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ENUMERATION OF SPATIAL 2-BOUQUET GRAPHS

UP TO FLAT VERTEX ISOTOPY

NATSUMI OYAMAGUCHI

Abstract. We enumerate spatial 2-bouquet graphs, or spatial graphs
having exactly one 4-valent vertex and no other vertices, up to flat vertex
isotopy. In order to do that, we give a method of constructing all such
graphs from 2-string tangles, and distinguished the resulting graphs by
computing their Yamada polynomials. We then prove that there exist
exactly 51 flat vertex isotopy classes of the prime spatial 2-bouquet
graphs with up to six crossings.

§ 1. Introduction

A spatial graph is a graph embedded in R3, and spatial graph theory has
been considered not so much a part of graph theory as an extension of knot
theory. In knot theory, classifying all knots and links is a basic theme and
over six billion knots and links have been tabulated. There also in spatial
graph theory exist earlier studies on classification of some spatial graphs. J.
Simon [6] enumerated θ-curves with up to five crossings and K4-graphs with
up to four crossings. R. Litherland [1] provided a table of prime θ-curves
with up to seven crossings without proof, and H. Moriuchi [4] gave it a proof.
Moriuchi also enumerated all the prime handcuff graphs with up to seven
crossings in [2]. In these studies, spatial graphs are classified up to ambient
isotopy as well as in knot theory. On the other hand, spatial graphs can be
also classified up to flat vertex isotopy.

We shall recall a flat vertex isotopy. A spatial graph G̃ embedded in R3

is called a flat vertex spatial graph if for each vertex v of G̃ there exists a
small neighborhood Bv of v and a plane Pv in R3 such that G̃ ∩ Bv ⊂ Pv.
Two flat vertex spatial graphs G̃1 and G̃2 are flat vertex isotopic if there
exists an ambient isotopy between them leaving the image of G̃1 to be a
flat vertex spatial graph at any level of the isotopy. The ambient isotopy
in this case is called a flat vertex isotopy. It is easy to see that there is
no difference between the classification up to flat vertex isotopy and the
one up to ambient isotopy for spatial trivalent graphs. (Note that θ-curves,
K4-graphs and handcuff graphs are all trivalent.) The simplest graph which
may cause the difference between these two classifications is a 2-bouquet
graph, namely a connected graph which has exactly one 4-valent vertex and
no other vertices.

The aim of this paper is to enumerate all the prime flat vertex spatial
2-bouquet graphs with up to six crossings: We construct a diagram of a
flat vertex spatial 2-bouquet graph from a diagram of a 2-string tangle by
connecting each end of a 4-valent flat vertex to that of the 2-string tangle
diagram without increasing the number of crossings (see Figure 3 in §3).
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It turns out that an arbitrary flat vertex spatial 2-bouquet graph can be
obtained by this construction. We call a spatial 2-bouquet graph prime if
an arbitrary 2-sphere which intersects the graph at two points divides it into
a trivial arc and something. Because this definition is similar to that of a
prime 2-string tangle, we can see the following facts: A flat vertex spatial 2-
bouquet graph constructed from a prime 2-string tangle is prime, and a flat
vertex spatial 2-bouquet graph constructed from a non-prime 2-string tangle
is not prime. Therefore it is enough to prepare all prime 2-string tangles in
order to obtain all prime flat vertex spatial 2-bouquet graphs. H. Yamano [8]
gave a method of constructing prime 2-string tangles from algebraic tangles
(see Lemma 1 in §3), and Moriuchi made tables of algebraic tangles with
seven crossings or less in [3]. From these results, we obtain all the prime 2-
string tangles with up to six crossings, and construct all the prime flat vertex
spatial 2-bouquet graphs with up to six crossings. We next distinguish them
by using Yamada polynomial [7], which is a one-variable Laurent polynomial
associated to each spatial graph diagram.

Our main result is

Main Theorem. There exist exactly 51 flat vertex isotopy classes of the
prime spatial 2-bouquet graphs with up to six crossings.

It follows easily from this theorem that the difference between the classi-
fication up to flat vertex isotopy and the one up to ambient isotopy actually
occurs with spatial 2-bouquet graphs.

This paper is organized as follows. In §2 we set up notation and terminol-
ogy. In §3 we give a method of constructing all prime 2-bouquet graphs from
prime 2-string tangles, and construct those graphs with up to six crossings.
In §4 we distinguish all those graphs constructed in §3 by calculating their
Yamada polynomials, thereby proving Main Theorem. We then provide the
table of prime flat vertex spatial 2-bouquet graphs in §5.

The author wishes to express her deepest gratitude to Professor Kiyoshi
Ohba for continuous advice and encouragement, to Professor Akio Kawauchi
and Professor Hiromasa Moriuchi for several helpful comments concerning
the construction of flat vertex spatial 2-bouquet graphs. Professor Ryo
Nikkuni and Professor Kouki Taniyama also gave her many helpful sug-
gestions. She is also grateful to Professor Reiko Shinjo, who gave the auther
the assistance to draw the pictures in this paper.

§ 2. A flat vertex spatial 2-bouquet graph

A graph is called a 2-bouquet graph if it is homeomorphic to the union
of two circles with a single point in common: A 2-bouquet graph is a finite
graph which has exactly one 4-valent vertex, some 2-valent vertices and no
other vertices. For convenience, we assume in the following that a 2-bouquet
graph has no 2-valent vertices as in the leftmost picture of Figure 1.

In this section, we first define a flat vertex graph and consider a flat vertex
2-bouquet graph. We next define a flat vertex spatial graph as a flat vertex
graph embedded in R3 on a certain condition. Primeness of a flat vertex
spatial 2-bouquet graph is defined in the end of this section.

Let G be a graph, which is not necessarily a 2-bouquet graph, and let
v be a vertex of G. We assign a cyclic order to the edges gathering at v,
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and call this order a cyclic order at v. We shall call a graph having a cyclic
order at each vertex a flat vertex graph. Two flat vertex graphs G1 and
G2 are flat-homeomorphic if there exists a homeomorphism f : G1 → G2

which preserves or reverses the cyclic order at each vertex. We call such a
homeomorphism a flat-homeomorphism, and does not discriminate among
flat-homeomorphic graphs in the following.

Let us assign a cyclic order to the unique 4-valent vertex of a 2-bouquet
graph, and we call the resulting graph a flat vertex 2-bouquet graph. By
the definition of a flat-homeomorphism, we can easily see that there exist
exactly two flat-homeomorphism classes of 2-bouquet graphs: a flat vertex
2-bouquet graph of type K (see the upper middle picture of Figure 1), and a
flat vertex 2-bouquet graph of type L (see the lower middle picture of Figure
1).

We then define a flat vertex spatial graph and consider a flat vertex spatial
2-bouquet graph.

Definition 1. Let G be a flat vertex graph and f : G → R3 an embedding.
The spatial graph G̃ = f(G) is called a flat vertex spatial graph of G if f
satisfies the condition: There exists a small neighborhood Bf(v) of f(v) and

a plane Pf(v) in R3 for each vertex v of G such that the set f(G) ∩Bf(v) is
included in Pf(v) and the edges gathering at v are mapped on Pf(v) according
to the cyclic order.

We shall call G̃ = f(G) a flat vertex spatial 2-bouquet graph of type K
(respectively, type L) if G is a flat vertex 2-bouquet graph of type K (re-
spectively, type L). Note that a knot is obtained from a flat vertex spatial
2-bouquet graph of type K by replacing the vertex of the graph locally with
a crossing, and that a link is obtained from a flat vertex spatial 2-bouquet
graph of type L in the same way (see the right pictures of Figure 1).

From now on, we call a flat vertex spatial 2-bouquet graph a 2-bouquet
for short.

1
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4
give cyclic orders embed

a 2-bouquet graph flat vertex 2-bouquet graphs flat vertex spatial 2-bouquet graphs
                      = 2-bouquets

type K (knot)

type L (link)

Figure 1

A flat vertex isotopy, which is also called a rigid vertex isotopy, is defined
as follows.
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Definition 2. Let G̃1 and G̃2 be flat vertex spatial graphs of a flat vertex
graph G. G̃1 and G̃2 are flat vertex isotopic if there exists a continuous
map f : R3 × I → R3, called a flat vertex isotopy, satisfying the following
conditions:

(1) f0 = idR3 .

(2) f1(G̃1) = G̃2.
(3) ft : R3 → R3 is a homeomorphism for each t ∈ I.

(4) ft(G̃1) is a flat vertex spatial graph of G for each t ∈ I.
Here ft : R3 → R3 is defined by ft(x) = f(x, t) (x ∈ R3) for each t ∈ I.

It is easy to see that there is no difference between the classification up to
flat vertex isotopy and the one up to ambient isotopy for spatial trivalent
graphs. Hence the difference between these two classifications may occur
for the first time with spatial 4-valent graphs. It motivates us to classify
2-bouquets, the simplest spatial 4-valent graphs, up to flat vertex isotopy.

In the end of this section we give a definition of primeness of a 2-bouquet.

Definition 3. A 2-bouquet G̃ in S3 = R3 ∪ {∞} is called prime if at least

either of G̃∩B1 and G̃∩B2 is a trivial arc for an arbitrary 2-sphere S in S3

which intersects G̃ at exactly two points, where B1 and B2 are the 3-balls
in S3 satisfying B1 ∩B2 = ∂B1 = ∂B2 = S.

We can construct any non-prime 2-bouquet by connecting a prime 2-bouquet
with some knots (see Figure 2 for example). Therefore we consider only
prime 2-bouquets.

connect

a knot a prime 2-bouquet a non-prime 2-bouquet

Figure 2

§ 3. Construction of all prime 2-bouquets

In this section, we give a method of constructing all prime 2-bouquets
from prime 2-string tangles, and actually construct all those graphs with up
to six crossings.

We shall recall the definition of a 2-string tangle. Let B be the unit 3-ball
in R3. A 2-string tangle T = (B, t) is a pair of disjoint arcs t in B with t ∩
∂B = ∂t = {(1/

√
2, 1/

√
2, 0), (1/

√
2,−1/

√
2, 0), (−1/

√
2, 1/

√
2, 0), (−1/

√
2,

−1/
√
2, 0)}. Two 2-string tangles T = (B, t) and T ′ = (B, t′) are equivalent

if there exists an ambient isotopy f : B × I → B from T to T ′ such that
ft|∂B : ∂B → ∂B is an orientation preserving congruent transformation for
each t ∈ I. Here ft : B → B is defined by ft(x) = f(x, t) (x ∈ B) for each
t ∈ I. Up to this equivalence Moriuchi [3] classified algebraic tangles with
seven crossings or less (see [3] for more details).
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Our method of constructing 2-bouquets from 2-string tangles is as follows:
Given a diagram of a 2-string tangle, we prepare one 4-valent flat vertex
(see Figure 3), and connect each end of the 4-valent flat vertex to that
of the 2-string tangle diagram without increasing the number of crossings.
Consequently we obtain a diagram of a 2-bouquet as illustrated below. It
is easy to see that the resulting 2-bouquets constructed from equivalent
2-string tangles are flat vertex isotopic.

a 2-string tangle

a 4-valent
   flat vertex

a 2-bouquet

Figure 3

We then show that an arbitrary 2-bouquet can be obtained by this con-
struction. Given a diagram D of an arbitrary 2-bouquet G̃. If necessary we
prepare a solid torus containing G̃, with the hole of the solid torus is located
quite near the vertex of G̃, and rotate the solid torus along the meridian
through 180 degrees. Then we can obtain a diagram D′ of G̃ in the shape
of some 2-string tangle connected with one 4-valent flat vertex (see Figure
4). Note that the number of crossings of the 2-string tangle is equal to that
of D.

Figure 4

We shall recall a definition of primeness of a 2-string tangle (cf. [8]).

Definition 4 (H. Yamano). A 2-string tangle T = (B, t) is called prime
if t ∩ B′ is a trivial arc for an arbitrary 3-ball B′ in B whose boundary
intersects t at exactly two points.
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We can see the following facts: A 2-bouquet constructed from a prime
2-string tangle is prime, and a 2-bouquet constructed from a non-prime 2-
string tangle is not prime. Therefore it turns out that it is enough to prepare
all prime 2-string tangles in order to obtain all prime 2-bouquets.

Yamano [8] defined a prime basic 4-regular disk graph, which is a certain
kind of planar graph inscribed inside a circle and whose vertices are all 4-
valent (see Figure 5 for example). He proved the following lemma on prime
2-string tangles.

Lemma 1 (H. Yamano). For any prime 2-string tangle T with at least
one crossing, there exists a prime basic 4-regular disk graph P such that
a minimum crossing diagram of T is obtained by replacing a small disk
neighborhood of each vertex of P with the diagram of some algebraic tangle
with at least one crossing.

By using Lemma 1 and Moriuchi’s table of equivalence classes of algebraic
tangles in [3], we then obtain the following lemma.

Lemma 2. There exist exactly 51 equivalence classes of the prime 2-string
tangles with six crossings or less, and each of those 51 equivalence classes is
represented by an algebraic tangle.

Proof. It is easy to see that there exists one equivalence class of prime 2-
string tangle with zero crossing. The equivalence class is represented by
the algebraic tangle denoted by 0. It turns out to be enough from Lemma
1 to prepare prime basic 4-regular disk graphs with up to six vertices and
algebraic tangles with up to six crossings in order to obtain all the prime
2-string tangles having at least one crossing up to six crossings.

Yamano [8] gave the list of prime basic 4-regular disk graphs with up to
seven vertices, and in the list there exist exactly three graphs with up to six
vertices as follows.

Figure 5

We now replace a disk neighborhood of each vertex of Pi (i=1, 5 or 6)
with the diagram of an algebraic tangle as follows.

Case P1: We replace a disk neighborhood of the unique vertex of P1

with the diagram of an algebraic tangle with six crossings or less.
Case P5-1: We replace a disk neighborhood of each of the five vertices

of P5 with an algebraic tangle diagram with one crossing.
Case P5-2: We choose four from the five vertices of P5, and replace

a disk neighborhood of each of the four vertices with an algebraic
tangle diagram with one crossing, and replace a disk neighborhood of
the other vertex with an algebraic tangle diagram with two crossings.

Case P6: We replace a disk neighborhood of each of the six vertices of
P6 with an algebraic tangle diagram with one crossing.
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In Case P1, we use the table of equivalence classes of algebraic tangles.
Moriuchi [3] gave a list of the equivalence classes of algebraic tangles with
at least one crossing up to seven crossings, and in the list there exist exactly
68 classes up to six crossings. However we cannot use 19 classes of them to
obtain 2-string tangles because of containing a loop. We then obtain exactly
49 equivalence classes of prime 2-string tangles in Case P1, and each of those
classes is represented by an algebraic tangle.

In Case P5-1 and Case P6, we use the fact that there exist exactly two
algebraic tangles with one crossing, which are denoted by 1 or 1̄. It follows
that any tangle diagram obtained by replacing each vertex of P5-1 or P6

with tangle 1 or 1̄ contains a loop as in Figure 6. Hence we cannot obtain
any 2-string tangle diagram in either Case P5-1 or Case P6.

Figure 6

In Case P5-2, we use the fact that there exist exactly four algebraic tangles
with two crossings, which are denoted by 2, 2̄, 2 0 or 2̄ 0 as well as the
fact that the algebraic tangles with one crossing are 1 and 1̄. After the
replacement, we obtain a number of 2-string tangle diagrams. However all
the obtained diagrams turn out to be equivalent to diagrams in Case P1

except the diagram depicted in the middle picture of Figure 7. The diagram
is not equivalent to any diagrams in Case P1. In fact, the pair (62, 63)
of numerator and denominator of this tangle is different from that of any
tangle in Case P1, where 62 and 63 denote knots in the Rolfsen’s knot table
[5]. Moriuchi showed that this tangle is equivalent to the algebraic tangle
((3̄, 2), 2) 1̄ with eight crossings. We obtain another equivalence class of
prime 2-string tangles in Case P5-2, which is represented by the algebraic
tangle ((3̄, 2), 2) 1̄.

6 crossings 8 crossings

Figure 7

Therefore, there exist exactly 51 equivalence classes of prime 2-string
tangles with up to six crossings.

□
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We provide the table of all the prime 2-string tangles with six crossings
and their resulting 2-bouquets in Table 1. All the equivalence classes of
prime 2-string tangles in the first column are denoted by the notation of
algebraic tangles (see [3]), and the notation of the 2-bouquets in the second
column corresponds to the tables in §5. We shall prove in the next section
that if two 2-string tangles in Table 1 are not equivalent, the constructed
2-bouquets are not flat vertex isotopic.

Table 1: The 2-string tangles with up to six crossings.

2-string tangles 2-bouquets 2-string tangles 2-bouquets

0 0k1 3 1 2 6k6
1 1l1 3 1 1 1 6l3
2 2k1 2 4 6k3
3 3l1 2 3 1 6l6
2 1 3k1 2 2 2 6k10
4 4k1 2 2 1 1 6k13
3 1 4k2 2 1 3 6l2
2 2 4k3 2 1 2 1 6k11
2 1 1 4l1 2 1 1 2 6l5
5 5l1 2 1 1 1 1 6k15
4 1 5k1 3, 2+ 6k9
3 2 5l2 2 1, 2+ 6k12
3 1 1 5k3 (3, 2) 1 6l7
2 3 5k2 (3, 2) 1̄ 6l10
2 2 1 5l3 (3, 2̄) 1̄ 6l11
2 1 2 5k5 (2 1, 2) 1 6l8
2 1 1 1 5k6 2 2, 2 6k14
3, 2 5k4 2 2, 2̄ 6k18
3, 2̄ 5k8 2 1 1, 2 6k17
2 1, 2 5k7 3, 3 6k7
6 6k1 3, 3̄ 6k19
5 1 6k2 3, 2 1 6l4
4 2 6k4 3, 2̄ 1̄ 6l12
4 1 1 6l1 2 1, 2 1 6k16
3 3 6k5 ((3̄, 2), 2) 1̄ 6l9
3 2 1 6k8
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§ 4. Classification of all constructed 2-bouquets

S. Yamada [7] introduced a 1-variable Laurent polynomial associated to
each spatial graph diagram.

Definition 5. Let g be a diagram of a spatial graph. Then R(g)(A) ∈
Z[A,A−1] is defined recursively as follows.

(1) R
( )

= A+ 1 +A−1.

(2) R
( )

= AR
( )

+A−1R
( )

+R
( )

.

(3) R
(

e
)
= R

( )
+R

( )
, where e is a non-loop edge.

(4) R
(
g1 ⊔ g2

)
= R

(
g1
)
R
(
g2
)
, where g1 ⊔ g2 denotes the disjoint union

of spatial graph diagrams g1 and g2.

(5) R
(
g1∨g2

)
= −R

(
g1
)
R
(
g2
)
, where g1∨g2 denotes a wedge at a vertex

of spatial graph diagrams g1 and g2.

The Yamada polynomial R(g) is a flat vertex isotopy invariant for a spatial
graph up to multiplying (−A)n for some integer n (see [7] for more details).

We compute the Yamada polynomial of each 2-bouquet diagram con-
structed in §3. The results are listed in Table 2. The first number, which
appears in the curly brackets, is the minimum degree of the polynomial.
The next sequence of numbers gives the coefficients of the polynomial, be-
ginning with the coefficient of the minimum degree term. For example,
{−2}(−1,−2,−3,−2,−1) denotes the polynomial−A−2−2A−1−3−2A−A2.

Table 2: The Yamada polynomials of prime 2-bouquets with up to six cross-
ings.

2-bouquets Yamada polynomials

0k1 {−2}(−1,−2,−3,−2,−1)

2k1 {0}(−1,−1,−2,−2,−2,−1)

3k1 {−4}(1, 1, 0, 0,−1,−1,−2,−2,−2,−2,−1)

4k1 {2}(−1,−1,−2,−1,−1,−1,−1,−1)

4k2 {−6}(1, 0,−1, 0, 0, 1, 0, 0,−1,−2,−2,−2,−2,−1)

4k3 {−8}(−1,−1, 0, 0, 0, 0,−1,−1,−2,−1,−1,−1)

5k1 {−8}(1, 0, 0, 1, 0, 0,−1, 0, 0, 0, 0,−1,−2,−2,−2,−2,−1)

5k2 {−10}(−1,−1,−1,−2,−2,−2,−2,−1,−1, 1, 1, 1, 1)

5k3 {−6}(1, 1, 0, 0, 0,−1,−1, 0,−1, 0,−1,−1,−2,−2, 0,−1,−1)

5k4 {−8}(−1,−2,−2,−2,−3,−2,−1,−1, 0, 1, 0, 1, 1, 2, 1, 0, 1,−1,−1)

5k5 {−4}(−1,−1,−1,−2,−2,−1,−2,−1,−1, 0, 1, 1, 2, 0,−1)

5k6 {−7}(1, 0,−2, 0, 0,−1, 0,−1,−1,−2,−1, 0,−1, 0, 1,−1,−1)

5k7 {−9}(−1,−1, 1, 1, 0, 2, 1, 0, 1, 0, 0,−2,−1,−1,−3,−2,−1,−2,−1)

5k8 {−6}(1, 0, 0, 0,−1, 0,−1,−1,−2,−2,−1,−1,−1)
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Table 2: The Yamada polynomials of prime 2-bouquets with up to six cross-
ings (continued).

2-bouquets Yamada polynomials

6k1 {4}(−1,−1,−2,−1,−1, 0, 0,−1,−1,−1)

6k2 {−10}(1, 0, 0, 0,−1, 0, 0, 1, 0, 0, 0, 0, 0, 0,−1,−2,−2,−2,−2,−1)

6k3 {−12}(1, 1, 1,−1, 0, 0, 0, 0,−1, 0,−1,−1,−1,−1)

6k4 {−7}(−1, 0,−1,−2, 0,−1,−1,−2,−1, 0, 0, 1, 1, 0, 0, 0,−1,−1)

6k5 {−11}(−1,−1,−1,−2,−2,−1,−1, 0, 1, 0, 0,−2, 0, 0, 0, 1)

6k6 {−5}(−1,−1,−1,−2,−2,−1,−1,−1, 1, 0, 1, 0, 0, 0,−1, 1, 0,−1)

6k7 {−9}(−1,−2,−2,−2,−3,−2, 0, 0, 1, 2, 1, 0, 1,−1,−1,−2, 0, 1, 0, 2, 0,−1)

6k8 {−8}(1, 0,−1, 1, 1,−3, 0,−2,−2, 0, 2, 3,−1,−1, 0,−3,−2, 0,−1,−1)

6k9 {−10}(−1,−1, 0,−1,−2, 0,−1,−4, 0,−2,−1, 0, 2, 3,−1, 0, 1,−2, 0, 1)

6k10 {−6}(−1, 0, 0,−4, 0,−1,−1, 0, 1, 1,−2,−2, 0,−1, 0, 2, 0,−1)

6k11 {−10}(−1,−1, 1, 0,−2, 0,−1,−3,−1, 0,−1, 0, 0, 1,−1, 0)

6k12 {−8}(1, 1,−1, 0, 0,−3,−2,−1,−3,−1,−1, 0,−1,−1, 6, 0, 0, 2, 0,−1)

6k13 {−8}(1, 0,−2, 0, 1,−1, 1, 2, 0, 1, 0, 0,−2,−2, 0,−3,−3, 0,−1,−1)

6k14 {−10}(−1,−1, 1, 1,−1, 1, 1,−2, 0, 0,−2,−1,−1, 0,−2,−1, 2,−1,−1, 1,−1,−1)

6k15 {−8}(1, 0,−2, 1, 1,−2, 0, 0,−3,−2,−2,−1,−2,−1, 2,−1, 0, 3, 0,−1)

6k16 {−10}(−1,−2,−1,−2,−4,−1,−1,−3, 1, 3, 1, 2, 1, 1,−2,−2, 1,−2, 0, 3, 0,−1)

6k17 {−10}(−1,−1, 1, 0,−2, 1, 0,−3, 0, 0,−2,−1,−1, 0,−2, 0, 3,−1, 0, 2,−1,−1)

6k18 {−7}(1, 0,−1, 0,−1,−1, 0,−1, 0,−1,−1,−1,−2, 0, 0,−1)

6k19 {−8}(1, 0, 1,−1, 0, 2,−3,−1,−6,−2,−2, 0, 1, 0, 0, 1)

1l1 {−1}(1, 1, 1)
3l1 {1}(1, 1, 2, 1, 0,−1,−1)

4l1 {−5}(1, 1, 0, 0, 0,−1, 0, 0, 1, 1, 1, 1,−1,−1)

5l1 {3}(1, 1, 2, 1, 1, 0,−1,−1,−1)

5l2 {−5}(−1, 0, 0,−1, 1, 1, 2, 1, 1, 1, 0, 0, 0,−1,−1)

5l3 {−7}(1, 0,−1, 1, 1, 0, 1, 0, 0,−1, 0, 1, 0, 1, 1,−1,−1)

6l1 {−7}(1, 1, 0, 0, 0,−1,−1, 0, 0, 0, 1, 0, 1, 1, 2, 1,−1, 0,−1,−1)

6l2 {−3}(1, 1, 1, 1, 0,−1, 0,−1, 0, 0, 0, 1, 0, 1, 0,−1)

6l3 {−9}(1, 0,−1, 2, 0,−2, 0,−1, 0, 0, 2, 2, 0, 1, 1,−1, 0, 1,−1,−1)

6l4 {−11}(−1,−1, 1, 0, 0, 3, 1, 0, 2, 0,−1,−3,−1, 0,−1, 2, 2, 0, 1, 1,−1,−1)

6l5 {−11}(−1, 0, 2, 0, 0, 1,−1,−1, 0, 0, 1, 0, 2, 1,−1, 1, 0,−1)

6l6 {−9}(1, 0, 0, 2, 0,−1, 1, 0, 0,−1, 0, 0,−1, 1, 1, 0, 1, 1,−1,−1)

6l7 {−12}(−1, 0, 1,−1, 1, 1, 0, 0,−1, 0,−1, 0, 1, 0, 0, 1, 0, 0, 1, 1)

6l8 {−11}(−1, 0, 2,−1,−1, 2, 0, 0, 2, 1, 1,−1, 1, 0,−2, 1, 0,−2, 0, 1)

6l9 {−10}(−1,−1, 2, 1,−2, 2, 2,−2, 1, 2,−1, 0, 0, 1,−2,−1, 3,−2,−1, 3, 0,−1)

6l10 {−7}(−1, 0, 0, 0, 1, 0, 0,−1, 0, 1, 1, 1, 1)

6l11 {−7}(1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,−1)

6l12 {−7}(−1,−1, 0,−1, 0, 3, 3,−6, 2, 0, 0,−2,−1,−1,−3, 1, 1)

We see that the polynomials listed above are mutually distinct up to
multiplying (−A)n for some integer n. Therefore all the 2-bouquets we
constructed in §3 are not flat vertex isotopic.

We finally investigate whether each of the obtained 2-bouquets is of type
K or of type L, to obtain the following theorem.

Main Theorem. There exist exactly 33 flat vertex isotopy classes of the
prime 2-bouquets of type K and exactly 18 classes of type L with up to six
crossings.

§ 5. Table

We provide the table of prime 2-bouquets of type K and that of type L
as follows. The 2-bouquets are listed in order of the crossing numbers.
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The prime 2-bouquet graphs of type K with up to six crossings



12 NATSUMI OYAMAGUCHI

The prime 2-bouquet graphs of type K with up to six crossings (continued)
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The prime 2-bouquet graphs of type L with up to six crossings
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Remark Yamano gave a list of the prime basic 4-regular disk graphs
with seven vertices or less in [8], and Moriuchi gave a list of the algebraic
tangles with seven crossings or less up to equivalence in [3]. Therefore we can
obtain all the prime 2-string tangles with seven crossings in the same way,
and also construct all the prime 2-bouquets with seven crossings. However
we provide the tables with up to only six crossings in this paper because
the situation becomes much more complicated. In fact, there exists three
more prime basic 4-regular disk graphs with seven vertices and 132 algebraic
tangles with seven crossings.
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