). In particular, regular arrays

of micro protrusions are observed from the proximal half of the 2nd podite to

the proximal end of the 5th podite of the VIth leg, as indicated by white arrows

in Fig.6.2. On the VIIth leg, however, the regular array of micro protrusions is

only observed on the 6th podite (indicated by the white arrow in Fig.6.2(C)).

There are small areas covered with thin and relatively long cuticular protrusions

at the distal ends of the 3rd, 4th and 5th podites of the VIIth leg (indicated by

white arrowheads in Fig.6.2).

Detailed observations of the protrusions on the surface of the VIth leg are

shown in Fig.6.3. The surface is covered with two types of protrusions: hair-

like protrusion (HLP) and paddle-like protrusion (PLP). The gutter on the 2nd

podite and the path area on the surface of the 3rd podite are covered entirely

with hair-like protrusions (HLPs). On the other hand, on the 4th and the 5th

podites, the central region of the path is covered with paddle-like protrusions

(PLPs), while the edge region of the path and the joints of the legs are covered

with hair-like protrusions (HLPs). Here, the HLPs and PLPs on the 4th podite

of the VIth leg (Fig.6.3(b-d)) seems to be two types of blades whose geometries

are the same while the sizes are different. Thus, let us use “narrow blades”

instead of hair-like protrusions (HLPs) and “wide blades” instead of paddle-like
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Fig. 6.2. Scanning electron microscope (SEM) images of the VIth and VIIth legs. White
arrows indicate regular lines of protrusions, and white arrowheads indicate long protrusions of
the VIIth leg. (A) the VIth and VIIth legs. White Arabic numbers indicate the numbers of
podites of each leg. There are hollow structures called “gutter” on the 1st and 2nd podites
of the VIth leg and the 1st and 80% of the 2nd podites of the VIIth leg. These gutters are
located at the center of each leg, oriented longitudinally along the podites. The gutter on the
2nd podite of the VIth leg continues to the area covered with micro structures on the 3rd, 4th
and 5th podites. It makes a path for water transport from the 1st to the 5th podites. On the
VIIth leg, only the 6th podite has micro structures on the surface. Rectangles B-E indicate
positions of higher magnifications in (B-E). The scale bar is 1.5mm. (B) The 4th podite and
(C) 6th podite of the VIIth leg. (D) The 2nd podite of the VIth leg. A black arrow indicates
the gutter, which is covered with micro protrusions. (E) The 3rd podite of the VIth leg. Scale
bars in (B-E) are 300µm. All figures are reprinted from Horiguchi et al. 2007. Biol. Bull.
213: 196-203 [51] with permission from the Marine Biological Laboratory, Woods Hole, MA.
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(a) (b) (c)

(d)

(e)

(f) (g)

Fig. 6.3. Scanning electron microscope (SEM) images of the VIth leg. (a) Combined SEM
image of the entire VIth leg comprising six podites. A path on the outer surface from the
1st to the 5th podites is clearly observed. (b) The surface near the proximal end of the 4th
podite. Two different protrusions are observed: Hair-like protrusions (HLPs, or narrow blades)
placed at the edge region of the path and the joints, and paddle-like protrusions (PLPs, or
wide blades) placed at the central region of the path. The outside of the path is covered with
small curved plates. (c-e) Magnified SEM images of (c) the hair-like protrusions (HLPs, or
narrow blades), (d) the paddle-like protrusions (PLPs, or wide balades), and (e) small curved
plates placed at the outside of the path. (f) The surface of the 3rd podite. The entire area of
the surface of the path is covered with HLPs. The outside of the path is covered with small
curved plates similarly to the 4th podite. (g) The magnified SEM image of HLPs. All figures
are reprinted from [52].
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protrusions (PLPs); narrow blades cover the edge region of the 4th and the 5th

podites and the joints, and wide blades cover the central region of the 4th and

the 5th podites.

To test the roles of these micro structures, imbibition experiments were car-

ried out for isolated VIth and VIIth legs in [51] (also see Fig.6.4). When the

middle part of the 2nd podite of the VIth leg is dipped into the colored water,

we can see that the water rises up along the path against gravity, then stops

rising at the joint between the 2nd and the 3rd podites (Fig.6.4(B)). When the

entire 2nd podite is dipped into the water, i.e., the distal end of the 3rd podite

is touched with the surface of the water, the water rises up through the 3rd,

4th and 5th podites, then stops rising at the joint between the 5th and the 6th

podites (Fig.6.4(C)). Even if the distal end of the 6th podite is dipped into the

water, the water does not rise up to the 6th podite (Fig.6.4(E)). Concerning the

VIIth leg, water rises up only when the distal end of the 6th podite is touched

with the surface of the water, and stops rising at the proximal end of the podite

(Fig.6.4(F-J)). Therefore it is noteworthy that the capillary rise is a result of not

activities of wharf roach but the isolated legs themselves. These capillary rises

are rather natural phenomena caused by their surfaces with micro structures

similarly to the capillary rise on textured surfaces (cf. Part II Previous Study),

and the capillary rise with its legs helps wharf roach to transport water from

water pools to its gills.

6.1.2 Dynamics of capillary rise on the surface of a leg of

wharf roach

Here, we shall discuss the dynamics of capillary rise on the surface of a leg of

wharf roach. As indicated above, wharf roach has a characteristic path with

micro structures on the surface of the VIth leg. While it uses both the VIth

and the VIIth legs to transport water, here only the isolated VIth leg is used

for imbibition experiment as shown in Fig.6.4. Here, let us focus on capillary

rise from the 3rd to the 5th podites of the VIth leg, which is observed when the

distal end of the 3rd podite is touched with the water surface (Fig.6.4(C)).

When the distal end of the 3rd podite of the VIth leg is touched with the

horizontal surface of the colored water bath, the water rises up as shown in

Fig.6.5. Here, water is colored red in order to see easily. Differently from capillary

rise on textured surfaces, the front of the rising liquid is not a horizontal line.
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Fig. 6.4. Illustrations of colored water flow along the caudal side of the VIth leg (A-E) and the
frontal side of the VIIth leg (F-J). (A) The VIth leg before touched with the water surface. A
black arrow indicates the meniscus of red-colored water at the top of a tube. (B) When the
middle of the 2nd podite is dipped into the water, the water rises until the proximal end of the
podite. A black arrow indicates the place where water stops rising up. (C) When the entire of
the 2nd podite is dipped into the water, i.e., the distal end of the 3rd podite is touched with
the surface of water, water rises up through the 3rd, 4th and 5th podites, then stops rising at
the joint between the 5th and the 6th podites. A black arrow indicates the place where water
stops rising. (D, E) Even if the distal end of the 6th podite is dipped into the water, the water
does not rise up to the 6th podite. (F-J) Similar imbibition experiment with the VIIth legs.
The water rises up only when the distal end of the 6th podite is touched with the surface of
the water, and stops rising at the proximal end of the podite (I, J). A black arrow indicates
the place where water stops rising. All figures are reprinted from Horiguchi et al. 2007. Biol.
Bull. 213: 196-203 [51] with permission from the Marine Biological Laboratory, Woods Hole,
MA.
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A

B

C

Fig. 6.5. A picture of the capillary rise on the surface of the VIth leg. When the distal end
of the 3rd podite (the lowest podite in the picture) is touched with the surface of the colored
water bath, the water rises up on the surface of the 3rd, 4th and 5th podites of the leg. O, A,
B and C indicate the positions of joints between the 2nd and 3rd, 3rd and 4th, 4th and 5th,
and 5th and 6th podites, respectively. This figure is reprinted from [6].
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Fig. 6.6. Normalized rising height plotted as a function of the elapsed time with a macroscopic
view; the heights of the joints and times when water arrives at each joint are plotted. O(origin),
A, B and C correspond to those in Fig.6.5. Non-slowing down dynamics is found on this
macroscopic scale; rising height scales with the elapsed time on this scale. This figure is
reprinted from [6].

Sometimes liquid flows with branching; some flows upward and some downward.

This is caused by inhomogeneity of the natural textured surface differently from

artificial ones. As a result, tracking the propagating front on a microscopic scale

is difficult. On the other hand, on a macroscopic scale, we can discuss the motion

of liquid rising; on a coarse-grained level, the front seems to start proceeding to

the next podite only after the lower podite is almost completely filled. Even if

the filling dynamics within a podite is complex, the moment when the bulk water

front arrives at each joint (to proceed to the next podite) and the height of the

joint can be defined well. This result is illustrated in Fig.6.6, where the height

z of each joint renormalized by the length z∗0 of the lowest podite in Fig.6.5 (the

3rd podite) are plotted as a function of the time t when water front arrives at

each joint. As shown in this figure, the imbibition height z is proportional to

the elapsed time t, namely z ∼ t, on this macroscopic scale. This non-slowing

down dynamics of imbibition is quite unusual, because imbibition dynamics is

generally slowing down such as z ∼
√

t or z ∼ t1/3.
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6.2 Capillary rise on artificial surfaces

6.2.1 Artifical surfaces mimicking the surface of the leg

of a wharf roach

Motivated by the unusual feature of the capillary rise on the surface of the leg

discussed above, we fabricated the textured surfaces mimicking the texture on

the leg (Fig.6.7) with which we carried out imbibition experiments. To fabricate

the artificial textured surfaces, silicone wafers and the photolithographic and ion

etching techniques are used similarly to those in the previous study described in

sec.5.2. The hybrid texture “HT” (the central path in Fig.6.7) is the textured

surface mimicking the surface of the 4th and the 5th podites of the VIth leg; wide

blades are placed at the central region of the hybrid texture (the blue region in

the HT in Fig.6.7. We call this region “CHT”) and narrow blades are placed

at the edge region and joints of the hybrid texture (the red region in the HT

in Fig.6.7. We call this region “EHT”), which is surrounding the central region

CHT. For reference, we also fabricated the central texture “CT” (the right blue

path in Fig.6.7) where only wide blades are placed, and the edge texture “ET”

(the left red path in Fig.6.7) where only narrow blades are placed. Both of the

central and edge texture (CT and ET) are specified by the set of length (lc, Wc,

Lc) and (le, We, Le) of micron scales, respectively (see Fig.6.7). Here, subscripts

“c” and “e” indicate “central” and “edge”, respectively. l and L are blade length

and blade pitch in longitudinal direction of paths, and w and W are those in

lateral direction of paths, while w is constant (wc = we = w) in our experiments.

The blade height h is also constant in all of our experiments.

While faithful mimicking of the real leg is technically difficult, we decided

typical values sets of (lc, Wc, Lc), (le, We, Le) and (w, h) from pictures of the leg

(Fig.6.3) as follows: (lc, Wc, Lc) = (20, 52, 40), (le, We, Le) = (10, 27, 20) and

(w, h) = (2, 30) in the unit µm. We regarded the substrate with this parameter

set as a reference substrate, then other substrates with different parameters were

also fabricated. Here, we note that our reference patterned surface is different

from the surface of the real leg in the following points: First, the blade width

w and height h of the real one seems to be less than 1 µm and about 50 µm,

respectively, while we decided (w, h) = (2, 30) µm for all surfaces, because of

fabricating limit from technical difficulties. Second, real blades may be bendable

with capillary force, and some may be placed on the base with some tilt angles.
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Fig. 6.7. Illustration of the artificial surfaces. The “Hybrid Texture (HT)”, which is the surface
mimicking the surface of the 4th and the 5th podites of the VIth leg of wharf roach, consists of
two types of blades: wide blades placed at the central regions of the path (we call this “Central
region of the Hybrid Texture (CHT)”), and narrow blades placed at the edge regions and joints
of the path (we call this “Edge region of the Hybrid Texture (EHT)”). The length of “podite”
is designed to be z0 = 3.6mm (or 3.4mm), which is comparable to the typical length of a podite
in the real leg. For reference, we also fabricate “Central Texture (CT)” which consists of only
wide blades and “Edge Texture (ET)” which consists of only narrow blades. The values in the
figure are lengths of each part whose unit are mm.
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Finally, the real structure is not so regular as the structure of the imitation,

and irregularity of patterns probably causes complex imbibing dynamics on the

microscopic scale as seen in the capillary rise on the surface of the real leg (see

sec.6.1.2).

6.2.2 Experiment

We carried out imbibition experiments with artificial textured surfaces. A snap-

shot of the imbibition of the reference substrate is shown in Fig.6.8(a). As seen in

it, the imbibition fronts on the artificial surfaces are practically horizontal lines

because of the regularity of the patterns as discussed above, which is different

from the case of the imbibition of the surface on the real leg.

In addition, we could not reproduce “waiting motion” at each joint, namely

the imbibed liquid fronts of the edge and central regions of the HT path seem

to proceed independently through “joints” instead of to stop at joints until the

liquid fills the lower podites as seen in capillary rise on the surface of the real leg.

As a result, the front of each path can be tracked from series of snapshots such

as Fig.6.8(a). Thus, we can plot rising height z normalized by the length of the

podite z0 or the square of that, i.e., (z/z0)
2, as a function of the elapsed time t

(Fig.6.8(b) or (c)). The symbols in the plots are as follows: the imbibition front

on the edge texture “ET” (α : ¤) and the central texture “CT” (β : ◦), and in

the edge and central regions of the hybrid texture “EHT” (γ : ) and “CHT” (δ

: •) as indicated by horizontal arrows in Fig.6.8(a).

The imbibition of the HT path of the reference substrate in Fig.6.8 shows

some remarkable features: imbibition of the edge and central regions of the HT

path (EHT and CHT) are both faster than the original non-hybrid counterparts

of ET and CT, respectively. These are also indicated by vertical solid arrows

(for CT or CHT) and dashed ones (for ET or EHT) in Fig.6.8(a), whose lengths

reflect relative magnitude of imbibing velocity. (1) Imbibition on the ET path (α

: ¤) is faster than that on the CT path (β : ◦) because a typical size of blades

of ET path is smaller than that of CT path; capillary force driving imbibition

is larger for textures with smaller blades (difference of viscous friction is less

dominant than that of driving force although viscous friction is also larger for

textures with smaller scale). This feature is also recognized in EHT and CHT

paths, namely imbibition of the edge region of the HT path (γ : ) is faster than

that of the central region of the HT path (δ : •). (2) The propagating front on
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Fig. 6.8. Capillary rise on the reference substrate of artificial surfaces; the values of the
parameters are (lc, Wc, Lc) = (20, 52, 40), (le, We, Le) = (10, 27, 20) and (w, h) = (2, 30)
in the unit µm. (a) A snapshot of capillary rise. The imbibition fronts are indicated by the
horizontal arrows with symbols: the imbibition front on the edge texture “ET” (α), and the
central texture “CT” (β), and in the edge and central region of the hybrid texture “EHT”
(γ) and “CHT” (δ), respectively. The vertical arrows indicate relative magnitudes of imbibing
velocities. (b) The rising height z normalized by the podite length z0 as a function of the
elapsed time t obtained from the capillary rise on the reference substrate. In order to clarify
the dynamics in the unit of z0, the origin is shifted by a small amount corresponding to an
initial dip length to start the imbibition (similarly for (c)). The labels, α − δ, correspond to
the labels in (a) (similarly for (c)). (c) The square of the normalized rising height (z/z0)2 as a
function of t, obtained from the reference substrate. The solid and thin lines with labels “init.”
and “final” are obtained by fitting the data in the initial and final regimes of the imbibition
of the central region of the HT path (δ). The vertical dashed line is the line separating both
regimes.
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the edge region of the HT (EHT) path (γ : ) is even faster than that on the ET

path (α : ¤), although the values of parameters (l, W , L, w, h) are the same for

both. The reason of this is that the moving water front in the CHT path works

as a liquid bath for imbibition of the EHT path. (3)The front on the central

region of the HT (CHT) path (δ : •) is also faster than that on the CT path (β

: ◦), although the values of parameters are the same for both again. The reason

is that the preceding water in the EHT path gives an extra pull for the front in

the CHT path.

Figs.6.8(b) and (c) suggest that the imbibition length scales as z ∼ t1/2 at

least for the ET and CT paths (α : ¤ and β : ◦). Though rather technical,

here, the origin is shifted by a small amount which corresponds to the initial dip

length to cause the imbibition in order to clarify the dynamics in the unit z0.

This shift is much smaller than the overall imbibition lengths and does not affect

practically the linear relation between z2 and t.

In Fig.6.8(c), another interesting feature of the imbibition of the artificial

hybrid textured surface is seen; the imbibition of the central region of the HT

path (δ : •) is divided in two dynamic regimes: the initial and final regimes,

which are separated by the vertical dashed line. The initial dynamics proceeds

roughly as t1/2, which is indicated by the solid line in Fig.6.8(c), and is slightly

faster than the dynamics on the CT path (β : ◦) although that is intermittent

at “joints”. The final regime starts when the front of the edge region of the HT

path (γ : ) reaches the top of the path, as indicated by the vertical dashed line.

The final dynamics, which is indicated by the thin line, also proceeds roughly as

t1/2 and is faster than the initial one.

Several dynamic features observed in Fig.6.8(a-c) on the reference substrate

qualitatively remain the same as those on other substrates with different param-

eter values: (lc, Wc, Lc) = (10, 52, 30) and (lc, Wc, Lc) = (20, 52, 60) in Figs.6.9

(a) and (b), respectively. Here, (le, We, Le) = (10, 27, 20) and (w, h) = (2, 30)

remain the same as those on the reference substrate. In particular, the imbibition

dynamics in the central region of the HT paths is always divided in two regimes,

and both the initial and final dynamics scale roughly as t1/2. Then, the initial

intermittent dynamics is slightly faster than that on the CT path, and the final

dynamics, which starts when the edge front reaches the top, is faster than the

initial one. These suggest the following: the initial imbibition dynamics on the

CHT path may be described by the same theory as that developed for simpler
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Fig. 6.9. Capillary rise on the artificial surfaces. The same plot as the plot in Fig.6.8(c) but
for other substrates with different parameters: (lc, Wc, Lc) = (10, 52, 30) for (a) and (lc, Wc,
Lc) = (20, 52, 60) for (b), while (le, We, Le) and (w, h) remain the same values as that for
the reference substrate.

CT path, which will be discussed below. Furthermore, we could speed up the

imbibition dynamics if we could stop the water front at each joint as seen that

on the real leg, because such a temporal stop may cause a speed-up as seen in

our demonstrations (Fig.6.8(c) and Fig.6.9); the imbibition dynamics on CHT

path speeds up from the initial regime to the final regime, when the edge liquid

reaches the top. Similarly to the case of the reference substrate (Fig.6.8(b, c)),

the origins are shifted by small amounts which are much smaller than the overall

imbibition lengths and do not affect practically the linear relation between z2

and t.

6.2.3 Theory

To quantify our observation, we develop a theory describing the imbibition of

the CT and ET paths, which have the same geometry while sizes are different.

We shall construct of the theory by extending the scaling argument discussed

in Sec.5.2, namely in [32]. Here, we assume the thickness of the imbibed film is

comparable to the blade height h, which is reasonable when h À w as discussed

in [46] and indirectly proved in [32], and h À w is well satisfied in the present

case.

The capillary driving force Fγ per unit width of the imbibed liquid film is

estimated as follows. As imbibed liquid front proceeds by the distance dz, the
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surface energy increases by

dE = (1 − r)γdz (6.1)

per unit width in the case of complete wetting. Here, r is the roughness of the

textured surface, namely,

r = 1 +
2(l + w)h

LW
, (6.2)

where the set (l, W , L) corresponds to (lc, Wc, Lc) and (le, We, Le) on the CT

and ET paths, respectively. Thus, the driving force is written as

Fγ = −
dE

dz
=

2γ(l + w)h

LW
. (6.3)

On the other hand, the viscous friction acting on the liquid film is estimated

in the following way. First, the CT or ET paths, on which an array of wide

or narrow blades are placed respectively, can be regarded as a stripe of two

regions: one with blades and the other without blades (Fig.6.10). In the region

without blades, the friction on the film comes from the bottom surface of the

substrate, i.e., fηB = α0ηV/h per unit area, with the viscosity η of the liquid

and the velocity V of the front of the liquid film. In the region with blades, in

addition to the bottom friction, the friction with side walls of the blades, i.e.,

fηS = 2β0η(V/w)h/W per unit area of the film, comes into play. Here, α0 and

β0 are numerical coefficients roughly of order unity. While two types of friction

come into play in the region with blades as discussed above, only side wall friction

is dominant to the dynamics when fηS À fηB, i.e., 2h2 À wW . In such a case,

the total friction Fη can be estimated as a composite of the two types of friction

on each region, namely, fηB in the region without blades and fηS in the region

with blades. Thus, we obtain

Fη = fηBz(1 − φ) + fηSzφ, (6.4)

where φ is the fraction of the region with blades, i.e., φ = l/L.

From competition of two forces, Fγ and Fη, we derive

z2 = Dt, (6.5)

where

1/D = α1(1 − φ)/DB + β1φ/DS. (6.6)
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Fig. 6.10. Schematic front view of the CT or ET surface which can be regarded as “stripe” of
two regions: one with blades (gray region) and the other without blades (white region).

Here, DB and DS are given as

DB =
γ

η

(l + w)h2

LW
, and DS =

γ

η

(l + w)w

L
, (6.7)

where α1 = α0/4 and β1 = β0/2 are numerical coefficients roughly of order unity.

For later convenience, we note here two relations derived from the above

equations:

D =
Fγ

Fη/(V z)
(6.8)

and
DB

(1 − φ)D
= α1 + β1

φ

1 − φ

DB

DS

. (6.9)

Finally, the results of the theoretical argument (eq.(6.9)) can give some prac-

tical guiding principles for designing patterns, which have an advantage in water

transportation. For the speed-up of imbibition, it is necessary to increase D with

satisfying the assumption of the theory:

h À w and 2h2 À wW. (6.10)

One efficient way is to make h larger as realized on the real leg, while it is

difficult to fabricate and thereby we decided a bit smaller value for our pattern.

On the other hand, for efficient water transport, we may have to consider other

factors, for example, flux. To keep enough flux, the condition W À w should be

important, also as realized on the real leg.
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6.2.4 Comparison of experimental results and theory

To test the theory discussed above, we plot the coefficient D derived from the t1/2

dynamics observed on the ET and CT paths for various (l, L, W ) in Fig.6.11(a-c).

Here, the assumptions of the theory, i.e., eq.(6.10), are well satisfied in the data.

We should note that, although rather technical, small shifts of origin introduced

for Fig.6.8 and Fig.6.9 are not invoked to obtain the coefficient D here, because

the shifts are due to clarify the dynamics in the unit of the podite length z0.

The systematic trends in Fig.6.11(a-c), where dependences of the coefficient

D on l, L and W are tested, are consistent with the above theory. In principle,

the dependences are determined by a complex balance of changes in the driving

force Fγ and the friction force Fη; the increase of Fγ tends to increase the speed,

i.e., increase D, while the increase of Fη tends to decrease D. However, the

dependences are almost governed simply by the change in the driving force Fγ.

For example, as W increases, the driving force Fγ decreases and the friction

force Fη decreases, which results in the decreasing of D as shown in Fig.6.11(c)

because of decreasing of driving force Fγ. This dominance of the driving force is

consistent with the structure of eq.(6.8); differently from Fγ = 2γ(l +w)h/(LW )

in the numerator, Fη = fηBz(1 − φ) + fηSzφ in the denominator is composed of

two terms fηB/V ' η/h and fηS/V ' ηh/(wW ) that are differently dependent

on the lengths.

A more quantitative conformation of the validity of the theory is shown in

Fig.6.12, where eq.(6.9) is tested. As predicted, all the data in Fig.6.11 and other

three data are well on a straight line with α1 = 13.1 and β1 = 1.54 (roughly

of order unity as expected). With these values of α1 and β1, the composite

theory well describes the systematic trends in Fig.6.11(a-c), as indicated by the

theoretical curves.

Here, we note how we estimated the error bars in Fig.6.11 and Fig.6.12. We

adopt two different ways: (1) For the data obtained from more than ten exper-

iments (we always carried out each experiment with new substrate, thus, ten

experiments mean experiments with ten different substrates with the same pa-

rameter set, here.), the standard deviation is used to estimate the error bars.

With this way, error bars become symmetric with the mean. (2) For the data

obtained from less than ten experiments, the maximum and minimum are in-

dicated with the mean. With this way, error bars become asymmetric. The

principal origin of the error bars is not in the difficulty of determining the co-
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Fig. 6.11. Textured parameter dependences of the imbibition dynamics on the CT paths (◦)
and ET paths (¤). (a) The coefficient D = z2/t vs the blade length l in the imbibed direction.
(L, W ) = (20+l, 52) for CT and (L, W ) = (10+l, 27) for ET. (b) D vs the blade pitch L in
the imbibed direction. (l, W ) = (20, 52) for CT and (l, W ) = (10, 27) for ET. (c) D vs the
blade pitch W in the direction perpendicular to imbibition. (l, L) = (20, 40) for CT and (l,
L) = (10, 20) for ET. The curved lines in both main and inset plots are based on eq.(6.9) with
α1 and β1 determined by the straight line in Fig.6.12.
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Fig. 6.12. Comparison of the data with the theory. All the data in Fig.6.11 and other three data
are well on a straight line as predicted in eq.(6.9). The straight line is obtained by numerical
fitting with α1 and β1. These values are used to obtain curved lines in both the main and the
inset plots of Fig.6.11(a-c).

efficient D from z2 − t plot, but in the difficulty of attaining a homogeneously

complete wetting state for water. This is caused by the fact that the effect of the

irradiation of deep ultraviolet light is not robust, although the light treatment

and the imbibition experiment were performed in different labs.

As mentioned in Sec.6.2.2, it is natural to expect that the initial “intermit-

tent” t1/2 imbibition dynamics observed in the central region of the HT paths

(CHT) is described by the theory, if the effect of the edges and “joints” of the

path is negligible. This is confirmed in Fig.6.13(a-c) and Fig.6.14. The systematic

trends for each lengths in Fig.6.13(a-c) are quite similar to those in Fig.6.11(a-

c). More quantitatively, the data are well on the straight line (solid one) with

α1 = 8.20 and β1 = 1.68 as shown in Fig.6.14, which is similar to that shown

in Fig.6.12. Then, theoretical curves with these values (solid ones) give well ex-

planation of the systematic trends in Fig.6.13(a-c). While the present composite

theory does not include the effect of the joints, the theory still describes well the

initial imbibition dynamics of the CHT path because the fraction of the joint

regions is quite low.

Furthermore, the experimental result that imbibed motion of CHT paths is

faster than that of CT paths is confirmed in Fig.6.13(a-c) and Fig.6.14; both of

the facts that the solid curves are above than the dashed ones almost every region
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Fig. 6.13. Texture parameter dependences on the initial imbibition dynamics in the central
region of the HT paths with the edge region specified by (l, L, W ) = (10, 27, 20). (a) D vs l at
(L, W ) = (20+l, 52). (b) D vs L at (l, W ) = (20, 52). (c) D vs W at (l, L) = (20, 40). The
curved solid lines in (a-c) are based on eq.(6.9) with α1 and β1 determined by the straight line
in Fig.6.14. The curved dashed lines are the solid lines in Fig.6.11, and the insets are the ratios
of the mean values of D in the main plot of (a-c) to those in Fig.6.11(a-c). These show the
effect of the edge region to the imbibition dynamics of the central region of the HT paths; the
dynamics on the CHT paths is faster than that on the counterparts of the CT paths, except
for two exceptional cases. The red symbol in each plot is the result with reference substrate,
i.e., (l, W , L) = (20, 52, 40).
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Fig. 6.14. Comparison of the data with the theory. All the data in Fig.6.13(a-c) are well on a
straight solid line which is obtained by numerical fitting with α1 and β1. These values are used
to obtain curved solid lines in the main plot of Fig.6.13(a-c). The dashed line is the solid lines
in Fig.6.12, which shows the effect of the edge region to the imbibition dynamics of the central
region of the HT paths; the dynamics on the CHT paths is faster than that on the counterpart
of the CT paths. The red symbol is the result with the reference substrate, i.e., (l, W , L) =
(20, 52, 40).
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in Fig.6.13(a-c) and the solid line is below than the dashed one in Fig.6.14 mean

that D is larger for the CHT paths than that for the CT paths. Here, in each

figure, the solid and dashed curves are theoretical curves obtained from fitting

the data in Fig.6.14 and Fig.6.12, respectively; dashed curves in Fig.6.13(a-c)

and Fig.6.14 are theoretical curves obtained from the results of CT and ET

paths, namely solid curves in Fig.6.11(a-c) and Fig.6.12. In addition, the insets

of Fig.6.13(a-c) indicate the fraction of the mean values of D in the main plot

of Fig.6.13(a-c) to those in Fig.6.11(a-c), respectively. The faster imbibition in

the CHT paths is clearly visible in the figures except for two exceptional cases,

in which L or W is small; it seems that the edge effect tends to play an efficient

role when the length scales in the edge region are small enough compared with

those in the central region, which is similar to the real leg. Here, we note that

the imbibition dynamics of the reference substrate is red data points in Fig. 6.13

and Fig.6.14.

6.3 Conclusion

Wharf roach (Ligia exotica) transports water from a water pool to its gills by

using its VIth and VIIth legs. On some part of the outer surface of both legs,

there is a path for water transport, which is covered with micro structures; for

example, the 4th and the 5th podites of the VIth leg are covered with an array

of two types of micro blades: wide blades at the central region of the path, and

narrow blades at the edge regions and joints of the path. The path on the 3rd

podite is covered with only narrow blades. Then, we found that capillary rise

on the outer surface of the ranges from the 3rd to the 5th podites of the VIth

leg is unusual non-slowing down dynamics on a coarse-grained level; imbibition

length linearly scales with the elapsed time. Motivated by this unusual feature,

we fabricated the artificial surfaces partially mimicking the surface of the 4th

and the 5th podites of the VIth leg, i.e., Hybrid Textured surfaces (HT). We

furthermore fabricated Edge Texture (ET) covered with only narrow blades, and

Central Texture (CT) covered with only wide blades. We found a usual slowing

down dynamics for imbibition of ET, CT, and the initial regime of the imbibition

of the central region of the HT, unlike the case with the VIth leg. This dynamics

is well described by the scaling law developed in [6] for “stripe” textures. Al-

though we could not obtain non-slowing down dynamics for imbibition of the
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artificial surfaces, we found that the imbibition of the hybrid textured surfaces

have advantages for transportation; the imbibition of the central regions of the

HT paths is faster than that of the CT paths.

It is noteworthy that our artificial textured surfaces do not completely mimic

the surface of the real leg. At first, we mimicked only its 4th and 5th podites.

Then, the real structure in each podite is rather inhomogeneous, possibly with

gradients of the texture and wettability. The real blades are higher and thin-

ner and probably bendable compared with that of mimicking ones. In addition,

blades are sometimes tilted on the surface. These features may cause the com-

plex imbibition front on the microscopic scale instead of the horizontal line of

imbibition front as shown in the imbibition of artificial surfaces, then may lead

to the “waiting” behavior, i.e., the imbibition front seems to start proceeding to

the next podite only after the lower podite is almost filled. The “waiting” motion

might lead to the linear dynamics on a macroscopic scale. Faithful mimicking of

the real structure and clarifying the reason why the linear dynamics results in

the case of natural wharf roach will be future problems.
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Chapter 7

Imbibition of Open Capillary

As discussed in Part II Previous Study, imbibition dynamics with different ex-

ponents of scaling laws (z ∼ t1/2 and z ∼ t1/3) has been found. The difference

seems to be caused by geometries and sizes of the pillars on textured surfaces.

To understand the cross-over of the exponents and to understand its physical

details, we study capillary rise with much simpler samples: open capillaries with

cross-sections being rectagular shape. Open capillaries or channels are also useful

for application. Here, we shall describe imbibition of open capillary based on the

paper [41], which includes fundamental discussion and applications.

7.1 Open capillary

To study the capillary rise into an open capillary, we fabricated open channels

whose cross-sections are rectangular shapes and lengths are around several cen-

timeters. Here, hard transparent PMMA (poly(methyl methacrylate)) plates

are used. On the plate, we fabricated open channels by a computer numerical

controlled (CNC) micro-milling system (MM100, Modia Systems) with a rigid

drill (NS Tool). The length of the channel, which is about several centimeters,

depends on the size of the PMMA plate we used. The width w and depth d of

the channel are around sub-millimeters, which depend on the milling conditions,

such as drill tip diameter, length, velocity, process numbers, and so on. Here,

we designed channel width w = 0.2 mm and depth d = 0.2 − 1.0 mm, respec-

tively, in order to satisfy 2d > w to make theoretical prediction easier. Then, we

fabricated it with drill tip whose diameter is 0.2 mm. Values of w and d of fab-

ricated open channels are slightly different from the designed values and slightly
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inhomogeneous along the channels because of the dependence on the milling con-

ditions. For example, the values of w obtained by “point-measurements” by a

digital microscope (Keyence VHX-100) were in the range 0.201 - 0.206 mm, not

exactly equal to the tip diameter 0.2 mm. For these reasons, we adopted the

averaged values of w instead of “point’-measured” w in this study. As be written

in sec.7.3, capillary rise into the open channel stops at a certain height, which

depends on the width of the channels w (eq.(7.1)). Thus, the average value w can

be estimated by calculating from the final height zf obtained from experiment.

To test repeatability at the same time, we fabricated six open channels with

the same geometrical parameters, which are parallel to each other on the same

PMMA plate.

7.2 Overview of the experiment

Similarly to other imbibition experiments which we have already seen in this

thesis, we carried out imbibition experiments with open channels. Let an end of

the channels perpendicularly touch with the horizontal surface of a liquid bath.

Then, liquid rises up against gravity. We took snapshots of the phenomenon by

a USB camera (CMOS130-USB2, Fortissimo) with a lens (VS-LD20, Fortissimo)

as shown in Fig.7.1(a), then analysed them with Image J. Here, we used viscous

liquids, poly-dimethylsiloxane (PDMS) solutions (commonly known as silicone

oils) with different viscosities, ν = 50, 100, 500cS. PDMS completely wets PMMA

substrate, namely contact angle between them is zero.

A typical time evolution of the rising dynamics is demonstrated in a series of

snapshots in Fig.7.1(a). At later stage, two different fronts of the liquid become

distinguishable as indicated by two arrows: yellow and blue. This seems to be

followed from that a thin precursor film (PF; indicated by blue arrows) develops

gradually ahead of the front of the bulk liquid column (LC; indicated by yellow

arrows), below which the rectangular channel is almost completely filled. The

positions of two fronts, one for the precursor film (PF) and the other for the

liquid column (LC), are plotted as functions of the elapsed time t, together with

the difference between PF and LC, i.e., the length of precursor film (LPF), in

Fig.7.1(b). Here, the origin of the vertical axis is the position of the meniscus

of the liquid bath, and that of the horizontal one is the time when meniscus

becomes stable because the surface of liquid bath moves a little after touched by
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Fig. 7.1. Global dynamics of capillary rise into open channels whose depth d and width w is
(d,w) ' (0.4, 0.2) mm. (a) A typical time evolution of the rising dynamics. Liquid (PDMS;
viscosity ν = 100cS) rises up into six channels with same geometrical parameters (d ' 0.4mm
and w ' 0.2mm) micro-milled parallel to each other, when an end of the channels is touched
with the horizontal surface of the liquid bath. The precursor film (PF) develops with time
ahead of the top of the bulk liquid column (LC), below which the rectangular channel is
almost completely filled with liquid. Front positions of PF and LC are indicated by the blue
and yellow arrows, respectively. The snapshot shows good repeatability. (b) Front positions of
the PF and LC, and the difference of two, i.e., the length of precursor film (LPF), are plotted
as functions of the elapsed time t. Here, the origin of the vertical axis is the position of the
meniscus of the liquid bath, and that of the horizontal one is the time when meniscus becomes
stable because the surface of liquid bath moves a little after touched by the sample. The values
are the averaged ones of those in six channels, and error bars indicate their standard deviations.
It shows good repeatability. The dotted horizontal line indicates the final height of LC; zf .
Both figures are reprinted from [41].
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the sample. Each position or length is the averaged value of that in six channels,

and error bars indicate its standard deviation. As shown in the snapshots and

the plot, the rising front of the liquid column (LC) saturates to a certain height

similarly to capillary rise in tubes, while the precursor film (PF) continues to

proceed to the top of the plate (as shown in snapshot on 240min. in Fig.7.1(a)).

7.3 Statics and dynamics of bulk liquid column

Here, we shall discuss the statics and dynamics of the bulk liquid column (LC). As

shown in Fig.7.1, the front of the bulk liquid column proceeds with decreasing

the rising velocity, then stops at a certain height. The time evolution of the

front height of LC for different experimental parameters is shown in Fig.7.2(a),

where rising height zLC of LC is plotted as a function of the elapsed time t.

Experimental parameters are channel depth d and the kinetic viscosity of the

liquid ν (= η/ρ, with the viscosity η and the density ρ). The channel width w is

kept about 0.2 mm, which may be slightly different because it depends on milling

conditions. As shown in the plot, the final saturated height of the liquid column

seems to be independent of viscosity ν, and dependent weakly on the channel

depth d. To predict the final height zf of LC, we assume that the cross-section

of the liquid column is rectangular whose area is denoted by wd. In this case,

similarly to the case of capillary rise in tubes in sec.4.2, the total energy U(z) is

given as follows:

U(z) = {2d(γSL − γS) + w(γ + γSL − γS)}z +

∫ z

0

ρgz′wd dz′

= −2dγ cos θE + wγ(1 − cos θE)z +
ρgwdz2

2

= −2dγ

{
cos θE +

(cos θE − 1)w

2d

}
z +

ρgwdz2

2

= −2dγ̃z +
ρgwdz2

2
,

where, Young’s law (γSL + γ cos θE = γS, θE is the equilibrium contact angle

between the liquid and the substrate), and γ̃ = γ{cos θE + (cos θE − 1)w/(2d)}
are used. Here, g is the gravitational acceleration and γ is surface tension of the

liquid, respectively. Minimizing U(z) in terms of z, we obtain the final height
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Fig. 7.2. Dynamics of liquid column (LC). (a) Imbibition height of liquid column zLC is plotted
as a function of the elapsed time t for different experimental parameter sets (d, w, ν), where d

is the channel depth, w is the channel width calculated from final height zf , and ν is the liquid
viscosity, respectively. Error bars are generally small as represented by those of the data for
(d,w, ν) = (0.2, 0.225, 500). Error bars are sometimes suppressed for simplicity. (b) Collapse
of all the data in the initial regime by the predicted theory, showing that the scaling laws
eq.(7.3) or eq.(7.4) obtained in the deep-channel limit are robust and hold well even for rather
shallow channels. Error bars are sometimes suppressed for simplicity. (c) Collapse of the data
in the final regime by the predicted theory (eq.(7.6) or eq.(7.7)). The data for d = 0.2 mm
are removed here because they do not well satisfy the assumption of the approximate theory,
2d À w. The inset shows the same plot but added the data for d = 0.2mm. All figures are
reprinted from [41].
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z = zf as

zf =
2γ̃

ρgw
. (7.1)

In the present complete wetting case, contact angle θE = 0, so that γ̃ = γ. As a

result, in the present case eq.(7.1) is written as

zf =
2γ

ρgw
. (7.2)

This formula reproduces the experimental results quite well in the range of

parameters used in the present study; the assumption that the cross-section of

the liquid column is rectangular is well satisfied in the present case. According

to this, we can estimate the average value of channel width w from the final

height zf obtained from the experiment as mentioned in sec.7.1. For example,

we experimentally obtained zf = 20.1 ± 0.1 mm for depth d = 1.0 mm (“point-

measured” value of d is d = 0.98 ± 0.02 mm) and viscosities ν = 50 and 100cS.

This value of zf with eq.(7.2) gives w = 0.220 ± 0.001 mm (γ = 20.8 and 21.0

mN/m, ρ = 0.960 and 0.965 g/cm3 for ν = 50 and 100 cS, respectively). This

calculated value of w is slightly different from the average of the limited number

of “point-measured” values of w, 0.20±0.00 mm. In addition, the width is slightly

inhomogeneous along the channels. For these reasons, we adopt the calculated

average value as the channel width w = 0.220 ± 0.001 mm, here. In the same

spirit, in Fig.7.2 we use zf as the obtained value from the experiment, not the

calculated value from the “point-measured” w on the basis of eq.(7.2). It is to

be noted that the weak dependence on d of zf in Fig.7.2 comes from the slight

differences in w. Here, the values of d in the plot are designed values, not the

exact ones obtained from the “point-measurement”, although this differences give

no effect; indeed, the statics and the dynamics are independent of the channel

depth d with 2d À w.

The dynamics in the initial (viscous) regime can be described by the compe-

tition of the two forces: capillary force driving the phenomenon and viscous drag

friction. To estimate the capillary force, we begin with discussing the shapes of

the free surface of the liquid column like in sec.5.1. Although the rectangular

assumption works well, the surface of the liquid column filling open channels

becomes concave with height to guarantee the pressure drop. Thus, the equation

determining the final height of the LC can be understood as the balance between
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the gradients of the hydrostatic (gravitational) pressure and of Laplace pressure;

ρg =
∂(∆p)

∂z

∣∣∣∣∣
z=zf

.

Here, ∆p = γC(z) is Laplace pressure drop, i.e., ∆p = p0 − p(z) > 0 with

atmospheric pressure p0, and C(z) > 0 is the curvature of the liquid-air interface

of the LC at the height z. On the other hand, eq.(7.2) is written in the form

ρg = 2γ/(wzf ). These equations imply the curvature C(z) ' (2/w) log(z/z0)

(z > z0). As a result, the curvature at the top of the liquid column (z = zLC) is

described as CLC = C(zLC) ' 2/w. The curvature of the free surface of the LC

increases from zero (flat surface) at the bottom to 2/w at the top. Thus, we can

estimate the capillary force per unit volume as

fγ =
1

zLC

γ
2

w
=

2γ

wzLC

.

Now, let us estimate the viscous drag friction. We consider the case where the

viscous dissipation associated with the side wall of the channel is dominant over

that associated with the bottom surfaces of the channel, i.e., η(V/(w/2))2 À
η(V/d)2, or equivalently, w2 ¿ 4d2, which is fairly well satisfied in the present

study. In this case, the viscous friction per unit volume is written as

fη = 3η
V

(w/2)2
= 12η

V

w2

by virtue of the argument in sec.3.3.1 and eq.(3.20).

From competition of the capillary force fγ and the viscous drag friction fη

with an approximation V ' dzLC/dt, the dynamics of LC in the viscous regime

is derived as follows:
2γ

wzLC

= 12η
V

w2
,

or

zLC

dzLC

dt
'

γw

6η
.

Integrate this with respect to t, so that we have

z2
LC

t
'

γw

3η
,
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or

zLC '

(
γw

3η
t

)1/2

. (7.3)

By using zf given in eq.(7.2), the normalized imbibition dynamics is obtained as

zLC

zf

= k1

(
t

τ

)1/2

with τ =
12γη

ρ2g2w3
, (7.4)

where k1 is a numerical constant. This constant is close to one when the infinite-

plate approximation is good, i.e., w ¿ d.

In the final (visco-gravitational) regime, the dynamics can be described by

the competition of three forces: capillary force, gravitational force, and viscous

friction. The same approximation and assumption for the initial dynamics are

used here: the flow in the channel is Poiseuille flow, the viscous dissipation

associated with the side walls of the channel is dominant when the infinite-plate

approximation is valid (w2 À 4d2), and the curvature of the free surface of the

liquid column at the top is written as CLC = 2/w. Then, the force balance

per unit volume is expressed as 2γ/wzLC = 12ηV/w2 + ρg. Multiplying both

side of this formula by zLC/ρg leads to 2γ/(ρgw) = 12ηV zLC/(ρgw2) + zLC , or

equivalently

zf =
12ηV zLC

ρgw2
+ zLC . (7.5)

At the final stage, the front of the LC reaches to the final height zf . Thus,

it is reasonable to define the difference ∆zLC = zf − zLC and assume that ∆zLC

is small. Under this assumption, we can express mean rising velocity V =

dzLC/dt = −∆ ˙zLC as follows.

∆zLC = zf − zLC =
12ηV zLC

ρgw2
=

12η

ρgw2
(−∆ ˙zLC)(zf − ∆zLC).

From this, it follows

∆zLC ' −
12η

ρgw2
zf∆ ˙zLC

or

∆ ˙zLC ' −
(

ρgw2

12ηzf

)
∆zLC .

Then, finally we obtain

zf − zLC = k2zfe
−k3t/(2τ), (7.6)
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where τ is given in eq.(7.4), k2 is a constant of integration, and k3 is a constant

close to one for w ¿ d (as far as the infinite-plate approximation is valid). To

test this formula, we write it in a normalized form,

log

(
1 −

zLC

zf

)
= −k3

(
t

2τ

)
+ log k2. (7.7)

These formulas well describe the experimental results for both the initial and

final imbibition dynamics. In Fig.7.2(b), where eq.(7.3) or (7.4) is tested, all

the data collected from Fig.7.2(a) collapse remarkably well onto the predicted

master curve with k1 = 0.592±0.003. Here, the condition for the approximation

is 2d/w À 1, while the values of 2d/w are 10, 4 and 2 for d = 1.0, 0.4 and 0.2 mm,

respectively; the scaling law obtained in the deep-channel case is valid even for

rather shallow channels. The initial regime is practically valid when zLC < zf/2

(half of the final height) as seen in Fig.7.2(b). In Fig.7.2(c), the dynamics in

the final regime, eq.(7.6) or (7.7) is tested. All the data collapsed onto a single

straight line with k2 = 0.642 ± 0.007 and k3 = 0.806 ± 0.013 in the main plot,

where the data for d = 0.2 mm are removed because the data for d = 0.2 mm do

not satisfy the deep-channel approximation (2d/w = 2). In fact, the inset where

the data are added shows a slight deviation of the data for d = 0.2 mm.

7.4 Dynamics of length of precursor film

As indicated above, the precursor film (PF) does not seem to stop (as long

as the evaporation of the film is negligible), which reminds us of the capillary

rise into corners [34] and [35], and on textured surfaces decorated with short

and round pillars [36] (cf. sec.5.3). It should be emphasized that “precursor

film (PF)” in the present study is different from the precursor film observed

in Tanner’s experiment which is discussed in Appendix B. Our “precursor film

(PF)” means rather the capillary rise into corners. In this section, we shall

discuss the dynamics of the length of precursor film, which is denoted by “LPF”

in the Fig.7.1(b).

Similarly to previous studies, a universal scaling form for the imbibition length

h is derived as follows: the capillary driving force per unit volume is written as

γC/h. Here, we assumed the case of complete wetting, i.e., γ̃ = γ; h is the

length of precursor film (LPF), and C is the curvature of the free surface of PF
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Fig. 7.3. Dynamics of the length of the precursor film (LPF). (a) The length of the precursor
film h is plotted as a function of the elapsed time t for different experimental parameter sets
(d,w, ν), where d is the channel depth, w is the channel width calculated from final height zf

and ν is the liquid viscosity, respectively. (b) Collapse of all the data by predicted theory. Their
slopes correspond to the straight line indicating 1/3 power law in the final regime (h/κ−1 À 10).
This shows that the universal scaling form eq.(7.8) or eq.(7.9) obtained in the deep-channel
limit well describes experimental result in the final regime of the increasing of the length of
precursor film. Both figures are reprinted from [41].
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at the height h. This capillary force is balanced with the viscous friction η∇2V

and the gravitational force ρg. Here, these three forces affect the phenomenon,

namely, the scales of these forces seem to be comparable. First, by balancing

the capillary force with the gravitational force, the curvature C is estimated as

C−1 ≈ γ/(ρgh). This length scale C−1 becomes smaller with height, which means

that C−1 is an appropriate length for the viscous length, i.e., η∇2V ≈ ηC2V .

By balancing this viscous term with ρg (or equivalently with γC/h), we get

ηC2V ≈ η

(
ρgh

γ

)2

V ≈ ρg,

and hence,

h2V ≈
γ2

ρgη
.

Using an approximation V ≈ dh/dt, we obtain the scaling law

h ≈

(
γ2t

ρgη

)1/3

. (7.8)

Since the film thickness cannot exceed w, this treatment is valid only for C−1 < w,

which implies that the existence of the precursor film tends to be suppressed for

small height and small effective gravity. Namely, we could not observe precursor

films in experiments carried out horizontally. This scaling law eq.(7.8) does not

include any geometrical parameters of the channel such as d or w, so that we can

say a universal scaling law in this sense. The dimensionless form of eq.(7.8) is

h

κ−1
≈

(
γt

ηκ−1

)1/3

, (7.9)

where κ−1 = (γ/ρg)1/2 is the capillary length.

This universal scaling form well describes experimental results as shown in

Fig.7.3. Fig.7.3(a), where the length of precursor film h is plotted as a function

of the elapsed time t for different channel depth d and liquid viscosity η, implies

that the dynamics of proceeding of the LPF depends on viscosity, and possibly

on channel depth. However, in Fig.7.3(b), which is the same plot but whose axes

are renormalized according to eq.(7.9), all of the data collapse and their slope

correspond to the theoretical line indicated as “slope 1/3” in the final regime

(h/κ−1 À 10). The fact that the dynamics seems to depend on channel depth
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d was the misunderstanding caused by the difference in the initial regime of the

dynamics. The dynamics of the LPF in the later time does not depend on any

geometrical parameters of the channel as shown in eq.(7.9), namely the scaling

form of the dynamics is universal in this regime. This limited agreement is fully

consistent with the prediction, which holds only in the limit when h À zf , i.e.,

h/κ−1 À zf/κ
−1 with zf/κ

−1 = 2κ−1/w being in the range from 12.9 to 13.5.

Note that if channel were too long, the problem of the evaporation would come

into play.

7.5 Applications

To show capabilities of open channels for micro mixing devices, we designed and

fabricated devices with open channels, and then demonstrated two different types

of experiments: one is the multiple color changes of the BTB solution, and the

other the expression of the Green Florescence Protein. In this section, we shall

describe these two experiments, and then discuss the capability of our devices as

new devices. Here, it should be emphasized that we could not observe any effect

of the precursor film in the two demonstrations, where the devices were placed in

horizontal; the precursor film tends to disappear in the small gravity limit, and

thus the curvature C of the free liquid-air interface defined as C−1 ≈ γ/(ρgh)

equals zero.

7.5.1 Color changes of the BTB solution

We designed a simple device for mixing one solution with four different solutions

and carried out experiments with that (Fig.7.4). The device consists of one

circular spot, four square spots, and open channels connect the circular spot and

each square one as shown in Fig.7.4(a). The width of open channels is about

0.2 mm, which is similar to that of open capillary used in the previous sections.

The depth is chosen as ' 0.6 mm, which seems still to satisfy deep channel

limit according to the results that the scaling law eq.(7.3) or eq.(7.4) describes

experimental results well even for d = 0.2 mm, at least for d = 0.4 mm as

shown in Fig.7.2(b). It is practically good because the deeper channel needs the

larger volume of liquids, while liquids are generally quite expensive in the case

of DNA solutions or proteins. Then, we determined the depth and diameter of

the circular spot as 0.3 mm and 4 mm, and the depth and width of the square
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spots as 1.7 mm and 2 mm, respectively, by taking into account the volume of

the mixing liquid, and the depth and size of the square spots in order to obtain

visible color changes.

In addition, we performed a surface treatment to make the surfaces more

wettable for the aqueous solutions. We performed the oxygen plasma etching

to the entirety of the sample, namely the side and bottom surfaces of channels

and the circular and square spots, by an apparatus (FA-1, Samco) under the

following condition: RF power 25 W, O2 flow flux 10 ml/min., treating time 10

s. Furthermore, the path surface is made further more hydrophilic by applying

hydrophilic coating liquid (WG-R1, Marusyo Sangyo), while spots are not added

this treatment to avoid leak of the solutions from the spots.

We first deposit four solutions at the square spots, which are pinned by the

edges of the spots, and then inject another solution in the circular spot. Soon

after injection, the solution flows in the channels, and reaches the four square

spots at the same moment.

We demonstrated with the BTB solution and 4.8 mm3 of four solutions with

different pH (1.2, 6.9, 10.4, and 12.8, respectively). As shown in the snapshots

(Fig.7.4(b)), soon after the injection of the BTB solution at the left circular spot

(t = 0.00 s), the BTB solution flows and arrived at the four square spots. Then

it starts mixing with each solution in each spot, and thus color of the solution

in each spot starts changing at the same time (t ' 1.5 s). The proceedings of

the color changes are shown in Fig.7.4(c), where normalized mean brightness of

spots (from S1 to S4) are plotted as a function of the elapsed time. Also from

this plot, we can confirm that the mixing at each square spot starts almost at

the same time (t ' 1.5 s).

The pictures (Fig.7.4(b)) were obtained from a movie taken by a digital cam-

era (D800E, Nikon) with a macro lens (AF-S Micro NIKKOR 60mm f/2.8G ED,

Nikon). The brightnesses plotted in Fig.7.4(c) are calculated on the basis of an

equal weight average of 256-step brightnesses for RGB colors obtained from a

central part of the spot (80 % of the spot area) by using Image J.

7.5.2 Expression of GFP

We further fabricated a simpler device for mixing two solutions and demonstrated

a biochemical reaction, the expression of green florescence protein (GFP), with

this device.
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Fig. 7.4. Multiple color changes of the BTB solution. (a) Top and side view of a micro devices
for mixing one solution with four different solutions. All the numbers are lengths whose units
are mm. (b) A demonstration of the device. First, 4.8 mm3 of four solutions with different
pH are deposited in the right square spots (pH=1.2, 6.9, 10.4, and 12.8, in order from the top
to the bottom spots), which are pinned by the edges of the spots. When the BTB solution,
which is injected in the left circular spot, arrives at each square spot and starts mixing with the
solution in each spot (t = 0.00 s), the colors change almost at the same time. (c) Normalized
mean brightness vs time. The brightness of all the four spots (from S1 to S4, in order from
the top to the bottom) starts to decrease from the initial value (all normalized to one) almost
simultaneous (t ' 1.5 s). (a) and (b) are reprinted from [41], supplemental information and
Fig.3(a).
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The device consists of two circular spots S1 and S2 whose diameters are 3 mm,

one square-shaped mixing spot M (1 mm × 1 mm) and open channels C1 and

C2 connect the circular spots and the mixing spot as shown in Fig.7.5(a). The

width and depth of the channels are designed 0.2 mm and 0.6 mm, respectively,

similarly to that in the case of the previous one. The depth of the mixing spot

is same, and that of circular spots are 2.0 mm. Then, we performed a surface

treatment to the entirety of the device to make the surface more wettable for the

aqueous solutions. The oxygen plasma etching was performed under the same

condition as that for devices for the previous one except the treatment time

30s instead of 10s for the previous case. Soon after two different solutions are

injected in each circular spot at the same time (t = 0 min.), the solutions flow

and arrive at the mixing spot almost at the same time (a bit different because

the flow velocity depends on viscosity of the liquid, but the time difference is

sufficiently smaller than reaction time), and the synthesis of the protein starts

in the mixing spot as shown in Fig.7.5(b).

The details of the protein expression are given below. We used a commercial

kit to express GFP (S30 T7 High-Yield Protein Expression System, Promega).

The cell-free protein synthesis was performed by mixing two solutions: 20 mm3

of Liquid 1 containing DNA, and 20 mm3 of Liquid 2 containing mimicking

cytoplasm or protein expression system in bacteria (E.coli). More specifically,

the Liquid 1 is obtained by mixing S30 Premix Plus (15.0 mm3) and T7-S30

Extract for Circular DNA (13.5 mm3), and the Liquid 2 is obtained by plasmid

DNA encoding GFP (1.5 mm3) and Nuclease-Free water (27.0 mm3).

The expression of GFP was observed under a fluorescence microscope (IX71,

Olympus) equipped with an objective lens (10×) and a color CCD camera (DP80,

Olympus) after the injection of the solutions (Fig.7.5(b)). The exposure time and

ISO are fixed to 200 ms and 800, respectively. The brightnesses of the mixing spot

(80 % of the spot area) in the pictures are multiplied by 256/140 times for RGB

colors by using Image J (0-139 grade is scaled up to 0-255 grade). We plotted

the mean brightness as a function of the time for three independent experiments

for quantitative discussion. The data labeled 3 in the plot correspond to the

experiment shown in Fig.7.5(b). The filled symbols indicate that the liquid in the

mixing spot M is almost completely evaporated as seen in the bottom snapshot in

Fig.7.5(b), which suggests that the evaporation is not significant for the duration

approximately 40 min. after the reaction starts. Furthermore, the reaction time
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Fig. 7.5. The expression of the green florescence protein (GFP). (a) Top and side view of a
micro device for mixing two solutions at a mixing spot M. All the numbers are lengths whose
units are mm. (b) Progress of the expression of GFP in the square-shaped mixing spot M
(of the sides 1mm), at which 20mm3 of Liquid 1 containing DNA, and the same volume of
Liquid 2 containing mimicking cytoplasm or protein expression system in bacteria (E.coli),
are mixed after they are injected in the circular spots S1 and S2, respectively, at t = 0 min.
The brightnesses of the snapshot are multiplied by 256/140 times for RGB colors by using
Image J to obtained a visible brightness change. The inhomogeneity of the color of the mixing
spot M is due to the liquid flow inside the spot. The evaporation is not significant except
for the bottom snapshot. (c) Mean brightness vs time. The brightness obtained from three
independent experiments are plotted as a function of the elapsed time. The data labeled 3
correspond to the experiment shown in the snapshots, and the filled symbols suggest that the
liquid in the mixing spot M is almost completely evaporated as seen in the bottom snapshot
in (b). All figures are reprinted from [41] Fig.3(b) and supplemental information.
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of biochemical reactions in this demonstrations can be estimated as about 30

min. from plateau region in the plot, which is reasonable value considering other

reported values in the literature, e.g., [56]. It is to be noted that we did not

control temperature during demonstrations, rather there was extra heat caused

by the UV light to take pictures.

7.5.3 Advantages and disadvantages of the devices with

open capillary

The advantages of our devices, which consist of open-channels and use capil-

lary force as the driving force, are the following: (1) Easier fabrication. The

open channels are fabricated on a PMMA plate with numerical controlled micro-

milling system outside a clean room. In addition, the sealing by another plate,

which is difficult for PMMA, is unnecessary. (2) Durability for reuse and washing.

PMMA is mechanically strong than PDMS gel conventionally used for closed-

channel devices. Furthermore, our devices are free from adhesion for lids and

from connection to a pump system, both of which usually undermine durability

of conventional closed-channel devices. Actually, the demonstration for the BTB

solution as shown in Fig.7.4 was carried out after the many times of the same ex-

periments on the same device with washing (supersonic washing or simple rinsing

by pure water) and/or surface treatment being performed between experiments,

which proves a possibility of reuse. (3) Advanced control of wettability. Various

effective and repeated surface treatments are available even to the surfaces of

the channels, because the surfaces are free from lids and have high durability.

Actually, the advanced control (by hydrophilic coating liquid) is performed in

the BTB demonstration. (4) Collection of liquids after reactions. The absence of

lids gives flexibility for the collection of the liquids from mixing spots. (5) Porta-

bility. Our devices use capillary force as driving force, namely our devices do not

need any pumps. Thus, the systems can be smaller than conventional ones using

pumps, which probably allows us to use them for various purposes such as com-

plex medical tests at a small clinic, outside clinics, or developing countries. (6)

Suitability to usages of viscous liquids. We need high-power pumps for usages of

high viscous liquids with the conventional devices with pumps, which can become

a problem especially in the case of tests of biochemical reactions. On the other

hand, we can use viscous liquids as demonstrated with the expression of GFP,

only if we can make the surfaces of the channel wettable by the liquids, again

89



because capillary force is used as the driving force in our devices. Liquid can

continue flowing although the flow velocity decreases with increases of viscosity

and length of the channels due to the scaling law eq.(7.3).

There are also some disadvantages which should be solved: (1) Evaporation

and (2) Contamination, which are caused by the absence of lids, although the

evaporation is not effective until around 40 min. in the demonstration of GFP

expression as shown in Fig.7.5. These problems can be solved by putting an

additional cover on the PMMA plates. The cover should not directly touch with

the channels to avoid a flow between the channels and the edges of the cover. (3)

Slowing down dynamics. The velocity of the flow of liquids decreases with the

scaling law eq.(7.3), differently from an almost constant velocity in the case of

devices with pumps. It may become a disadvantage, while the velocity and the

time when the liquid arrives at each spot can be calculated from the scaling law

eq.(7.3).

It is to be stressed that these advantages indicated above can exceed the dis-

advantages mentioned above; our open-capillary devices have big capabilities and

worth trying to solve disadvantageous points. Although the two demonstrations

done here are quite simple examples, more complex and combinatorial devices

such as conventional devices used in many microfluidic applications, are available

and probably show their capabilities clearly; for studies such as droplet manipu-

lation by flow [57], generation of concentration gradient [58], sorting of particles

[59], and mixing [60], in diverse fields including molecular analysis, biodefence,

molecular biology and microelectronics [24].

7.5.4 The scaling law as a guiding principle

The scaling law for the imbibition dynamics in the initial regime (eq.(7.3) or

eq.(7.4)) plays an important role as a guiding principle to design open-capillary

devices such as devices used in two demonstrations; flow velocities or times we

need can be predicted almost precisely by the simple scaling law in a wide range

of physical parameters. For example, when we need a device for mixing two

liquids with different viscosities, we can design it with two different ways based

on the prediction from the scaling law: (1) Same channel length and different

depositing time. Let us consider the case where the length of the channel C1

and C2 is same, which is similar to the device for the GFP expression, and the

liquid 1 (L1) deposited at S1 is more viscous than the liquid 2 (L2) deposited at
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S2. In this case, L1 needs longer time to arrive at the mixing spot M. The delay

time tdelay can be predicted because the time that each liquid needs to arrive at

M can be calculated with eq.(7.3). Thus, if we deposit L2 at S2 tdelay later than

deposition of L1 at S1, we can make both liquids arrive at M at the same time.

(2) Different channel length and same depositing time. When we want to deposit

both liquids at the same time (in this case, we can use combinatorial pipettes

to deposit liquids), we can determine each channel length by calculation with

eq.(7.3).

For the width w and depth d of the channels, a standard recommendation

would be w = 0.2 mm and d = 0.6 mm, as employed in our device. As dis-

cussed above, we derived the scaling laws for deep channels (d > w/2), so that

deeper channels are preferable. On the other hand, deeper channels require larger

amount of liquids, which is not good especially when the liquids are expensive,

for example in the cases of DNA or proteins. As shown in Fig.7.2(b), the initial

dynamics of the bulk liquid column for open capillaries whose depth are d = 0.4

mm is well on the straight line, namely the deep channel assumption is suffi-

ciently satisfied for d = 0.4 mm. Thus, we recommend d = 0.6 mm as the depth

of the channels with width w = 0.2 mm. Here, the width w, roughly the diameter

of the drill tip for fabrication, is selected as 0.2 mm because narrower channel

needs much time and wider channel needs lager amount of liquids. The actual

width and depth of the channel can be slightly different from the desired values

which are determined by the drill tip diameter and other milling conditions, and

can be inhomogeneous along the channel. Thus, we can determine the actual

width as the averaged value calculated from eq.(7.1) with the maximum height

of capillary rise of the bulk liquid column, as indicated in sec.7.3.

When one wants to reduce the amounts of liquids, the width w and the depth d

should be made smaller even to sub-micrometer. Even in such a case, scaling laws

eq.(7.1) and eq.(7.3) still hold although a possible modification may appear when

the scales of the channel become close to nanoscales, because small roughness

of the surfaces brought about during processes of fabrication are not negligible

as discussed in the case of a closed channel [61]. To fabricate devices on sub-

micrometer scales, we may have to use a silicon mold made by photolithography

to make a sealed channel device with PDMS gel (the seal will be preferable to

reduce evaporation for the devices with this scale), which may be appropriate if

the cost of liquids is significant.
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7.6 Conclusion

We fabricated open capillaries whose cross-sections are rectangular shapes on

a PMMA plate by a computer numerical controlled (CNC) micro-milling sys-

tem. We carried out imbibition experiments; one end of the capillary is touched

with the horizontal surface of the liquid bath, here PDMS bath, and then liq-

uid rises up inside the capillary. From the experiments, we found two regions:

the bulk liquid column (LC), where capillary is almost completely filled with

liquid, and precursor film (PF), which proceeds ahead of the bulk liquid col-

umn. For LC, the statics (final height) and both of the initial (viscous) and

final (visco-gravitational) imbibition dynamics are well described by simple scal-

ing laws developed with assumptions (complete wetting and rectangular shaped

cross-section of LC), and with deep channel approximation, for the wide param-

eter range. On the other hand, the proceeding of PF scales as t1/3 with t being

the elapsed time, which is seen for the capillary rise into corners [34] and [35];

the proceeding of precursor film is regarded as the capillary rise into corners of

the open capillary, here. Furthermore, to show capabilities of our open capillary,

we demonstrated (1) multiple color changes of the BTB solution and (2) the

expression of green florescence protein (GFP). Our open-capillary devices do not

need adhesion process of lids and any pumps working as driving force, which

are advantageous compared with the conventional closed-channel with a pump

system, only if we can solve problems such as evaporation or contamination. The

simple scaling law for the dynamics of the LC in the initial (viscous) regime can

work well as a guiding principle to design open-capillary devices.
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Chapter 8

Summary

We studied imibibition of two types of micro-patterned surfaces: one is the sur-

face of a leg of wharf roach and artificial surfaces mimicking it, and the other

open-capillary. Combing the conclusion of each chapter, we summarize as fol-

lows: for imbibition of the surface of the VIth leg of a wharf roach, we found the

characteristic imbibition dynamics; imbibition front seems to start proceeding

to the next podite only after the lower podite is almost completely filled, from

which might result the unusual non-slowing down dynamics (length scales lin-

early with time) on a coarse-graind level. Although we could not reproduce the

non-slowing down dynamics through imbibition experiments with our artificial

surfaces partially mimicking the surface of the leg, we found that imbibition of

hybrid surfaces is faster than that of non-hybrid surfaces. Both non-slowing down

dynamics and faster imbibition have advantages for transportation of liquids. On

the other hand, for imbibition of open-capillary, we confirmed that the statics

and both the initial (viscous) and final (visco-gravitational) imbibition dynamics

of bulk liquid column, where capillary is almost completely filled with the liquid,

are described by respective simple scaling laws. We also found that the proceed-

ing of the precursor film, which proceeds ahead of the liquid column, is obeyed

by another scaling law which has been confirmed for capillary rise into corners.

In particular, the scaling law confirmed for the imbibition dynamics for the liq-

uid column in the initial (viscous) regime for wide parameter ranges can work

as a guiding principle for designing open-capillary devices. Our open-capillary

devices without pumps seem to have capabilities of new devices as demonstrated

by multiple color changes of the BTB solution and the expression of GFP.

As mentioned in the introduction and the previous studies of imbibition of
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micro-patterned surfaces (chapter 5), imbibition dynamics seems to depend on

the geometry and size of the textured surface, but the cross-over of exponents

appearing in the scaling law has yet to be found; we have not obtained compre-

hensive understanding. In this work, we experimentally and theoretically studied

imbibition of open capillaries whose cross-sections are rectangular shapes. To

study imbibition of open capillary with different geometry, e.g., round bottom,

round edges etc., is one of future works. I note that this seems to be fundamen-

tally important for understanding imbibition dynamics. Another future work is

imbibition of textured surfaces with an imhomogeneous array of micro pillars, or

hybrid textured surfaces. These seems to help to find another scaling law which

has advantages for liquid transportation.

Finally, it is to be stressed that we should learn much more from nature. Even

if we confine our attention to wetting phenomena, there are a lot of animals,

insects and plants that have advantages in wettability. Some of them have micro

structures on the entire or some part of their surface to get high wettability or

better liquid transportation; they know what they should do to obtain tough

surface, they know what they should do to transport liquid with low energy, and

so on. Learning from them and understanding these mechanism may help us to

achieve the world with earth friendly products.
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Appendix

A Contact angle

A.1 Dynamical contact angle
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Fig. 1. Dynamical contact angle θD and the velocity of the contact line V (a) when the contact
line advances θD > θE , and (b) when the contact line recedes θD < θE .

In most cases, values of the dynamical contact angle θD, which is defined

as the angle between liquid and substrate when the contact line (or triple line)

moves, are different from those of equilibrium contact angle θE, which is defined

when the contact line does not move (here the case of contact angle hysteresis is

not taken into account). θD > θE when a drop spreads on the substrate (contact

line advances), while θD < θE when a drop shrinks on the substrate (contact line

recedes) as shown in Fig.1. The dynamical contact angle θD depends on V 1/3 (V

is the velocity of the contact line), which is experimentally founded by Hoffman

in 1975 for the case of complete wetting (θE = 0) [53]. The relation between θD

and V has been also described theoretically for example in textbook [42], for the

case of that θD > θE (contact line advances) and θD ¿ 1;

V =
V ∗

6l
θD(θ2

D − θ2
E), (1)
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which yields V ∼ θ3
D for the complete wetting (θE = 0) as reported by Hoffman.

In this formula, V ∗ ≡ γ/η is characteristic velocity which is comparable to the

velocity of capillary rise in viscous region, and l is a numerical number about

15-20 related to the normalized length where viscous dissipation is effective.

A.2 Contact angle hysteresis

(Equilibrium) Contact angle may depend on the way to put the drop. When one

makes a drop on a plate by adding liquid, the contact line between liquid and

solid does not move for a while, and then suddenly moves. In other words, the

contact angle increases for a while, and then suddenly decreases and the drop

moves as the contact angle exceeds the higher limit value. This contact angle

is called “advancing contact angle” θa. On the other hand, when one makes a

drop by decreasing liquid, the contact line does not move and the contact angle

decreases until the contact angle exceeds the lower limit called “receding contact

angle” θr. The difference ∆θ = θa − θr is called “contact angle hysteresis”.

B Tanner’s law

Tanner investigated the dynamics of a drop spreading on a substrate in the case

of complete wetting; then found a scaling law called Tanner’s law,

θD ∼ t−3/10, (2)

where θD is the contact angle between liquid (involatile liquid here) and sub-

strate (smooth and clean surface), and t is elapsed time [54, 42]. The fact that

θD does not depend on the spreading coefficient S = γS − γSL − γ (eq.(2.10))

seems strange because the drop is strained with force which is comparable to

S, because the precursor film proceeds ahead of the drop, which was found in

another experiment performed by Hardy in 1919 [55]. The precursor film is a

few nanometer thickness, and spreads far ahead of the drop. This precursor film

is different from that we found in the work mentioned in sec.7.4; Our “precursor

film” is much thicker and is caused by capillary rise into corners of the channels.
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