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Abstract

The aim of the particle physics is to reveal fundamental particles and their
interactions. The Standard Model (SM) of particle physics explains the inter-
actions between fundamental particles well and is consistent with experimental
results so far. However, more fundamental theory is considered to exist because
SM still has some problems. A variety of theories such as String theory, Super
Symmetric theory, Extra-dimensional theory so on are studied as beyond the
SM. In this thesis, I explain a study of 5-dimensional theory which is one of
the Extra-dimensional theories. The goal of this study is to find out whether
there is Spontaneous Symmetry Breaking (SSB) and dimensional reduction in
non-perturbative region of 5-dimensional pure SU(2) lattice gauge theory for
orbifold. This study has done by Mean-Field expansion and Monte Calro simu-
lation.

5-dimensional gauge theories are being studied well as extensions of SM. 5-
dimensional theories here mean the theory of one time dimension and four spa-
tial dimensions. We can only perceive one time dimension and three spatial
dimensions and still we can consider one extra dimension existing in a way we
cannot recognize. The motivations of considering 5-dimensional theory are that
the quadratic divergence of Higgs mass which is one of the problem of SM can
be avoided and that the origin of Higgs field is explained by identifying Higgs
field with some of the 5th components of gauge field. This identification is called
Gauge-Higgs Unification (GHU). Higgs field can cause SSB and particles obtain
masses. Many perturbative studies of GHU model have been done. However the
perturbative study can deal with only weak coupling region. Therefore, I have
done the non-perturbative study by using lattice gauge theory in the case that
the 5th dimension has orbifold boundary conditions. Mean-Field study indicates

that SSB occurs with orbifold but not with torus boundary conditions. The
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parameters of the model are the size of 5th-dimension NV, the lattice coupling (3
and anisotropy parameter . The parameter v shows the difference of the scale
size (lattice spacing) between 5th dimension and other dimensions. When v > 1,
the scale along 5th dimension is larger than other dimensions.

The lattice gauge theory is the gauge theory defined on discretized space-
time. The physical observables are obtained by taking continuum limit if it
exist. Otherwise an effective theory for finite lattice spacing might exist. The
advantage of the lattice gauge theory is that it can study large parameter region
and can introduce gauge invariant cut-off.

From the Mean-Field study, I will show that the static potential along 4-
dimensional hyperplane on the orbifold boundary is 4-dimensional Yukawa po-
tential and gauge boson mass can be extracted from the potential. This means
there is SSB and the result is different from the one of perturbative study in
which fermions are needed for SSB. I also found that there is dimensional re-
duction to 4-dimensional gauge-scalar theory near the phase transition. Higgs
boson mass which is consistent with the experimental result is easily obtained.
This is also the difference with perturbative study where Higgs boson mass tends
to be too small. Moreover, there is 2nd order phase transition lines for v < 0.6
and one can take a continuum limit which does not depend on ultraviolet cut-off
in this region. I show that taking the continuum limit around v = 0.5. I can
get the 1st excited Z boson mass around 1 TeV. Although the convergence of
Mean-Field expansion has to be verified, the Monte Calro study also shows that
there is SSB and confirms Mean-Field study.

The advantage of this model is that it has only three parameters and at least
in the Mean-Field has the parameter region in which renormalizable continuum
limit exists and one can have a physical Higgs boson mass. Also because the 1st

excited Z boson mass is around 1 TeV, it is possible to be verified by experiments.
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Chapter 1

Introduction

The aim of the particle physics is to reveal the fundamental particle of the
matter and describe their interactions. Currently, the fundamental particles
which construct matter are considered as quarks and leptons. It is known that
there are four kind of forces between the particles which are gravity, weak force,
strong force, and electro magnetic force. The Standard Model is the theory which
describes three kinds of interactions without gravity by using gauge symmetry
assuming the quarks and lepton as point particles. Most of the experimental
results have been explained by the Standard Model. In this chapter, I explain
the Standard Model shortly [1, 2, 3] and discuss some problems of the model.

1.1 Standard Model

6 quarks and 6 leptons are discovered up to now. Table 1.1 is the summary
of the particles. The quarks and leptons have three generations and the indices
1 represent the generations. The Higgs field is a scalar field and it gives masses
to quarks and leptons. The standard model explains the interactions between

these particles by gauge theory.
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1st generation 2nd generation 3rd generation
U; up quark u charm quark ¢ top quark ¢
d; down quark d strange quark s botom quark b
v; | electron neutrino v, muon neutrino v,  tauon neutrino v,
€; electron e muon [ tauon 7
Tablel.l1 Generations of quarks and leptons

field SU(3).,SU((2),U(1)y
quark | Q; = (ur;,dr;) (3,2, %)

URi (3,1,2)

dr; (3,1,—3%)
lepton | L; = (vpi,er;) (1,2, %)

ERi (1,1,-1)
Higgs | H = (H*,H?) (1,2, %)

Tablel.2 Matter fields and Higgs. The electric charge is Qo = L* +Y

1.1.1 SU(2) x U(1) gauge symmetry

Table 1.2 shows that only left handed quarks and leptons are SU(2) doublet

and right handed quarks and leptons do not have SU(2) charge. The SU(2)

charge is called isospin charge. The upper component of the fundamental repre-

sentation has isospin 1/2 and the lower component has isospin —1/2. The U(1)

charge is called hyper charge.

The gauge transformations are

Li(z) — Li(x) = exp(—iL*0* —iY0)L;(x)

eri(x) — €p;i(r) = exp(—iY0)er; (),



1.1 Standard Model

where .

LY = 50“ (a=1,2,3), (1.3)
o is Pauli matrix, Y is hyper charge and 6%(a = 1,2, 3) and 6 are the functions of
x. Q; transform same as L;, and ugr; and dg; transform same as er;. When we

write gauge fields of SU(2) and U(1) as W and B,, respectively, the Lagrangian
having SU(2) x U(1) symmetry is written as
c=-twewer Ll pw
4w 4
+ Lyiy, (0" —igL*W§ —ig'Y By)Li + Qyiy, (0" — igL*W,, — ig'Y B,)Q;
+ €Rity, (0" — ig'Y B*)ep; + tRiiv, (0" — ig'Y B*)ug;
+ dpiiy, (0" — ig'Y B*)dpg; (1.4)

where W, and B, are field strength which are written as
Wi, = 0,W5 — 9,W5 + ge"“WiWy (1.5)

B,y = 8,B, —,B, (1.6)

where €2 is the completely antisymmetric tensor.

1.1.2 Higgs mechanism

Here I explain Higgs in the Standard Model. The Lagrangian of SU(2) x U(1)
symmetry with Higgs field is

'Chiggs = (DP«H)T(DuH) - V(HTH) + ['yuk:awa (17)
D, =0, —igL*W; — ig'Y B,
Eyukawa = _GeiEiHeRi - Gdi@LinRi - GuzQLzHTuRz + h.c (19)

where G., G4, G, are free paremeters. V(HTH) is the potential of Higgs scalar

field, and we assume it as

V =p?H'H + \(H'H)?, (1.10)
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with p2 < 0, A > 0. Then the potential has minimum when

_IUZ

v
HH=\—=—. 1.11
This is the true vacuum. Now the Higgs field can be expanded around v as,
V2 \ v+ h—i&)/2

where &1, &5, &3, h are real fields. When we assume &1, &5, &3, h << v it is written

H= (1+z‘€l;zk> ( 2 > zexp<igl;zk> ( 2 ) (1.13)

V2 V2

as

This is an SU(2) gauge transformation. Therefore, we can write Higgs field as

1= ( o ) (114)
V2

Now we replace W, B, with W; W, Zyu, Ay as follows,

1
W= —Q(W,} — W) (1.15)
1

W, = —Q(W,} +iW}3) (1.16)
_ 1 3 /

Zy = NETE (—gW,, +9'By) (1.17)
_ 1 3 /

A, = N (gW3u+ ¢ B,) (1.18)

Because WE and B, have same quantum numbers they can be mixed. The
mixing is done so that A, represents the photon field. Inserting (1.14) - (1.18),
to (1.7) we get

1 “ 272 v 2 2 m v?g?
£hi995:§8“ha h— u“h +§(g + 92, 2" + y

+(higher order terms) + Lyyukqwa- (1.19)

+ —
Wi



1.2 Hierarchy problem

We can see that h, W+, Z have masses.

1 1
mp =V =20, mys = gug, mg = oV gt g (1.20)

Next, let us see Yukawa term which is the interaction term between leptons,

quarks and Higgs boson. Inserting (1.7) to the Lagrangian is

G.v Gov, B G.v, - -
Lovkawa = — erer +erer) — upup + ugur) — —(drdr + drd
yuk \/E(LR REL) \/i(LR RUL) \/§(LR rdr)

+ (higher order terms) (1.21)

This is same for 2nd and 3rd generations. Therefore, the masses of electrons and

quarks are
Gev G, v Gav
Me = My = —, Mg = ——.
V2

\/§ )

In this way, leptons, quarks and gauge bosons VVNi and Z,, obtain masses because

(1.22)

Higgs field has vacuum expectation value. This is the mechanism of Spontaneous

Symmetry Breaking (SSB).

1.2 Hierarchy problem

The Standard Model seems explaining the behavior of the particles well, how-
ever it contains some problems. In this section I explain the Hierarchy problem.
The typical energy scale of the Standard Model is about 100GeV. The model
explains the phenomena of the fundamental particles very well around this scale.
The Standard Model has a limit for energy scale, and we need another theory
for higher energy scale. One of the candidate of the higher energy theory is
Grand Unification Theory (GUT). However, there is a problem when we assume
the Standard Model is applicable up to the GUT scale (10'GeV). This is the
fine-tuning problem originating from the correction to Higgs boson mass term.
The 1 loop correction to Higgs mass term contains the fermion loops and the

scalar loop.
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fermion — e

Considering the contribution of fermion and scalar loops, the correction to the
mass is

Ah

Am? = _Ah_
Mh 1672

|>\f|2[

A
2 2
T6m —2A —|—6mflog—] +

[A2 —emZlog] 4. (1.23)
m mp,
where my is fermion masses and A is cut-off scale.

Higgs mass is mj, = 126.5GeV according to the results from experiments [4].
The correction becomes very big if we assume the cut-off scale is around 10'6GeV
which is the GUT scale. In order to have m? ~ (100GeV)? we should obtain
(100GeV)? from sums and subtraction of the (101°GeV)? order terms. That is

we need 28 order fine-tuning and it seems unnatural. It means that there are

phenomena which can not be explained by the Standard Model in that scale.



1.3 Beyond the Standard Model

1.3 Beyond the Standard Model

There are many attempts to solve the hierarchy problem introducing new the-
ories such as extra-dimensional theories and supersymmetric theories. In this
study I worked on Gauge-Higgs Unification model which is one of the extra di-
mensional theories. I explain Gauge Higgs Unification model in chapter 2. The
Gauge-Higgs Unification model has been studied in perturbative region very well.
In this time I focused on non-perturbative region applying Lattice gauge theory
(chapter 3). First, I used mean-field expansion to calculate physical quantities

(chapter 4 and 5) and also applied the Monte Carlo simulation (chapter 6).






Chapter 2

Gauge-Higgs Unification model

(Continuum)

2.1 Higgs field as extra dimensional gauge field

In this section I explain the Gauge-Higgs Unification model which identifies
the Higgs field as the extra dimensional Gauge field. In this case the Higgs boson
mass is protected by 5-dimensional gauge symmetry. Thus it can be a solution
of hierarchy problem explaining the origin of the Higgs field. When the extra di-
mension has torus boundary conditions (S7) Higgs field is adjoint representation.

To get fundamental Higgs field one can consider orbifold boundary conditions

(51/Z2).

2.2 Orbifold Projection

In this section I explain ”orbifold projection” along 5th dimension [5, 6]. First
we start with the torus boundary condition. The SU(N) gauge field on torus
requires two open charts. And different SU(N) gauge fields (AS\;) and Ag\j[')) are
defined on each of these charts . And also a transition function G € SU(N) is

required on the overlaps of these charts.

A =6A5PG7 + oG (2.1)
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Then we impose the orbifold projection

RAGH = A(). (2.2)

Here reflection R is

2= (Ty,25) = Z=(Ty, —T5)

Ap(z) = amAm(2), o, =1, a5 =—1. (2.3)

On the overlaps of these charts, the orbifold projection is written as

RASY = GALD G + Gay g (2.4)

because of the relation between Ag\}r) and AS\}) in the regions Eq. (2.1). I write
Ag\}_) as Aps from now on. Gauge-covariance under gauge transformation 2

requires

G — (RQ)GQ . (2.5)

For ¢ — 0 at the boundary, we impose
g|:1:5:0,7rR =g (26)

where g is a constant. Aj; has Dirichlet boundary condition oy Ay = gAprg™?

and OsAj; has Neumann boundary conditions —ap05Ay = g0sAng™t. G =g
constant implies [g,{2] = 0 on the boundary for gauge transformations Q. g¢
should be inner automorphism which assigns parities to group generator T
which transform as
gTog~! =T
gTq~ ' = -T°,

where T® are unbroken generators and T% are broken generators [7]. Then the

gauge symmetry G = SU(N) is broken on the boundary to its subgroup depend-

ing on g.

G=SU(p+q) — H=SU(p)xSU(q)xU(1)
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The boundary Higgs boson mass term is

mirtr{ (45, 945, 9]} =0. (2.7)
r5=0,TR
This Higgs boson mass term is zero because
(D5G)(DsG) =0 (2.8)

from (2.4) [5].

For the SU(2) case the gauge symmetry can be broken to U(1) on the bound-
ary. If we choose g = diag(—i,1), the unbroken fields on the boundaries are Ai,
Al and A2. We can assume this Ai as U(1) vector boson and Aé’Q as complex

Higgs.

2.3 Hosotani Mechanism

The Gauge-Higgs Unification model has been studied perturbatively [8]. The
simplest case is 5-dimensional SU(2) gauge theory with orbifolded extra dimen-
sion S1/Z5 [9].

5th dimension is small enough to be dimensional reduction and the cut-off
of this theory is 1/R, where R is the radius of 5th dimension. The fields are

expanded with Fourier expansion along 5th dimension because of S7.

d(xn) = \/_ Z ¢(n) ot B Ts (2.9)

Then, with orbifold projection R : ¢(x,, —x5) = Rp(x,, z5), even and odd fields

are written as

R=+1:
¢4 (xm) = \/ﬁiﬁb(o) Z ) (x,) cos(nxs/R) ,  (2.10)
R=-1: .

o0

d_(znr) = % Z o™ (x,) cos(nzs/R). (2.11)
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This expansion is called Kaluza-Klein (KK) expansion. The 4 dimensional KK

masses m,, are

(m,R)* = n?. (2.12)
Now we consider vacuum expectation value of Higgs field < H >=< A5 >. If «
is defined as

a=gs <A >R, (2.13)

KK mass is shifted as

(m,R)*> =n? (n+a)® forn#0. (2.14)

The effective potential is written as [9, 10]

3:2-P X cos(2mma)
64mORY = md

Via) = (2.15)

where P = 3 —4Ny and Ny is the number of adjoint fermions. Higgs boson mass
from the potential is
dZV 2
(muR)* = RgZW L =0

O=Cmin

(2.16)

where aqyi, is the a value which minimizes the effective potential. The dynamical

gauge boson mass is

My = Smin (2.17)

When Ny < 3/4, there is no SSB (amin = 0) and my = mz = 0. On the other
hand, when Ny > 3/4, there is SSB. There is no SSB for pure gauge field and
more than one fermion is needed for SSB.

In this perturbative study of GHU, the experimental value of p = my/my =
1.38 is hard to get [11]. And because it is the 5-dimensional theory, it is non-

renormalizable. Thus the theory is low energy effective theory.
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2.4 Non-perturbative Gauge-Higgs Unification

In previous section we saw GHU theory in perturbative study. What hap-
pens for the GHU theory in non-perturbative region? We study GHU non-
perturbatively by Lattice gauge theory. Lattice gauge theory is the calculation
method of gauge theory by discretizing the space time on a Euclidean lattice.
The advantage of using the lattice theory is that it is possible to introduce UV
cut-off in gauge invariant form as well as it is possible to study non-perturbative
region. We also apply Mean-Field expansion. Mean-Field expansion is expected
to work well for higher dimension although it does not work well for 4-dimensions.

We study the structure of phase diagram and whether there can be SSB for
pure gauge theory. We also study whether there is dimensional reduction or not
and, if it is, what is the way of dimensional reduction. Is it compactification like

perturbative region or localization? (cf. [12, 13, 14, 15])






Chapter 3

Lattice formulation of pure gauge

theory

3.1 Continuum gauge theory
Lagrangian for continuum pure SU(N) gauge theory is written as
1
L= @tr(FMNFMN) (31)

where Fyyn is strength of the gauge fields Ay, = 1A, T € su(N).

Fyn = 0mAN —ONAm + [Ar, AN] (3.2)

su(N) is Lie algebra of the group SU (V) and A}r\/_, = —Ap, tr(Ay) = 0. Eq. (3.1)

is invariant under the following gauge transformations

v = Q)0 Q(2)" + Q(z) AnQ(z)T. (3.3)

Where Q(z) € SU(N) is local gauge transformation] Under the gauge transfor-

mation the field strength F;n transforms covariantly as

Then it is obvious that the Lagrangian Eq. (3.1) is invariant under the gauge

transformation. [16, 17]

15
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3.2 Lattice gauge theory

Now we consider the definition of the gauge field on lattice. Gauge field is
defined on the links of the lattice because the gauge field is vector field. However,
we cannot define A, directly on the links because Ajps is not covariant under
the gauge transformation. So we consider covariant variable U(z, M) which is

defined as

U(x,M) = Pexp{/o dsAp(x + abl - s)} (3.5)

x—f—aM
= ’Pexp{/ dxAM(l')}. (3'6)

Where M is the direction of the gauge field, n is the position of the lattice
points and U(z, M) € SU(N). The variables for opposite direction is defined as
Uz + all, —M) = U(z, M)'. The link gauge variables transform as follows.

Uz, M) — Qx)U(z, M)Q(x + aM)T

and the product of the link line transforms as
Utine = Ul(x, My)U(z + aMy, Ma)U(x + aM; + aMy, M3) - - - Uz, M,,)
— Ux)Dine(xy, + aMn)T.
Then closed line transforms as
Uoop = Uz, M)U(z + aMy, Mo)U(x + aMy + aMy, M) - - - U(z — aM,, M,,)

— Q(x)UloopQ(x)T.

It means that tr {Ulop } is gauge invariant. The smallest closed loop is called

plaquette. A plaquette is a product of four links and it is written as follows.

Un.n(z) = Uz, M)U(x + oM, N)UT (2 + aN, M)U* (2, N) (3.7)
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Using this plaquette, the Wilson plaquette action [16, 17] is defined as
_ B
Swll) = 5% %:Re tr{1 —U(p)}. (3.8)

Where (3 is a lattice coupling and Zp means sum over all plaquettes:

Zp: => > (3.9)

r M#N

3.3 Continuum limit

Here I show that the Wilson plaquette action corresponds to continuum action

for a — 0.
m+aM acha]\;[JraN
Uun(e) =Pespl [ de'Au(@)} Pexp{ [ de'An(a))
x x+aM
x—l—aN—i—aM :t—i—aN
“Pexp{— ) d:v’AM(m’)}~73exp{—/ do' Ay (2')}
x+aN T

= exp{a®((OmAN(z) — ONAn(2)) + [Am (2), An (2)] + a* X3 + a* Xy + O(a®))

=1 + CLQFMN + a3X3 + a4X4 + (I4FJ%4N + O(aS).

where X3 and X4 are ¢® and a4 term. Because tr{T%} = 0, tr{Fyn} =

tr{ X3} = tr{X4} = 0. Then Wilson plaquette action is

SwlU] = % Y Retr{l-U(p)} O

— % Z tr{l — %(UMN(x) + Uztmv(x))}
@, M#N
B

=N Z tr{a*g? Fyn (2)? + O(a®)}.
z,M#N

(3.11)

It follows

lim Sy [U] = lim P9 a* > tr{Fun(x)’}.

a—0 W
r M#N

(3.12)

(3.10)
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On the other hand the continuum action is

lim Sy (U] = % / dz* Y Y tr{Fyn(2)’}.

T M#N
(3.13)

Thus, Wilson plaquette action is consistent with continuum action when 8 = 29—];[.

16, 17]

3.4 Lagrangian for orbifold

Now we consider anisotropic 5-dimensional pure SU(2) gauge theory where

5th dimension is orbifolded. The Wilson plaquette is

Ns—1T
SW = —% Z Z Z Re tr Upg_fbound(n;Mv N)]

ny ns=1 LM<N
Ns—1

—% Z Z _%: Re tr Up%bound(n; M7 5)]

ny ns=0

_%Z Z Z RetrUpEbound(n;M,N)]-

ny LM <N ns=0,N5

(3.14)

The lattice coupling is defined as

2Nas 2Na3
Ba = 2 5= 5 .
95 9505

(3.15)

In this study we parameterized the anisotropic lattice by § and v where 8, = 3/~
and f5 = Bv. Then v = a4/as5 at classical limit. The gauge transformation of

the bulk links is

U(n, M) — QBY@) (U (n, M)QSYET (0 + M), (3.16)

the gauge transformation of the links on the boundaries is

U(n, M) — QU ()U (n, M)QWUIDT (4 A1) (3.17)
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and the gauge transformation of the links which one end is in the bulk and the

other touch the boundary is
U(n, M) — QU ()U (n, M)QEY)T (4 M) (3.18)

In this set up, general links satisfy following orbifold projection condition

I U(n, M) =U(n, M), r=T7,R (3.19)

where the reflection property about the origin of the fifth dimension is
RU(n,M)=U(n,M)
RU(n,5) =U' (7 —5,5) (3.20)

with
n= (ny,ns), 0= (np,—ns). (3.21)

The transformation under the group conjugation is
T,U(n, M) = gU(n, M) g~" (3.22)

where g = —io3.

3.5 Observables for pure SU(2) lattice gauge theory on
the orbifold

3.5.1 Higgs boson Operators

Polyakov loop along 5th dimension can be Higgs boson operator. In order to
construct Higgs boson operator for orbifold, I start from the Polyakov loop for

torus P(n“)(toms)which is parametrized by the coordinates ns = 0,1,--- ,2N5—1.

P(n,,) ™) = U((n4,0),5)U((n4,1),5) - U((nyi, 2N5 = 1),5)  (3.23)
Then the Polyakov loop for orbifold P(n,) is obtained by applying orbifold pro-
jection

Orbifold projection : U(n,M)=TU(n, M), (3.24)
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where I' = R7,. The link U((n,,ns5),5) transforms under I" as

TU((ny,m5),5) = gU'(ny, —ns — 1),5)g~" = gU' ((nu, 2N5 — ns — 1),5)g~ "

Then, the Polyakov loop for torus is

P(ny) = U((n,,0),5)U((ny,1),5) - - U((ny, Ns — 1),5)
-U((ny, Ns),5)U((ny, Ns +1),5)---U((n,, Ns + 1), 5)
U((n ,0),5)U((ny, 1),5) - - - U((ny, N5 — 1),5)
I'v((nu, Ns),5)'U((ny, N5 +1),5)---TU((n,, Ns + 1),5)
= U((n,0),5)U((n,1),5) - - U((np, N5 — 1), 5)
-gU((nu, N5 —1), 5>U((”u7 N5 —2),5) - U((”ua 0), 5)9T
= l(nu)gl (ny)g", (3.25)

where [(n,) is the line I(n,) = U((n,,0),5)U((ny,1),5) - U((ny, N5 — 1),5).

Then we obtain two Higgs boson operators with the Polyakov loop
O ( =13 Ztr (t,nk)) (3.26)

and

O%4 (1) =73 Z tr(®(n,) 0" (n,)), (3.27)

where ®(n,) = ﬁ[P(nu) — PT(n,),g]. If we choose gauge transformation as

=V U((TLM,O),5)U((TLM, 1)75)
= (V12U (14, 0),5)U ((n, 1), 5)U (1, 2), 5)
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where V = e“A?t, the gauge links along 5th dimension transform as

U((ny,0),5) — Qn,,0)U((n,,0),5)Qn,, 1) =V
U((m,1),5) = sy DU ((0,1), )Ry, 2) = V

U((ny,2Ns —1),5) — Q(n,, 2N5 — 1)U((n,,2N5 — 1),5)Q(n,,,0)T = V.

Thus, Polyakov loop P(n,) can be written as P(n,) = V?"5. Then we see that

B(n,,) = ﬁ[mnu) ~ Pi(n),g]
= a[APY, g] + O(a®). (3.29)

®(n,) has components only for broken generators o' and o2. Because of the
orbifold projection, gauge components of A5 which commute with g vanish. Here,
OL(t) and Ok (t) have spin J = 0, 3-dimensional parity P = 0 and charge
conjugation C' = 1. [18, 19]

3.5.2 Z boson Operators

First we consider 4-dimensional SU(2) Higgs Model. We write the complex
SU(2) Higgs doublet as
o "
P2

Then the gauge invariant gauge boson operators can be written as [20]

~

WE = —itr{oP ol (x + ak)U(x, k)p(z)},

P = io3®, Y= (é (I>> = ((él ¢1> = constant - SU(2) matrix,
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k = 1,2,3 is Lorentz index and B = 1,2,3 is adjoint gauge index. Under the
isospin transformation A € SU(2) (global transformation) ¢ and U transform as

follows:

Y — AgoA_l
U — AUAL.

The action is invariant under the transformation but WkB transform as isospin
triplet(adjoint representation of SU(2)). On the other hand, their gauge trans-

formations Q (local transformation) are as follows.

— Q(z)p(x)
— Qz +ap)U(x, p)U(z)
Then, the action and W} are both invariant under the gauge transformation.

We can make following replacement for 5-dimensions.

[4—dimensions] (5-dimensions for orbifold on the bounda,ryj

P)_Pl(a)g]  _
PPy = @)

Q) (x) = Q@)a(x)Q(z)
—itr{o Bt (x4 ak)U(z, k)p(z)} — tr{gU(x, k)a(z + ak)UT(z, k)a(z)}
We have Z operators for 5-dimensional SU(2) orbifold.

4

OL(#) = % S { algUe. bale + ab)UT (. Kaa)} — r{k — —k) }/2
B (3.30)
04 =25 3 { U@ ) mollo + AU (k) ool @)} — il — —k } /2

Y @V Dol + R (0, R} — e — ) 2

T1,22,T3

(3.31)
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0L (t) and O%(t) are defined at n5 = 0 and are gauge invariant because [, g] = 0

on the boundaries. O(Zm) (t) have J =1, P = —1 and C' = —1.[18, 19|

3.5.3 Static potential

Static potential is the energy of a pair of infinitely heavy quark and anti quark.

It is extracted from Wilson loop
<W(r,t)>=> dye (3.32)
n=1

where Vi (r) is the ground state static potential and V,,(r), n > 1 are its excita-

tions.

3.6 Determination of energies
3.6.1 Correlation function

We denote operators projected to p = 0 by O(t). Then the connected time

correlation function is written as

Ct) =< 0@{)00)" > - < O(t) >< 0(0)* >

o0
=) cpe” P (3.33)
n=1
where E, E», - - are energies of states created by the operator O. Since p =0,
energies are the masses (E; = my, Es = mg,--+).

3.6.2 Generalized eigenvalue problem

We construct basis of the operator. We can use more than one operators to
calculate the masses. For example, we have Higgs boson operators O = tr(P)
and Oy = tr(®®1) and we can have more operators by using fat links, See section

6.1. We require that these operators O;, i = 1,2,--- N have the same quantum
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numbers (Parity(P), Charge(C), Spin(J)). Then the matrix correlation function

is constructed with these operators as
Cij<t) =< Oz(t)(’)](o)* > —< Ol(t) >< OJ(O)* >

_ Z clind) g=Ent (3.34)
n=1

For a given time ¢, C;;(¢) is a N x N matrix. The generalized eigenvalue problem

is defined as

C(t)v = AC(to)v. (3.35)

An(t,tg), n=1,2,--- N are the generalized eigenvalues which are the eigenval-

ues of C(to)'/2C(t)C(to)"/?. They are related to the energies E,, by [21]

An(t, o) = e En(t=t0) (1 4 corrections) (3.36)

Then, the effective masses Efare

o Ao (t+ a,to
aBT(t,tg) = —In A(TLTto))
e~ En(t+a—to)
S e
———Ine P =F, .q (3.37)

t large

with correction ~ e~ 2t where A = ming, 4, |En, — Ep|. When 2t, > t the

correction is ~ e~ (En+1=En)t [29]
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Mean-Field formulation

The partition function of the gauge theory on lattice is
Z = /DUe—Sw[U],

where Sy [U] is Wilson plaquette action.
Using the Fourier representation of delta function

§(f(x)) = /m da_(x)e—a(m)f(m)7

211

—100

(4.1)

(4.2)

link variables U are replaced by complex matrices V' and Lagrange multiplier H.

Z = /DU/DV S(V —U)e 5wl

= /DU/DV/DH e(1/2)Retr{ H(U=V)},—Sw[V]

(4.3)

After integration of original links U, the partition function [23] is written as

Z = /DV/DHeSeff[V’H], S|V, H] = Sw[V] 4+ u(H) + (1/N)Retr{HV},

where

o u(H) — /DUe(l/Q)Retr{UH}‘

(4.4)

(4.5)

25
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Then, the action Eq. (3.11) is written as

Ns—1T
Seff = _% Z Z Z Re tr V})¢bound(n; Hy V)]

ny ns=1 Lp<v

5 Ns—1T
_75 Z Z Z Re t1 Vygbound (7 14, 5)]

n, ns=0L p

_% Z [Z Z Re tr ‘/pebound(n; My V)]

Ny M<VTL5:0,N5

Ns—1

IS [uz(P(n, W)+ D ha(n, p)va(n, M)]

n, ns=1 p

Ns—1

+ Z Z [M(P(n, 5)) + Z ha(m, 5)va (0, 5)]

n, ns=0
+> > > [ul(p(n,mU)) + Zha(n,u)va(n,u)] . (4.6)
ny, B ns=0,Ns «
In this study the fluctuating fields in the bulk are parametrized as

3
V(?’L,M) = UO(naM) +1 Z UA(na M)UA )
A=1
3
H(n,M) = ho(n, M) =iy ha(n,M)o?, (4.7)
A=1

and on the boundaries are parametrized as

V(n, M) = vo(n, M) + ivz(n, M)o>
H(n, M) = ho(n, M) — ihz(n, M)o?, (4.8)

where o4 is the Pauli matrices and vo,4 € C. The effective mean-field actions
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uy1 and wus are defined as

) )
o—ua2(H) :/ DU e#R WY — 210y p= S (Re b, )2, (4.9)
SU(2) P 2
e—ul(H) — / DU e%Re{tr(UH)} — [O(p)7 p= \/(Re h0)2 —+ (Re h3)2.
U(1)CSU(2)
(4.10)

The mean-field is the field which makes the effective action minimal. We can
choose the mean-field proportional to the identity. Considering translational
invariance in direction p = 0, 1,2, 3, we parameterize the mean-field as follows:

for ns =0,1,..., N5 (4-dimensional links)

H(n,u) = ho(ns)1, Vn,pu) =vp(ns)1, Vi, , 1, (4.11)

for ns =0,1,..., N5 — 1 (5th dimensional links)

H(n,5) = ho(ns +1/2)1, V(n,5) =vo(ns +1/2)1, Vo, . o (4.12)

Mean-field background can be obtained by taking derivatives of Eq. (4.6) with

respect to V and H and requiring them to vanish

DSery - OSeyy _
o | =0 5| =0 (4.13)
,V H,)V
7 ou 7 6SW[V]
H \%

0

(4.15)

ho(0) = Ba [(d = 2)(Wo(0))* + +*(To(1/2))*T0(1)] - (4.16)
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A prime on uy or us denotes differentiation with respect to its argument. Simi-

larly, for n5 = N5 we have

To(Ns) = —u} (ho(Ns)) = 2%%;3 : (4.17)
ho(N5) = B [(d = 2)(To(N5))? + 7*To(Ns — 1)(To(Ns — 1/2))%] . (4.18)
For 115 = 1,..., N5 — 1 (four-dimensional links)
() =~ Fal)) = ), (4.19)
Folns) = s [2(d — 2)(Fo(ns))* + +* (ol +1/2)2Fo(ns + 1)
0 (ns — 1) (To(ns — 1/2))2” . (4.20)
For 15 = 0,..., N5 — 1 (extra-dimensional links)

~ I(ho(ns +1/2))

Tolns +1/2) =~y (Fo(ns +1/2)) = 1, 4a)
ho(ns +1/2) = 285(d — 1)0o(ns)00(ns + 1/2)vg(ns + 1) . (4.22)
The mean-field is obtained by solving these equations iteratively.
4.1 Mean-Field expansion in 1st order
Here, we introduce Gauss fluctuation around the mean-field
H=H+h and V=V +uv. (4.23)

Gauge fixing is necessary for computing fluctuations. It has been discussed in

[24, 25, 26]. We write the second derivative of the effective action as follows.
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6%S.q
! 77h2 _ hiKi(th)hj — pT g (hh)p,
0H? |y 77
0% Sefr (vh) T
‘ h=vK;]"hj =0T KWMp
OVoH |y o T
52Seff VU VU
V2 |p v? = UZ'KZ-(J- )vj = T Ky (4.24)

Then, mean-field expansion up to second derivative is

528, 5 0%Seg

+3( G v GVeH

52 S
Serf = Sessl

vh +
VH ov?

=

7)

V,H

1
= St [V, H + =(WTKMh 4+ 20T K@M 4 T K)0) O
It 5

= eff[v’ﬁ] + 5(2)[Ua h]7 (425)

where S [v, h] = %(hTK(hh)h—l—%TK('”h)h—I—UTK(””)U). The partition function

is also expanded as

/Dv/Dhe (Ses g [V H+5v,h])

=7 V, H (4.26)
where
z = /Dv/Dhe_S@)[”’h] (4:27)
_ / Du / Dy o BT KR T KR 3T e, (4.28)
h|/2 -1
(2m)Ihl/ Dip o407 (—EK 0 KB =1 Gm) g, (4.29)

~ Jdet[K]

(2) 1172 (27 0172

= (4.30)
\/det[(—l - K(hh)(_K(vh)K(hh)_lK(vh) + K(vv))]
Using Eq. (4.25) and Eq. (4.26), the expectation value of an observable
(0) = = /DUO Je~SwlV] (4.31)

=~ / DVDH O[V]e SeisIV:H], (4.32)
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is expanded as
520
vt 5

©) = e / Do / DA (0 gg e

1 2
00 /Dv/th e_S()”h]

2 5V2
The link 2-point function can be integrated to

(vivy) /Dv/th —5®[v,h]

1 \hl/2
= —————— [ Dv wvvje —3v

z \/det [K(hh)]

= (K)! (4.33)

17

—_

v )e—<seff[V,H]+s<2>[v,h1>

=O[V] +

T( K Wh) g (hh) — 1K(vh)+K(vv))v

where K is the propagator K = K k) ()T g (0h) + K Then (O) is
expanded as

520
V2

(0) = O[V] + 1tr{

(K)—l} : (4.34)

In order to extract the mass associated with an operator O(t), we need mean-

field expansion of the connected correlator

C(t)=<O(to+1t)O(tg) > — < O(tg +t) >< O(tg) >
= 0O+ D) +---. (4.35)

The mean-field expansion of each part of C(t) are

< Olta +1)0(t0) > = OO (tg + HOV(t0) + Sir { (Olto ;;)0@0»1{_1} .

1. (820(tg +t
<O(tg+1) >=00(ty+1t) + §tr{#lrl} e

1. [8%0(to)
_ 0 - 0) -1
< O(tg) >=0"(tg) + 2tr{ o K } +oe

Then 0th order and 1st order correction of the mean-field of C'(¢) are the follow-
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ing.
CO@t) =0
1 [82(O(ty +1)O(tg)) . 1 620(to)
M) — = i Y (O) 1
Cc(t) 2tr{ 52 K } 20 (to + t)tr {—5% K }

1 20(tg +t) .
—5(9(0)(t0)tr {TK 1}

o 0O(tg +t) 5O(tO)K*1
ov ov

(4.36)

A gauge invariant correlator can be expanded in terms of the energy eigenvalues

of the states as

Ct)y=> e (4.37)

A

*

where Eg = m, 4 =m*, ---. Then, the mass is obtained for ¢t — oo as,

(1) (¢
m ~ lim In c()

Jim In o (4.38)

4.2 Mean-Field expansion in 2nd order

In order to extract gauge boson masses, we need 2nd order mean-field expan-

sion. The effective action is expanded as

S 1/ 6%Seq 52 Ses 8% Sest
Sepr =S5V, H + = —= K2 ° h+ —t 2
7 =StV + 5 (S5 v aVeH gy T oV V’H“>
1/ 63S.¢ 538,
=+ e hS-I- e 1)3
1/ 64S.g 5% Sos
- € h4 + € U4 + “ e

The cross terms in the cubic and quartic terms vanish because of the special
form of Scrs. The observables are also expanded as

= 2512

O] = O[V] + g—g

s, 150

v° 4+ 3 i540
\a 6 oV3

— 4 .« ..
SV vl T

v’U
(4.39)
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Then, tadpole-free contributions to the expectation values of an observable are

(0) = Vﬁ: /D@/Dh _V+%§g v?
+i 247(2 71;4) o= (Seps [V HI+5®[w,h])

= O[V] + ;g;Q U/Du/ﬁyzu e~ 5[]

5] o ot

The link 4-point function can be integrated as

_g®@
(VU VU ) = . /Dv/Dh ViV U Uy, € S v.h]

= (K)y; + (K (K)o + (K (K)5H (4.40)

jm im lj

¥ (K)lm

Finally we obtain 2nd order correction

(©0) = O] + 4 (w ) (K1)

ov2
L Y
24 < sval_ |
3]s b, T 1% 1]lm

'((K_l)ij(K_l)Zm + (KN a(K ") jm + (K_l)im(K_l)jl>'
(4.41)

The 2nd order correction of the connected correlation function is

C@ (1) = 214 3 (5 O((sio;-t)) (5 g}(j@)
i lm

©,7,L,m

'<(K_1)ij(K_1)lm + (K™ Ha(K ™Y jm + (K_l)im(K_l)ﬂ) (4.42)

The extracted mass is

() + ()
COt-1)+CP(t-1)

(4.43)

m ~ hm In
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4.3 Observables

4.3.1 Higgs and Z boson mass

In order to construct observables, we define the line

ns — 1
179 (to,m) = [ V((to, 7, ms); 5) (4.44)
ms=— =0
and introduce the matrices
o = {1, io1}, 7> ={1, —ic?}, A=1,23. (4.45)

The orbifold projected Polyakov loop is writen as

POt ) =10 (¢,m) g 1IN (t,m) g . (4.46)

We define the displaced Polyakov loop

A~

z{OA (k) = TAV((t7,0): k) @O (& 7+ k) V((£,17,0); k) 0O (t,77),
(4.47)

which assigns a vector and a gauge index to the observable appropriate to a gauge

boson where &0 (¢,m) = PO (¢t,m) — POT(¢,m). The Higgs boson observable

is derived from the averaged over space and time location connected correlator
(0) =/ (0) =11

O (to + 1) O (to) LGT Z Z tr{P m ) e { PO (to +t,m")} (4.48)

and the Z-boson from the correlator

(0)3 (0),3 —
Oz(to +1)Oz(to) LGTZ S w{Z)  (to. ) {2, (to + )}

—

m’,m'" k

(4.49)
From Eq. (4.36), 1sr order correlation function of Higgs boson mass is
1 8 0 1
O (6) = 57y (Po YTy 0,0). (4.50)
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where
<1 1>( ,3)
= 2Zcosp0t Z A(N5) K( 1)(190,0 ns, 5, Q; pO,O ng, b, ﬂ)A(N5 (n¥)
ng,ng
(4.51)
and
(N5) =g 1
AP = — st —(1—4§, Iy 4.52

This correlation function does not contain torons. Because the 1st order mean-
field expansion of the correlation function is zero, we need 2nd order expansion

for Z mass. From Eq. (4.42),

4096

(2) (0) 2 2
P = G 0 ST, 407, a5
where
2
(1)1>(oz 3)
_Zell’o Z A(N5) ( 1)(p07p TL5,5 Q; pO ’fl5,5 ﬁ)A(NS)( Il)

’I‘L5,TL5

(4.54)

This correlation function contains regularizable torons, whose contribution van-

ishs in the infinite lattice volume limit.

4.3.2 The static potential

There are three types of potential for orbifold boundary conditions. Here we
are interested in the potential along 4 dimensional hyper plane on the boundary.

We consider the Wilson loops with size r in one direction and take average over
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all directions. The exchange contribution (§20¢/5V?) is

t2

Oex =
L3T

—57:2(00(0)) ) 7260110800

3
1
67150(60/0504”0 + 50/36cz”?>)5p(’)06p6’0 H 5p’Mp§\’/[ g § 2 cos (pkr) 5n306ng’0
M=1,2,3 k=1

(4.55)

The Self energy contribution is

t2

Ose =
L3T

——2(T6(0)) ) 7253108010

050 (80600 — Sar300r3)0p00pmo | T Opywy | 2 Onso0nzo.  (4.56)
M=1,2,3

The first order correlation function is written as

W=z X2 Y

7 /
o pionfnl

O(0, 5k %, 0,30, %, 0,0 ) K0, pf b, 0,030, 8, 0,0 )
(4.57)

where O = Qg + Og.. Then, the potential is writen with the correlation function

as

(1)

1

V = const. — h —C— (4.58)
SR o]

Therefore, the potential along 4-dimensional hyper plane on boundary is

_ 11
Vi(0) = ~1og(®(0)*) - 5 Ir oo QZ
>~ [2eos () + 2| K7 (0,1, 0,0,0;0,54,0,0,0)
k

+

Wl = —N—
W =

>~ [2c0s (phr) — 2| K7 (0,94,0,0,3 0,4, 0,0, 3)}- (4.59)
k






Chapter 5

Results from Mean-Field calculation

5.1 The phase diagram and phase transition

Fig. 5.1 is the phase diagram which is based on the value of the mean-field.
We can see there are three phases. The red region is the confined phase where
Uo(ns) = Uo(ns + 1/2) = 0 for all ns, the blue region is the layered phase where
vo(ns) # 0 and vo(ns + 1/2) = 0 for all ns and the white region is Coulomb
phase (or deconfined phase) where vg(ns) # 0 and vg(ns + 1/2) # 0 for all ns.
The green region is a kind of cross over phase. We can analyze only for the
Coulomb phase by mean-field expansion, because when the background is zero,
we can not obtain any information. Now, we are interested in the order of the
phase transition between Coulomb phase and the other two phases. We can find
out the order of the phase transition by the critical exponent v which can be

obtained as follows

5—BC>V’ (5.1)

a4mH:A< 3

where my is the Higgs boson mass obtained from C’S). We see that the critical
exponent v ~ 1/2 for 7 < 0.6 and v ~ 1/4 for v > 0.65. It means that phase
transition for v > 0.65 is 1st order and for v < 0.6 is 2nd order. It means that

the phase transition between Coulomb phase and layerd phase is 2nd order and
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% 0.5

B

Figure5.1 The mean-field phase diagram of the SU(2) orbifold theory in
the (8,7, N5) space. The color code is explained in the text.

between Coulomb phase and confined phase is 1st order. When the bulk phase
transition is 1st order, the 4-dimensional lattice spacing a4 does not go to zero
and it is impossible to take a continuum limit. In this case the theory could
be a low energy effective theory that must be defined with a finite cut-off in
the effective action. When the phase transition is 2nd order, one expects that
the lattice spacing goes to zero at the phase boundary. In this case a cut-off
does not need in the effective action and the theory could be non-perturbatively

renormalizable.

5.2 The masses
5.2.1 Higgs boson mass

The Higgs boson mass in units of the lattice spacing My = aymy is extracted
from C’g) in Eq. (4.50). The Higgs boson mass depends on the parameters 3,
and N5. Using My, we can get the Higgs boson mass in units of the radius of
the 5th dimension Fj.

N,
Fi=muyR=My—>. (5.2)
YT
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The left plot in Fig. 5.2 is the N5-dependence of My for v = 1(isotropic lattice)
at 0 = 1.677. I choose 3 = 1.677 to be near the phase transition. The line in the
left plot in Fig. 5.2 is a quadratic fit. On the other hands in perturbation theory,
the Higgs boson mass from the one-loop result [27] for SU(N) is expressed as

cym 3
My o T = N ((3) C3(N) (5.3)
N§/2ﬂ1/2 472

where Co(N) = (N?—1)/(2N). This plot also shows that My cannot be lowered

to zero but approaches around 0.7. Therefore we can see that the phase transition

is the 1st order.

5.2.2 Direct Z boson mass

The Z boson mass in units of the lattice spacing Mgir' = aymy" is extracted

from the correlator C’(ZQ) in Eq. (4.53). M$™ does not depend on 3, v or Nj.
This means that the masses from the correlator C’(ZQ) is always infinite N5 limit
value.

The dependence on L is

"
Mg = =, (5.4)

This expression shows that this observable describes two non interacting gauge

bosons.

5.3 Spontaneous Symmetry Breaking

We can find out whether there is SSB by calculating the wilson loop. We expect
that the boundary gauge theory can be described in four-dimensional term. So,
if the boundary U (1) symmetry is spontaneously broken the corresponding static
potential extracted from C‘(,é) should be fitted by a 4-dimensional Yukawa form.

The 4-dimenaional Yukawa potential is

—mzTr
e zZ

Va(r)=—b + const. , (5.5)
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Figure5.2 The left plot is Higgs boson mass My as a function of 1/N5 at

v =1 for g = 1.677 with the line of a quadratic fit. The right plot is direct

Z boson mass Mg* as a function of 1/L at v = 0.55 with the line of a linear

fit.

where b is a constant. The corresponding static force is

d Vy(r) e~ mar 1
_ - m4+ =), )
dr r ( 7‘) (5.6)

F4(T)

To extract the Yukawa mass, we define the quantity y(r) = log(r?Fy(r)) from
which we form the combination

Mz

watf () = —Mz ¥ T

(5.7)

where Mz is the Z mass in lattice units defined as Mz = asm4. Then we
determine My iteratively so that the plot —asy’(r)+ Mz /(mzr+ 1) has plateau
at Mz. The plateaus do not depend on L if L is large enough. So Mz depends
only on 3, v and N5 for infinite L.

5.3.1 Isotropic lattice

The left plot of Fig. 5.3 is the plots of —ayuy’(r) + Mz /(mzr + 1) for various
N5 at fixed g = 1.677 and v = 1 near the bulk phase transition. The plateau
values do not depend on L for L > 200. The right plot of Fig. 5.3 is the plateau
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values of My from the right plot of Fig. 5.3 as a function of 1/N5. The blue line

is a linear fit with slope 3.32, which is very close to 7 and it describes the data

very well. These plot shows that gauge boson is massive on the boundary and it

means that there is the dynamical spontaneous breaking of the U(1) symmetry.

Note that, since § and v are kept fixed and the location of the phase transition

(. depends on N5, the masses in Fig. 5.3 correspond to different lattice spacings.
In Fig. 5.4, the blue squares are plot of Higgs and Z boson mass ratio

mmg

= 5.8
PHZ myz ( )

for N5 = 4,6,8 and L = 200. The ratio does not depend on N5 for these
parameters. We can see that the Higgs and the Z boson masses are almost same
so that pgz ~ 1 for v = 1 and Fj in the range [0.08,0.4]. In Fig. 5.4, the results
from Monte Carlo simulations at N5 = 4(diamonds) and at N5 = 6(circle) for
L = 12 and T' = 96 are also plotted. There is good agreement between the

mean-field data and the Monte Carlo data on isotropic lattice.

y=1, B =1.677, on the boundary

2 y=1,B=1.677, on the boundary
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Figure5.3 The left plot is the combination —asy'(r) + Mz /(mzr + 1), cf.
Eq. (5.7) plotted for different values of N5 at v = 1 for = 1.677. The right

plot is the Z boson mass Mz extracted from the left plot as a function of
1/Ns.
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Figure5.4 The ratio of the Higgs boson mass to the Z boson mass Eq. (5.8).
Comparison of Monte Carlo (diamonds [18, 28] and circles [29, 30]) and

mean-field data (squares) at v = 1.

5.3.2  Anisotropic lattice (v = 0.55)

We are interested in the parameter region where there is 2nd order phase
transition(y < 0.6). So, I study static potential on the boundary and in the
middle of the orbifold at v = 0.55 to find out whether there is SSB or not.
In this calculation, I choose 3 so that F; = 0.2 constant, which means that
My < 1/N5, cf. Eq. (5.2). Fig. 5.5 is the plots of —asy'(r)+Mz/(mzr+1) (see
Eq. (5.7)) extracted from the boundary potential (left plot) and the potential in
the middle of the bulk (right plot). In the left plot, there are two plateaus for
N5 > 6. These plateaus correspond to masses Mz (> Mz) which do not depend
on N5 and Z’ are the 1st excited vector boson state. We also checked that the
Yukawa masses are independent of L for L > 200. It means that there is SSB
and the boundary U(1) gauge symmetry is broken. We checked that the Yukawa
masses are independent of L for L > 200. These data say that the boundary
U(1) gauge symmetry is broken.

The left plot of Fig. 5.6 is the plots of prz corresponding the plateaus in the
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left plot of Fig. 5.5. It shows that we get prz < 1 for that parameter region.

In the left plot of Fig. 5.6(potential in the middle), there is only one plateau for
each N5. These plateau corresponds Z boson mass M. The My is decreasing as
N5 increases and does not depend on L for L > 200. It means that there is SSB
also in the bulk. This result is completely different from the result for the torus
where there is no SSB. We also observe a difference between the Yukawa masses
in the bulk as compared to those on the boundary. This situation is different
from the one for the isotropic lattice, where we found the boundary and bulk
Yukawa masses to be the same.

F,=0.2,L =200, y=0.55, on the boundary F,=0.2, L =200, y= 0.5 , in the middle of the bulk
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Figure5.5 The combination —asy'(r) + Mz/(mzr + 1), cf. Eq. (5.7) is
plotted for different values of N5 at v = 0.55 and F; = 0.2 (for the boundary
potential at N5 = 4 we use Mz ). Boundary potential (left plot) and bulk
potential (right plot).
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Figure5.6 The ratio of the Higgs boson mass to the Z boson mass Eq. (5.8)
in the mean-field extracted from the static potential. On the boundary (left
plot) and in the bulk (right plot).

5.4 Dimensional reduction

Here I defined the ratio of the Higgs boson mass to the mass of the first excited

vector boson state
mpg
PHZ = . (59)

my

In the previous section the static potential is fitted by 4-dimensional Yukawa
potential. Such a fit makes sense if the spectrum can be interpreted as an effective
four-dimensional theory. However, it is not a precise definition of the dimensional
reduction. More constrained criteria for dimensional reduction are the following.

The definition of the dimensional reduction

e The static potential along 4-dimensional hyperplane can be fitted by the
4-dimensional Yukawa potential Eq. (5.5) with myz # 0.
This ensures that there is SSB, signaled by the presence of the massive

U(1) gauge boson. Otherwise the gauge boson is massless and only a
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Coulomb fit is possible.
e the quantities My = aympy and Mz = aymy are < 1.
This ensures that the observables are not dominated by the cut-off.
e we have myR < 1 and pgz > 1.
These two conditions ensure that the Higgs boson and the Z boson masses
are lighter than the Kaluza-Klein scale 1/R and Higgs boson is heavier

than the Z boson. we will target the value

puz = 1.38, (5.10)

which is (approximately) the currently favored value of the analogous

quantity in the SM, based on recent LHC data [4].

Here I have three observables Fi, prz and pgz and all three observables de-
pend on the three dimensionless parameters 3, v and N5. I consider to taking
continuum limit satisfying above criteria and keeping physical value same.

The procedure is the followings. First, I fixed F; to a given value and pgz
to the value Eq. (5.10). With these two conditions the value pgz becomes a
function of one parameter which I choose to be N5. Then we obtain the value of
the second excited Z boson mass my: for each N5. We call such a trajectory on
the phase diagram a Line of Constant Physics (LCP) [31, 32]. In this calculation
I inserted the SM experimental value for my and mz. I checked that both My
and My decrease as approaching phase transition. So, to obtain My, Mz < 1,
we need to stay near the critical point. I check also only for small v regime where

we can get pgz > 1. Thus I calculated LCP for small v near the critical point.

5.5 Lines of Constant Physics and the Z’
The first LCP I construct is one where

Fi=mpgR=061, pgz=138 (5.11)
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Fy | Ns v* B
0.61 | 12 | 0.5460(33) | 1.343501425
14 | 0.5320(10) | 1.34442190
16 | 0.5228(7) 1.34664820
20 | 0.5028(18) | 1.35582290
24 | 0.4844(32) | 1.36940695
0.20 | 6 | 0.5113(15) | 1.351160631

Table5.1 Bare parameters of the LCP defined by prz = mu/mz = 1.38
and F1 = mg R = 0.61, together with one point for a LCP with pgz = 1.38
and F1 = 0.20. The lattice gauge couplings 8* correspond to the central

values v* and are computed for future reference.

are kept fixed. In Fig. 5.7, I plot the corresponding points on the phase diagram,
which are listed in Table 5.1.

Along this LCP, I computed pgz: for N5 = 12,14,16,20,24. In Fig. 5.7, we
plot the corresponding points interpolated by a black line on the phase diagram,
which are listed in Table 5.1. As I mentioned above the LCP is constructed for
small v near the phase boundary. This region of 7, the phase transition is of
second order.

For each value of N5, I constructed LCP. I also computed the Z and Z’ masses
for various values of the parameter ~.

The steps of detailed calculation of the LCP are as follows. First, I chose
the starting point of Nj. After fixed Ns, I determined 5 = ((y, N5) so that
F} = 0.61. The value of L should be large enough to get clear plateaus so we set
L = 400 for all N5 values. Then I calculated the static potential on the boundary
for several v values and extracted Z masses and Z’ masses. The gauge boson

masses are extracted by identifying them as Yukawa masses as in Section 5.3.
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Figure5.7 LCP (black line) defined in Eq. (5.11) near the (tricritical point
of the) bulk phase transition. Red: Confined phase. Blue: Layered phase.

White: Deconfined phase. The magenta point (star) is on a different LCP
with F1 = 02, PHZ = 1.38.

For instance, the left Fig. 5.8 is the plot of — [a4y/ (1) — Mz /(Mzr/a4s + 1)] for
N5 = 24 and v = 0.485. There are two plateaus. I defined My averaging the
smaller (red points) plateau points and Mz, averaging the larger (blue points)
ones. The ranges of r values defining the plateaus are defined around the minima
of the derivative of — [asy/(r) — Mz /(Mzr/as + 1)]. The errors of the masses
are the standard deviation of the plateau points. Then I computed prz and
prz with the known values of Mz and My for several v and plotted these on
the right plot of Fig. 5.8 as a function of v. The upper red circles are the values

prz and the red line is its linear fit and the lower blue circles are the values pg 2/
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Figure5.8 Left plot: plateaus of the quantity defined in Eq. (5.7) corre-
sponding to the Z (red points) and Z’ (blue points) masses. Right plot: the
prz data (upper red circles) are lineraly interpolated (red line) to the value
of v corresponding to prz = 1.38 (marked by the dashed horizontal line).

The lower blue circles show the data for pgz with a linear fit (blue line).

and the blue line is its linear fit. The both data are fitted very well linearly. So,
we can determine 7 = v*(Nj5) such that pyz = 1.38 from the fit. In this case
we get v*(24) = 0.4844(32) for N5 = 24. And also we get pgz from the linear
fit (the blue line on the left Fig. 5.8) for v*(24) = 0.4844(32). I have done these
calculation for each N5 and the summary of the LCP parameters for all N5 values
is given in Table 5.1.

Fig. 5.9 is the plot of pgz on the LCP line against aympyg for N5 =
12,14,16,20,24. Since Fy = mygR = (agmpy)Ns/(v*m), agmy is proportional
to v* /N5 on the LCP. So, aympy shows the physical distance to the continuum
limit. The straight line is a linear fit of the data. In principle it wound be
fitted with a quadratic curve because of the Symanzik analysis of cut-off effects.
The dominant contribution is expected to be from the dimension 5 boundary
operator

il

4 (F51MF5IM + F52;LF52M) 5TL5,0 (512)
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Figure5.9 Extrapolation of LCP in Eq. (5.11) to asmpg — 0.

multiplied by one power of the lattice spacing and from the dimension 7 bulk

operator
1 1

307 21 Z tr { Farv (D3 + D%) Fun'} (5.13)
95

M,N

multiplied by two powers of the lattice spacing [29]. In this study, we are very
close to the phase transition that is we are in a regime where the effect of the
dimension 5 boundary operator dominates. Therefore the data on Fig. 5.9 is

fitted lineary. By extrapolating to aympg — 0 we get non-zero value of pg 7.

prz = 0.1272. (5.14)

Inserting mz = 91.19 GeV, this implies mz = 989 GeV in the continuum limit.

Here, the x? per degree of freedom of the fit is 0.025/3.






Chapter 6

Results from Monte Carlo

simulation

In this chapter I will show the result from Monte Carlo simulation. In the MC
simulation, I applied Hyper cubic (HYP) smearing [33] to obtain large number
operators to improve the generalized eigenvalues problem. HYP smearing is

briefly explained in the next section.

6.1 Hypercubic(HYP) smearing on the orbifold

The fat links are constructed by adding staples around the links. We only
add the staples in direction of 3 spacial dimensions and not in time and 5th
dimension. The fat links along 3 spacial dimension are constructed in two steps.
The fat links V; ;, are written with decorated links Vi,k:;l as

Vik = Projsu)[(1 — a2)Us k

! YARY, ot YARBRY,
7 2 Wi Vikm Vg + Vitim Vi Vit 2
l#£m#k
(6.1)

51
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where Uj; j, is the original thin link. The decorated links Vz‘,k:z are constructed
with the original thin links as
Vi = Projsue)[(1 — a2)Ui i + 2 {Uzl it kU s ULU,_i Ui i3
(6.2)

where k,[,m =1, 2, 3. ‘Z’,k:l represents the link at location ¢ in direction k& which
with is decorated with staples in direction [.
The fat links along 5th dimension are constructed in three steps. The fat links

Vi s are written with the decorated links f/i,g,;k and 177;,;{;5 as
Vis = Projsu@)[(1 —a1)Uis
31 7t AR y
+—= Z{VZ ki 5V+k 5k Vit ks T Viskis Vicisie Vi s ks -

(6.3)

Where \7;;75;;@, and 171-7@5 are constructed with other set of decorated links \7; M:k

as
Vish = Projsu2)[(1 — az2)Uis

_ _ —+ —+ _
Z {Vviahm‘/iquA,S;m‘/i_Fg’l;m + Vé,l;m‘/iflA,S;m‘/i—Ff),l;m}]‘
l#£m#k

Vikss = Projsua[(1 — a2)Ui g

_ _ _ b o _
Z {Vti,l;mvvi+[,k;m‘/i+f€7l;m + ‘/z l; m‘/z l,k,m‘/z—l—k,l,m}]
l#m#k
(6.5)
f/i, 5. is the link in direction 5 and ‘71',]@;5 is the link in direction k£ both at location a

1 and decorated in two spatial dimensions different from k. VZ M:k are constructed

with original thin links U; as as

Vz‘,M;k :PTOjSU(g)[(l—a3)UzM+ {Uz itk MUT_|_M7]€+UiT,kUz'ffc,MUi+M,k}]’
(6.6)



6.2 Spectrum

53

where M = 1,2,3,5. We chose the parameters a; = 0.5, as = 0.4 and ag = 0.2
for SU(2) orbifold.

6.2 Spectrum

Higgs boson masses and Z boson masses are obtained by applying generalized
eigenvalue problem to operators calculated in MC simulation. I use two sets of
Higgs boson operators, see Eq. (3.26) and Eq. (3.27), and two sets of Z boson
operators, see Eq. (3.30) and Eq. (3.31) in section 3.5. The operators are calcu-
lated with certain levels of smeared fields specified later. Applying Generalized
eigenvalue problem we get masses form these operators. I used two operator sets
for each Higgs and Z boson to improve the mass determination. I checked that
the masses extracted from individual set of operators are the same as the masses
from two sets of operators.

Higgs boson masses and Z boson masses obtained from MC simulation are
plotted on the Fig. 6.1. 1 have 5000 measurements and three levels of smearing
between 15-45 for each operator. The blue points are the masses for L = 32,
N5 =4,v=1and § =1.66, 1.68, 1.9 and the red points are the excited states.
We cannot get excited state for 5 = 1.9. The green points are the masses for
L =24, Ns =4, v=1and § = 1.9 where again we cannot get excited state. A
summary of the data is in the Table 6.1.

From these data we see that the Z boson has nonzero finite mass. Also com-
paring L = 24 with L = 32 we see that the masses do not go to zero as L — oo.
This means there is SSB and supports the Mean-Field calculation. On the con-
trary the perturbative calculation gives zero Z boson mass. For L = 32, N5 = 4,
v =1 and 8 = 1.66 the Yukawa mass extracted from the boundary static poten-
tial agrees well with Z boson mass in Table 6.1 [34].

In the right plot of Fig. 6.1, the magenta dashed line is the Higgs boson mass
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from perturbative formula Eq. (5.3). We see the non-perturbative Higgs bo-

son masses are bigger than perturbative one and they seem to approach to the

perturbative value as § — oc.

1.2
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Figure6.1 7 boson mass and Higgs boson mass from Monte Carlo simulation

L I} mpy my my

32 1.66 | 0.217 0.598(99) | 0.616(84)
1.68 | 0.302 0.73(12) | 0.76(11)
1.9 | 0.242(16

24 1.9 | 0.202

Table6.1 The Higgs and Z boson spectrum from Monte Carlo simulation



Chapter 7

Conclusion

I have done the non-perturbative study of GHU using Mean-Field expansion
and MC simulation. I worked on the pure SU(2) gauge theory with orbifold
boundary conditions and found out there is SSB even if there is no fermions.
The most interesting parameter region in the Mean-Field is where the anisotropy
parameter is v < 0.6 near the critical point. In this parameter region Higgs
boson can have the mass which is consistent with the Standard Model mass and
we can take continuum limit along LCPs. Usually, 5-dimensional theory is non-
renormalizable, so the theory depens on the cut-off, however, it is possible in the
Mean-Field to take cut-off independent continuum limit in this model. Because
there is 2nd order transition line in small v regime. Also, there is possibility
to verify the model by experiments because 1st exited state of the Z boson is
around 1TeV in continuum limit. The spectrum computed from MC simulation

confirms SSB as found in the Mean-Field.
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