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Abstract

This thesis presents how to build a practicable type debugger. From the
time the Hindley-Milner type system was first proposed, programmers have
received benefits from types. At the same time, they have to struggle with
type errors. Many approaches have been developed to help programmers
locate the source of type errors. Although their implementations help pro-
grammers a lot, existing compilers often lack such support. We feel this sit-
uation puts too much of a burden on programmers: debugging an ill-typed
program takes up a lot of their time, and compiler’s error messages are too
difficult for many new learners to understand. This situation is a shame for

many statically typed languages.

To address this situation, we believe practicable type debugging is needed.
First, we establish a manifesto of practicable type debugging. The properties
of the manifesto can be grouped into two categories. One category is the
producer side, where the properties focus on the implementation of type
debugging systems. By satisfying these properties, a type debugging system
can be applied to many languages. The other category is the consumer side,
where the properties focus on the usability. If a type debugging system is
not user-friendly and forces the programmers to deal with too big a burden,
the programmers feel that debugging by hand would be better. Therefore,

the usability of a type debugger is a crucial factor.
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The main part of this thesis consists of two parts according to our mani-

festo of practicable type debugging.

First, we focus on the producer side of type debugging. To this end,
we propose a type debugger without implementing any dedicated type in-
ferencer. Conventional type debuggers require their own type inferencers
separate from the compiler’s type inferencer. The advantage of our approach
is threefold. First, by not implementing a type inferencer, it is guaranteed
that the debugger’s type inference never disagrees with the compiler’s type
inference. Second, we can avoid the pointless reproduction of a type infer-
encer that should work precisely as the compiler’s type inferencer. Third,
our approach can withstand updates of the underlying language. The key
element of our approach is that the interactive type debugging, as proposed
by Chitil, does not require a type inference tree but only a tree with a certain
simple property. We identify the property and present how to construct a tree
that satisfies this property using the compiler’s type inferencer. The property
shows us how to build a type debugger for various language constructs. In
this topic, we describe our idea and first apply it to the simply-typed lambda
calculus. After that, we extend it with let-polymorphism and objects to see

how our technique scales.

Second, we focus on the customer side of type debugging. To this end,
we propose a weighted type error slicer. The problem of our type debugger
is that it often requires many answers by programmers. This problem is
solved partially by type error slices. Conventional type error slicers enable
programmers to narrow the area for type debugging. However, type error
slices become large when the original ill-typed programs are large. To search
the source of the type error in the large slice is a burden on programmers. To

ease this problem, we extend type error slices with the weights that means



the likelihood of each expression being the source of the type error. When
a programmer write a program, he has some intentions of types. Therefore
some programmer’s intentions are sprinkled into the program even if it is
ill-typed. The aim of this work is to detect programmer’s intentions from an
ill-typed program. The main idea is to abstract an ill-typed program and
judge the likelihood by majority vote. In this topic, we describe our idea and
introduce a type error slice using compiler’s type inferencer. After that, we
extend it with the simple weights and improve it to have better weights.
We propose these two approaches for practicable type debugging. Using
our approaches, it is possible to implement a type debugger for many exist-
ing functional languages. Easy type debugging contributes easy learning of
programmings and decreases the burden of programmers. This thesis is a

step to achieve easy type debugging.
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Chapter 1

Introduction

To ensure the reliability of programs, types are introduced to many languages.
The benefit of types is that they guarantee various properties of well-typed
programs. One popular property is “If a program is well-typed, the evalua-
tion of the program will go well'.” Thanks to these kinds of properties, we
can receive many benefits. For example, a previous property ensured that
programmers can run a well-typed program in safety, and another popular
property states that “If a program is well-typed, its evaluation will surely
halt.” This property is accomplished with a strict type system (e.g, simply
typed lambda-calculus).

The role of types is to sort programs according to our need. Here, this
“need” has two sides: we need strong properties and expressive programs at
the same time. However, to give an example of the difficulty of this, to have
a halting property of programs, the expressiveness of the programs is weaker
than languages which do not have halting properties. Put simply, types mean
placing restrictions on programs. Properties ensured by types have a trade-
off in the form expressiveness of programs. Research on advanced types show

the history of searching for a good balance of these properties. Here, let us

L“g0 well” means the program does not cause any runtime type errors.
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20 CHAPTER 1. INTRODUCTION

take a look at some of the advanced types.

Advanced types. Many advanced type systems based on the Hindley-Milner
type system [15] have been proposed. Most of them were designed to increase
the expressiveness of types (increasing acceptive programs) or the strength
of properties.

One feature of these advanced types is “polymorphicness”. The main
idea of a polymorphic type is that it can be used to express several types.
One polymorphic type, called a let-polymorphism, allows polymorphic types
to be used for let-bounded functions. Because let-polymorphism allow pro-
grammers to reuse functions, it is used in ML (e.g. OCaml[3, 9], Standard
ML [16] et al.). There are many polymorphic types, including rank-2 poly-
morphism [10, 11], parametric polymorphism [31], and so on. Because this
thesis does not touch on these other polymorphic types, we do not present
their details here.

Another feature of the advanced types is the dependent type, which allows
types to dependent value or the other types. This type ensures the property
that “if a program is well-typed, there are no errors caused by an out-of-
bounds.” Because dependent types ensure stronger properties than standard
types, they are used in Coq [1], Agda [32] and Epigram [33].

There are many other types that have been proposed for properties re-
lating to programs and expressiveness. Some of these are used in many

languages, while most of them are just beginning to be used.

The balance of properties and expressiveness is one aspect of types. An-
other aspect is how to obtain the types of each expression to check the con-
sistency of the programs. There are two main approaches to this. One

approach requires programmers to write annotations (types in programs)
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and cast types as much as possible. Because this approach often lack good
properties, it is called “weakly typed.” The other approach does not require
annotations and instead, a compiler infers the types of each expression au-
tomatically. Because this approach often have some good properties, it is
called “strongly typed.” The benefit of this approach is strong properties
and the unnecessity of writing types. However, this unnecessity often causes
complicated type errors, so our target language in this thesis is the latter

approach.

Difficulty of writing well-typed programs. Writing a well-typed program is
not always easy, even in the Hindley-Milner type system. Furthermore, it is
very difficult problem in advanced type systems. Although a compiler gives
us an error message when a type error occurs, there is no straightforward
explanation to why the type error occurred. Compounding the problem, the

source of a type error can be far from the place reported by the compiler.

We believe that type debugging systems are needed for advanced type
systems to become widespread. Although current compilers often lack a
debugging system, this is compensated for by programmers’ efforts, such as
inferring types themselves. However, such efforts become impossible as type
systems become more complicated. Therefore, we present a practicable type

debugging system in this thesis.

Note on this thesis. In this thesis, we focus on strongly typed functional
languages, especially the OCaml language [3, 9]. We use the syntax of OCaml

version 3.12.1 as example programs.



22 CHAPTER 1. INTRODUCTION
1.1 Type checking and type errors

In this section, we give a basic overview of type errors. First, we describe
how type checking processes proceed, and then we discuss why type errors

are caused and where they come from.

1.1.1 Type checking

The checks that a compiler performs for the consistency of the types are
called type checking. In statically typed language, type checking is performed
during compiling. Type checking is often called type inference in strongly
typed functional languages because compilers infer types in the checking
phase. Because the expressions are checked before execution, the safety of
the types is maintained.

To see the flow of type checking, let us consider an example program of
1 + 2. When we see this program, we think we can evaluate it successfully,

for three reasons:
e “+” is an operator that receives two numbers.
e 1 and 2 are numbers.

e Because the upper two have no conflicts, the expression can be evalu-

ated successfully.

The type checkers of compilers also judge this program as well-typed with

the same reasoning:

e Because + receives two numbers and returns one number, the type of +

1s int -> int -> int.

e Because 1 and 2 are numbers, their types are int.
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e Because there is no conflict, we can evaluate the program.

Because the types of a function “+” and its two arguments match, that is,
this program is well-typed, this program never causes type errors in the
evaluation phase.

To see an example of how type checking fails, let us consider an example
program of 1 + true. This program has a type conflict because + requires
two numbers and the second argument is not a number. In this case, the
program is ill-typed. This is how the type checking process proceeds. If the
final result of an expression can be typed, the programmers receive benefits

immediately. Otherwise, the programmers have to struggle with type errors.

1.1.2 Two conflicting expressions

There are many cases in which written programs are not well-typed. In this
subsection, we take a look at why type errors are caused.
A type error occurs when types of two expressions conflict with each

other. Let us consider the following example:

let rec f g 1st = match 1st with

| [0 ->1

| fst :: rest —>|(—gfst)|:: (f g rest) in
(£ 1 [2;3;4]) @ [5;6;7]

In this program, the two boxed expressions have a type conflict causing a
type error. The first argument g of the function f is used as a function in (g
fst), but an integer 1 is passed as g in (f 1 [2;3;4]). Because a function
type ’a -> ’b cannot be unified with int, a type error occurs. To locate
these two conflicting expressions is useful when one of them is the source of

a type error. Unfortunately, that is not always the case.
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1.1.3 The source of a type error

The source of a type error cannot be determined solely from the conflict
of types. For example, suppose that a call to £ in the previous example is

wrapped by a call to h.

let rec f g 1st = match 1st with

I 00 ->1

| fst :: rest > (g fst) :: (f g rest) in
let h n 1st =m in
(h 1 [2;3;4]) @ [5;6;7]

In this program, although (g fst) and (h 1 [2;3;4]) are the conflicting
expressions, the source of the type error may be in the definition of h: if we
replace the boxed expression with (f (fun x -> x + n) 1st), the program
is well-typed. Because which of these expressions is the source of the type
error depends on the programmer’s intention, we cannot locate the source of

the type error automatically.

1.2 Thesis outline

When programmers encounter type errors, they usually wish to locate the
sources by type debugging systems automatically. Unfortunately, this is
impossible. However, type debugging systems have the potential to support
programmers by removing some of their struggles. To overcome the problem
of many compilers lacking type debugging systems, our aim here is to provide
practicable type debugging systems.

In the next chapter, we present an overview of approaches to type errors.

We classify them into three categories: typing algorithms, type error slicing,
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and type debugging. All of them are used in this thesis, and after this

overview they are described in details in Chapter 12.

In Chapter 3, we discuss our manifesto for practicable type debugging.
We consider “practicable” from two sides. One is the implementation side. To
implement type debuggers for many existing compilers, their implementation
must be both easy and accurate. The other side is for use. If we implement

a type debugger but it is not useful, the type debugger is meaningless.

Because “practicable type debugging” has two meanings, the main topic

of this thesis consists of two parts.

The first topic relates to the implementation side and is covered in Chap-
ters 4 to 7. The main idea of this topic is to use a compiler’s type inferencer
for constructing a tree for debugging. Thanks to the type inferencer, we
can implement the debugger easily. In Chapter 4, we describe why type
debugging is needed and the problems inherent in previous systems. After
that, we present our idea of how to solve the problems. In Chapter 5, we
apply the idea to simply-typed lambda calculus and extend the language
with let-polymorphism. To keep our type debugger accurate, we introduce
a property. In Chapter 6, we extend the language to other features, such as
objects, modules, and weak polymorphism to see how our technique scales.
In Chapter 7, we describe our implementation of a type debugger for OCaml

and conclude this topic.

The second topic relates to the user side and is covered in Chapters 8 to
11. The main idea of this topic is to reduce the burden on the programmers
for type debugging by weighted type error slicing. Although this approach
also uses a compiler’s type inferencer, its most unique point is that it focuses
on which part is likely to be the source of the type error. When we write

programs, we have some intentions of types even if the programs are ill-typed.
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The programmer’s intentions obtained by ill-typed programs are useful for
type debugging. In Chapter 8, we describe the problem of our type debugger
and ways of solving it. In Chapter 9, we introduce a type error slicer using
the compiler’s type inferencer. In Chapter 10, we extend it to have weights
that mean the likelihood of each expression being the source of the type error.
by simple majority vote. In Chapter 11, we improve the weighted type error

slice to have better weights.



Chapter 2

Background

In this chapter, we present an overview of the background of this work. To
analyse the necessary property of practicable type debugging, we overview
several techniques for type errors, such as typing algorithms, type debugging,

and type error slicing.

2.1 Typing algorithms

The popular approach to support programmers for type errors is constructing
a new type inference for improving type error messages. In this section, we
take a look at three algorithms.

The standard purpose of type inference algorithms is to infer the type
of the expressions. When the expressions are well typed, their final results
are generally the same. However, when the expressions are ill-typed, their
behaviors are quite different.

To see the difference between typing algorithms, let us consider the fol-

lowing three ill-typed examples:

(fun x > (x + 1, x 3)) 4 (1)

27
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In this program, because we use x as int in x + 1 and as a function in x 3,
type error occurs. Here, we assume that the source of this type error is in x
3. Although the programmer who wrote it thinks that the type of x is int,

he forgot to write + in x 3.

(fun x -> (x =~ x) *. 3.) (2)

~

In this program, because ~ is a string concatenation in OCaml, x ~ x returns
string. However it is passed to float-point multiplication *.. In this way,
this program is ill-typed. We assume that the source of the type error in

~

this program is ~. Although the programmer misunderstood that ~ is the

exponential operator, it is string concatenation in OCaml.
List.map (fun (fst :: snd) -> fst + snd) [(1, 2); (2, 3)] (3)

In this program, because we use snd as ’a list in (fst :: snd) and as
int in fst + snd, type error occurs. We assume that the source of the type
error in this program is (fst :: snd). If we replace : : with ,, this program
becomes well-typed. Using these examples, we see how different the three

typing algorithms are.

2.1.1 Algorithm W

Algorithm T [4] is the de facto standard typing algorithm. It receives an
expression and an environment for inferring types. The received environment
includes the expected types for variables. The point of algorithm W is these
environments. The environments are carried during the type checking process
and updated by the uses of the variables.

If the types of an environment are all programmer’s intended types, al-

gorithm W often locates the source of the type error correctly. Otherwise
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algorithm W misidentifies the source of the type error by the wrong environ-
ment. For example, in (1), when it infers the type of x + 1, algorithm W
has an environment {x:int} . This environment is correct for the program-
mer. After that, algorithm W infer the type of x 3. Because the program
x 3 has a type conflict with the environment {x:int}, algorithm W locates
the source of the type error is in x 3. In this example, algorithm W works
well. However, in (2), algorithm W does not locate the source of the type

~

error. Because the type of (x ~ x) is string along of the type of ~ string
-> string -> string and the type of *x. is float -> float -> float,
there is a type conflict. Algorithm W misidentifies the source of the type
error is in (x ~ x) *. 3. As just described, if the obtained environment
and inferred type are the correct, algorithm W works well. Otherwise, it

misidentifies the source of the type error.

2.1.2 Algorithm M

Algorithm M [12] receives an expression and an environment the same way
as W, and it receives the expected type of the expression additionally. If the
types of an environment and the expected type are correct for programmer,
this algorithm works well. Otherwise, it misidentifies the source of the type
error by wrong information. For example, in (2), because the type of *. is
float -> float -> float, it requires float to its arguments. Algorithm
M uses this information when it infers the type of (x =~ x). Because this ex-
pected type float requires ~ to be ’a -> float and the type of ~ is string
-> string -> string, algorithm M locate the source of the type error is .
However, in (3), algorithm M does not locate the source of the type error.
When it infers the type of (fst :: rest), it has an environment {fst:’a,

snd:’a list}. Although this environment is not correct for programmers,
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the typing algorithm has no way to know it. It continues typing and infers
the type of fst + snd. Because this expression has a type conflict with the

environments, it misidentifies fst + snd is the source of the type error.

2.1.3 Compositional typing

Compositional typing has been proposed by Chitil [2] for type debugging. We
will take a look of its debugging side later (Section 2.3). Because this typing
does not require an environment or an expected types of an expression, the
identified parts are larger than the previous two algorithms. The previous
two type inferences assume inferred types are correct during type inference.
Because compositional type inference removes this assumption, it can infer

as many types as possible.

2.1.4 Essentials of typing algorithms

Because algorithm M carried more information than algorithm W and com-
positional typing, Algorithm M stops earlier than they do. If the information
is correct for programmers, it produces better result than them. Otherwise, it
misidentifies the source of the type error. This problem is also in algorithm
W. Although type inference algorithms sometimes identify the source of a
type error correctly, it is impossible for them to always identify the source of
a type error correctly by just one error message. Let us consider the following

example:

let rec f 1st n = match 1lst with

| 00 ->1

| fst :: rest -> (fst "~ n) :: (f rest n)
in £ [1;2;3]
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~

In OCaml, the operator ~ is a function of the concatenation of two strings.
Although ~ requires that f has type string list -> string -> string,
we apply f to [1;2;3]. This is why this program is ill-typed.

In this case, we can consider several potential error sources. For example,
the source of the type error may be in ~. If we replace ~ with ** (a function
for an exponentiation), this program becomes well-typed. On the other hand,
the source of the type error may be in [1;2;3]. If we replace [1;2;3] with
["1";m2";"3"], this program becomes well-typed, as well.

In other words, if we consider exactly the same ill-typed program, the

source of the type error is going to be different depending on the program-

mer’s intention.

2.2 Type debugging

To locate the sources of type errors, we have to debug programs somehow with
our intended types. Without a special type debugging system, we often use
our intended types to debug an ill-typed program by annotations. Because
annotations are the same as writing programmer’s intended types, a type
inferencer could potentially produce better type error messages.

The other approach is type debugging systems. The type debugger that
Chitil proposed [2] asks programmers several questions about their intended
types. It then uses the types to locate the source of the type error.

These debugging systems have two main advantages over annotations.
First, they enable us to omit writing types in programs. Because this is a
benefit of type inference, we can say this point preserves the benefit of type
inference. Second, it is quite frankly unrealistic to annotate every part of a
program. Although annotations can help programmers, they do not always

locate the source of the type error.
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The advantage of type debugging system as the technique for type errors
is that they can locate the source of the type error. The disadvantage is
that the need of programmer’s intention, sometimes become a burden on

programmers.

2.3 Type error slicing

Type error slicing is often used for type debugging. It is a popular technique
to narrows the area that relates to type errors. A type error slice consists of
some parts of an ill-typed program. Each part of a type error slice relates to

the type error. A type error slice of the previous example in Section 2.1.4 is

let rec f ... n= ...
| ... => L.
| ... => (... = n)

in £ [1;2;3]

This slice includes the parts we consider as potential sources of the type
error. The advantage here is that we can obtain type error slices without
any special programmer’s input (e.g., annotations), unlike type debugging.
Although it narrow the area, it can not locate the source of the type error.
Moreover, a type error slice for a large program may also be large. To locate
the source of the type error, programmers must search for the source of the

type error from a slice, which can be time-consuming.



Chapter 3

A manifesto of practicable type
debugging

In this chapter, we discuss the required properties for practicable type de-
bugging. In this thesis, “practicable” has two meanings. One is the producer

side of type debuggers, and the other is the consumer side.

3.1 Producer side

First, let us consider the producer side of type debuggers. The producer
side relates to the implementation of type debuggers. One problem here is
that many languages lack type debugging systems. There have been several
implementation proposed for improving the type errors, but because new
languages are proposed and changed so quickly, many of them still lack type
debugging systems. To overcome this situation, we need a type debugging

system that can be applied to many languages easily.

Producer (implementer) side To implement type debuggers for existing

languages, the type debugging systems should satisfy following properties:

(1) Have type debugger behavior and compiler behavior that is consistent
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Usually, programmers use particular language compilers. When they
debug programs by a type debugger, it must produce the same result
as the compilers. This means the type debugger should infer exactly
the same types for expressions as the compiler’s type inferencer. If the
object language is small, this is not so difficult. However, if we want an
implementation for a wide variety of languages, it becomes very hard

and we have to simply deal with it as best we can.

(2) Be easy to implement

(3) Be easy to adapt to updated compiler

These two properties are important to ensure that type debuggers will
work with existing compilers. They include not only easing the effort
of implementing the debugger itself but also the conceptual under-
standing of how to design and extend the debugger for larger language
constructs. Because a type debugging system must be expanded to
cope with more languages, the expansion must be easy to understand.
Additionally, to preserve property (1), we have to catch and deal with

compiler updates.
(4) Be accurate

The part located by the type debugger must be the source of the type
error the programmers made. If this property is lacking, the type de-

bugger is meaningless.
(5) Be applicable to many languages

To implement type debuggers for languages that lack type debuggers,
the type debugging system should be applicable to many languages.
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Therefore, they need low restrictions. To compare this measure, type

debugging systems need to establish their restrictions.

3.2 Consumer side

The other side is for the uses of type debuggers. If we can make a type debug-

ger easily but it is not useful for programmers, it is meaningless. Essentially,

a practicable type debugger must be practical for programmers.

Consumer (user) side

(1)

(4)

Be easy to debug

The debugging process should require minimal effort on the part of the
programmers. If type debugging is not easy, the programmers will feel
that hand debugging is better. Practicable type debugging cannot be
realized without this property.

Produce good messages

This property is important for programmers to understand why type
errors occur. When a type debugger locates the source of a type er-
ror, it should explain why it is the source. This property is mostly

accomplished by a manifesto of type error messages [30].
Have a good user interface

Type debuggers often have to show a focused part of the ill-typed pro-
gram. To show it exactly and clearly, graphical user interfaces are

required.

Be quick enough to use
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Type debuggers are often used interactively by programmers. To use
them without stress, they have to be quick. Because type debuggers

are interactive, they can use the waiting time for user inputs.



Chapter 4

An embedded type debugger

From this Chapter 4 to Chapter 7, we focus on the producer side of type
debuggers. In this chapter, we describe how we can locate the source of a
type error by previous systems and what is the problems of them. After that,
we present our idea to solve the problems.

As we saw in Chapters 1 and 2, the main purpose of type debuggers is to
locate the source of a type error. First, we see how we can locate the source

of a type error using programmer’s intention.

4.1 Locating the source of a type error

A standard type inference tree. 'To locate the source of a type error, we
basically detect the difference between an inferred type and a programmer’s

intended type. Let us consider a small example:
(fun x -> x + X) true

This program is ill-typed, because true is passed to x, but x is consumed
by an integer addition +. Let us assume that the programmer wrote this

program, because he mistakenly thought that + was the logical or operator.

! This is an example of the source of this type error. If the programmer has a different
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Since the logical or operator in OCaml is ||, the programmer’s intended
program is (fun x -> x || x) true.

We show a standard type inference tree for this example constructed by
the compiler in Figure 4.1 and programmer’s intended type tree in Figure 4.2.
By detecting the difference between these two type inference trees, we can
locate an expression that includes the source of a type error. For example,
since types of expressions in the boxed part differ in Figures 4.1 and 4.2,
the source of the type error resides in the expression (fun x -> x + x).
However, we cannot further identify which subexpression of this expression
is the root cause of the type error, as long as we use a compiler’s type inference
tree.

The standard type inference tree is not suited for type debugging, because
a type of an expression can depend on the types of other expressions. In
the above example, the type of x does not have to be int if it appears
independently. It becomes int, because it is used as an argument of +. Such
information is lost in the standard type inference tree, because the type of x

becomes int throughout, once it is unified with the argument type of +.

The most general type tree. To break the dependency between expressions,
we introduce the most general type tree. We show the most general type tree
for our example in Figure 4.3. The most general type tree holds the most
general type for each subexpression. For example, x has a typing {x:’a}
F x:’a for any type ’a, because x alone does not require any constraints
on its type. The type of x is constrained only when it is used in a context.
For example, x + x has a typing {x:int} F x + x:int, because + requires
that x has type int. Using this most general type tree, we can exactly locate

the source of a type error by detecting difference between inferred types and

intention, other fixes are possible, such as replacing true with 1.
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{x:int} Fx:int {x:int} F(+):int -> int -> int {x:int} Fx:int
{x:int} Fx + x:int
{} F(fun x -> x + x):int -> int {} Ftrue:bool
(fun x -> x + x) true ---Type Error

Figure 4.1: A standard type inference tree

{x:bool} Fx:bool {x:bool} F(+):bool -> bool -> bool {x:bool} Fx:bool
{x:bool} Fx + x:bool
{} F(fun x -> x + x):bool -> bool {} Ftrue:bool

{} F(fun x -> x + x) true:bool

Figure 4.2: Programmer’s intended type tree

{x:’a} Fx:’a| {x:int} F(+):int -> int -> int| {x:’a}tx:’a

{x:int} Fx + x:int

{} F(fun x -> x + x):int -> int {} Ftrue:bool
(fun x -> x + x) true ---Type Error

Figure 4.3: The most general type tree

intended types. By comparing Figures 4.3 and 4.2, we find that the type
conflict occurs in the boxed part of Figure 4.3. We can then locate the
source of the type error to be +. Note that the type of x (at the two leaves
of the tree) does not contradict with programmer’s intended type, because

bool is an instance of ’a.

Algorithmic debugging. Of course, a tree with programmer’s intended types
exists only in programmer’s mind. To extract programmer’s intention, we
use algorithmic debugging proposed by Shapiro [20]. Algorithmic debugging
is used to identify the location of an error in a tree by traversing over the
tree according to oracles. For oracles, questions for the programmer are often
used. It is originally used for Prolog, but algorithmic debugging can be used
for any tree structures and is applied to various areas, to locate run-time

errors [18], semantic errors [21], etc. To debug Figure 4.3 using algorithmic
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debugging, we start from the root of the tree where a type error occurs. The
type debugger first asks if the two child nodes are correctly typed according
to programmer’s intention. Since the programmer’s intended type for (fun x
-> x + x) is not int -> int but bool -> bool, the programmer answers
no to the first question. From this answer, the type debugger determines that
the source of the type error resides within this expression. Next, the type
debugger asks whether the intended type of x + x is int. Again, the answer
is no, and the type debugger moves into the subexpression. By repeating

this process, the type debugger locates the source of the type error as +.

4.2 Problems

Chitil [2] constructed the most general type tree by inferring types composi-
tionally, and located the source of a type error interactively using algorithmic
debugging. Using his type debugger, one can locate the source of a type error
by simply answering questions.

Following Chitil’s work, we implemented a type debugger for a subset
of OCaml together with some improvements [24] and used it in a course in
our university. However, due to the need to implement a tailor-made type

inferencer, we encountered at least three problems.

Implementation of a type inferencer. First, to implement a type inferencer
that returns exactly the same type as the compiler’s type inferencer is tedious
and error-prone. Even for a small language, we had to fully understand the
behavior of the compiler’s type inferencer. For example, a compiler has an
initial environment for typing. If a tailor-made type inferencer lacks a part of
the initial environment, it cannot infer the same type as the compiler’s type
inferencer. Furthermore, the discrepancy between the two type inferencers

becomes apparent only when we find unexpected debugging behavior. It
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makes it hard to detect errors in the tailor-made type inferencer.

Support for advanced features. Secondly, to implement a type inferencer
for advanced features, such as objects and modules, is difficult and takes
time. In our previous type debugger [24], we could implement the main
subset of OCaml, including functions, lists, and pattern matching, but not
the advanced features, such as user-defined data structures, objects, and
modules. This is unfortunate: a type debugger would be particularly useful

in the presence of such advanced features.

Compiler’s updates. Thirdly, to reimplement the type inferencer every time
the compiler is updated is costly. In the last three years, the OCaml compiler
had two major updates and two minor updates. It is not realistic to follow

all these updates and reimplement the type inferencer.

To solve these problems, we propose not to implement a tailor-made type
inferencer but to use the compiler’s own type inferencer as is to construct

the most general type tree.

4.3 Owur approach

Rather than implementing our own type inferencer, we use a compiler’s type
inferencer to construct the most general type tree. Construction consists of
two stages. First, the erroneous program to be debugged is decomposed into
subprograms. This decomposition determines the overall shape of the tree.
Then, the type of each subprogram is inferred by passing the subprogram to
the compiler’s type inferencer. For example, if a program M is decomposed
into subprograms, M, ..., M,, we first construct the left tree below.

M, ... M My:m ... M,:T
& 7 = 1 1 n n
M M:T
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We then infer their types (possibly an error) by passing each of M; (and M)
to the compiler’s type inferencer to obtain its type 7; (and 7). Note that un-
like the standard type inference, types of subexpressions are not determined
by applying typing rules to the parent expression. Rather, they are deter-
mined by executing the compiler’s type inferencer for each subexpression
independently.

The above explanation is somewhat simplistic, because we did not con-
sider bindings. To cope with bindings properly, we actually maintain a con-
text C' of an expression M, treating C[M] as a complete closed program
(where C[M] is the expression C' whose hole is filled with M, possibly cap-
turing free variables of M). We call M in C[M] the focused expression.

Overview from Chapter 5 to Chapter 7. In the rest of this topic, we first
show a type debugger for the simply-typed lambda calculus in Section 5.1 and
a necessary property for decomposition in Section 5.2. To expand the type
debugger to Hindley-Milner type system, we extend it with let polymorphism
in Section 5.3.

In Chapter 6, we extend the type debugger with several extension to see
how our technique scales. The extension includes objects in Section 6.1,
weak polymorphism in Section 6.2 and modules in Section 6.3. Although
these extensions is a bit complicated, the basic idea is the same.

We describe our implementation of a type debugger for OCaml that uses
OCaml’s own type inferencer in Section 7. We explain how to find a minimum
part of an ill-typed program and debug it in Section 7.1. After that, we
describe the details of our implementation in Section 7.2, and concludes in

Section 77.



Chapter 5

A type debugger for
Hindley-Milner type system

In this chapter, we propose a type debugger using the idea which we intro-
duced in the previous chapter. First, we present a type debugger for the
simply-typed lambda calculus. After that, to extend it to Hindley-Milner
type system, we expand its syntax with let-polymorphism. Because the type
debugger for Hindley-Milner type system is the basics of our approach, it

explains most of our type debugger.

5.1 The simply-typed lambda calculus

In this section, we introduce a type debugger for the simply-typed lambda
calculus. Although simple, it is enough to explain the basic behavior of our

type debugger.

The language. We show the syntax of lambda calculus A_, in Figure 5.1.
It includes constants, variables, abstractions, and applications. We assume
that basic primitive operations (such as + that we will use in examples) are

predefined as constants. Types include type variables, type constants, and
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function types.

Tree structure determined by decomposition. Let us consider a type infer-
ence tree for Ax.x + 1. Since the only subprogram of \z.z + 1 is x + 1 and
it is further decomposed into three subprograms, z, (+), and 1, the overall
structure of the tree should look like:

ToFx Tok(+) Tok1

F0|_$+1
IToFXzx+1

where Iy is the initial environment used by the type inferencer of the un-
derlying compiler and contains all the bindings for the supported constants.
However, the above subprograms are not directly typable using the compiler’s

type inferencer, because they include free variables (such as x).

Decomposition with contexts. To make a subprogram typable, we enclose
it with a context that supplies necessary bindings for free variables. In this
language, a context is defined as either an empty context O or a lambda
binding Az.C' (Figure 9.1). The most general type tree of Ax.z + 1 becomes

as follows:

TobAz.fz]:’a => [’a]l Tok Az.[(+)]:’a => [int -> int -> int] Tk Az.[1]:’a -> [int]
I'oF Az.Jz + 1] : int -> [int]
Lok [Az.xz +1] : [int -> int]

Looking at the focused expressions filled in the context, we see that it has the
same structure as the previous tree. Thanks to the contexts, all the subpro-
grams are now typable under I'y. The types enclosed by [...] correspond
to the types of focused expressions.

Although the above tree is similar to the standard type inference tree for

A
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(M :term) == c (constant)
| (variable)
| Az M (abstraction)
| My M, (application)

(T:typ) == b (type variable)
| int,bool,... (type constants)
| o7 (function type)

(C': context) == O (empty context)
| Ax.C (lambda context)

Figure 5.1: The syntax of simply-typed lambda calculus A_,

Dec : context xterm — (context x term) list

Dec[(C,o)] = |

Dec[(C,z)] = |
Dec[(C, A\x. M)]] [(C[Az.O], M)]
Dec[(C, My My)] = [(C, My); (C, My)]

Figure 5.2: The decomposition function Dec for A\_,

env = (var x typ) list
Collect : context — typ — env  —  (env * typ)

Collecto[tlp = (u,7)
Collecty.c[mn — o] = Collecto[r]p[r — m]

Figure 5.3: The function Collect to obtain types of free variables for A_,

Judge[(C,M)] = let M’ = C[M] in
let 7 = typing M’ in
let (v,7") = Collects[7]]] in
(v, 7)

Figure 5.4: The function Judge to obtain typing for A_,




46CHAPTER 5. A TYPE DEBUGGER FOR HINDLEY-MILNER TYPE SYSTEM

[p,z:int F 2 :int T,z :intk (4):int -> int -> int T,z :inthF 1:int
I'p,z:int 2z +1: int
I'pF Ax.x+1:int -> int

they have two important differences. First, the type of x is not constrained
to int at the leaf nodes. Since we treat all the subderivations independently,
each judgement depends only on its subexpressions. It enables us to locate
where the type of z is first forced to int. Secondly, the type environment
contains only the predefined constants. It enables us to use the compiler’s
type inferencer to infer the type of each expression. We simply pass it to
the compiler’s type inferencer and obtain its type. This is in contrast to the

standard type inference tree where the environment contains free variables.

Other Approach. A compiler’s type inferencer is usually designed to accept
an open expression and an environment for its free variables. Although we
could use this extra flexibility for the type debugger, it does not lead to a
simpler type debugger. In this thesis, we chose to use contexts, to avoid
going into the underlying compiler implementation together with the rep-
resentation of environments. If we want to implement type debuggers for
various languages, it would require substantial investigation of the under-
lying compiler. The method proposed here has an advantage that we can
treat the compiler’s type inferencer completely as a black box that accepts

an expression and returns its type.

Construction of the most general type tree. The most general type tree is
built as follows. A program to be debugged C[M] is first decomposed into
subprograms using the decomposition function Dec defined in Figure 5.2. It

basically decomposes M and returns a list of its subprograms, but it main-
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tains its contexts properly so that the resulting subprograms (pairs of a con-
text and a decomposed term) are always closed. When the decomposition
of C[M] is [C1[M]; ... ; Cy[M,]], all the subprograms become the children of
C[M] in the tree.

The type of each subprogram C[M;] is determined using the compiler’s
type inferencer by passing C[M;] to it. When the context C'is empty O, the
returned type is the type of the expression. When the context is not empty,
we split the obtained type into two: types for free variables and the type for
the focused expression. If we obtain the type of Az.[x+1] as int -> int, for
example, we associate the type of z to be int (the argument part of int ->
int) and the type of x 4+ 1 to be int (the body part of int -> int). This
is done by the function Collect in Figure 5.3.

Using Dec and Collect, we construct a judgement for C[M] in the tree
as shown in Figure 5.4. First, we construct a closed term M’ by plugging M
into C. It is then passed to the compiler’s type inferencer written as typing
here. When we obtain a type 7 of M’, we split it into an environment =y
holding types of variables in the context and a type 7/ for M. Using them,
we can construct a judgement for (possibly open) M (in the context C') as

Lo, v M : 7. For Ax.[z+1], for example, we have ['g,z : int - z+1 : int.!

5.2 The decomposition property

In our type debugger, the most general type tree is constructed by first
decomposing an expression into subexpressions and then inferring their types

using the compiler’s type inferencer. The shape of the tree is determined by

!Before, we wrote I'g - Az.[z + 1] : int -> [int] to emphasize that we are using the
compiler’s type inferencer to infer the type of M in C. Since we are interested in the type
of M itself together with the types of its free variables, we also write it using the standard
notation I'g,z : int -z + 1 : int.
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how we decompose an expression. However, it does not mean that we can
use any arbitrary decomposition. We require that the decomposition satisfies

the following necessary property:

Definition 1 (The decomposition property) The decomposition function

Dec should satisfy the following property for any context C' and term M :

T(C[M]) = V(C',M") € Dec[(C, M)], T(C'[M'])

where T is a predicate stating that a given expression is well typed (under the

compiler’s type inferencer).

The decomposition property states that if a program C[M] is well typed,
all of its decomposed subprograms are also well typed. Although this prop-
erty looks trivial, it does preclude x + 1 as a decomposition of Ax.x + 1,
because the latter is well typed, but the former is not typable with unbound
x. In the next section, we will see how this property guides us to define
decomposition that is suitable for type debugging.

This property is essential for our type debugger. Since the source of a type
error is detected by tracking conflicts between inferred types and intended
types, we can no longer continue type debugging into subexpressions if their
inferred types are not available from the compiler’s type inferencer. There-
fore, we design decomposition carefully so that it satisfies the property and
thus keeps the typability of expressions. In the following sections, we sketch
why the presented decomposition satisfies this decomposition property. For

the simply-typed lambda calculus, we reason as follows.

Decomposition for A_, satisfies the decomposition property. We need to show
that for each case of the definition of Dec in Figure 5.2, all the subexpressions

in the right hand side are well typed if the left hand side is well typed. For
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constants and variables, it is satisfied vacuously. For abstraction, because
the expression in the left hand side C'[Az.M] is identical to the expression in
the right hand side C[Az.[M]], the decomposition property is satisfied. For
application, we notice that if C'[M; M,] is well typed, M; M, is also well typed
in a type environment consistent with C' (formally proven by induction on
(). Hence, both M; and M, are well typed in the same environment. Since
C has all the necessary bindings for M; and M, and C' simply adds binding
to them, both C[M;] and C[Ms] are well typed as required.

5.3 Let polymorphism
In this section, we extend our idea to let polymorphism.

The language. We show the syntax of A\.; in Figure 5.5. It extends the
simply-typed lambda calculus with pairs, fixed points, and let expressions.
Types are also extended accordingly. Unlike the standard let-polymorphic
calculus, we do not introduce type schemes. Type schemes are required only
for inferring types. Once the type inference is done (in the compiler), all
the expressions in the most general type tree are given mono types (possibly

containing type variables).

Naive decomposition. To support a let expression in the type debugger, we
first need to define its decomposition. Because a let expression contains
two subexpressions, the let-bound expression and the main body, we are
tempted to define its decomposition as these two subexpressions. However,
straightforward decomposition leads to violation of the decomposition prop-

erty (Section 5.2). Let us consider the following program:

1+ (let id = Mx.x in (id id) 2.0)
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Since id in the second subexpression (id id) 2.0 is free, we need to supply its
context. If we naively follow the previous section, however, we end up with

the following tree:

F[Az.x]:’a—’a F (Nid.[(id id) 2.0]) - - - Type Error
F[1] : int [+]: int—int—int F [let id = Az.x in (id id) 2.0] : float
F 1+ (let id = Ax.z in (id id) 2.0)] - - - Type Error

Although the bottom expression in the boxed part is well typed, one of its
subexpressions is not well typed. Thus, this decomposition does not satisfy
the decomposition property.

The reason why (Aid.[(id id) 2.0]) is not typable is clear. In the original
expression, ¢d is used polymorphically, while in the decomposed subexpres-
sion, ¢d is bound by A and thus monomorphic. From this example, we observe
that we need to preserve the polymorphic types of let-bound variables, when

decomposing expressions.

Decomposition with let context. To preserve polymorphic types of let-bound
variables, we extend the context with a let context (Figure 5.5). We also
extend it with a fix context since it is a (monomorphic) binder. Using the

let context, the above tree changes as follows, satisfying the decomposition

property:

F[A\z.x]:’a—’a F (let id = Az.x in [(id id) 2.0]) : float
F[1] : int [+]: int—int—int F [let id = Az.x in (id id) 2.0] : float
F [1+ (let id = Ax.z in (id id) 2.0)] - - - Type Error

Construction of the most general type tree. 'To enable inspection of the defi-
nition of let-bound variables, we change the decomposition function as shown
in Figure 5.6. The definition is the straightforward extension of the previous

definition except for the variable case. When we decompose a variable, we
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(M :term) == .| (My,...,M,) (tuple)
| fix foza— M (fixed point)
| let x = M in My (let expression)

(T:typ) == .. |mi*x..xT, (product type)
(C : context) == .| fix fx—C (fix context)
| letx=MinC (let context)

Figure 5.5: The syntax of the let-polymorphic language Aoy (new cases only)

Dec : context x term — (context x term) list
Dec[(C,x)] = Get(C,z,0, None)
Decl(C, (My, ., M)] = [(C, My (C, M,)]
Dec|(C, fix f & — M)] = [(Clfix f  — O], M)]
Dec[(C,let x = My in My)] [(C, My); (Cllet x = My in O], My)]

Figure 5.6: Dec for A\j; (new cases only)

Get : context x var x context x
(context x term) option — (context x term) list
I if p = None
Get(B,v,Cp) = { [(C", M)] if p = Some(C", M)
Get(C',v,C[Ax.0O],None) if z =1
Get(C',v,C[A\x.0], p) if © # v
( Get(C',v,C|fix f x — O], None)
. , if ve{f z}
Get(fix f v — C' v,C,p) = Get(C" v, Clfix f o — Ol p)
\ it o ¢ {f.1}
([ Get(C',v,Clletx = Min O],
Some(C,M)) if z =wv
Get(C',v,Cllet x = M in O], p)
if x £wv

Get(Az.C' v,C,p) =

Get(letx = Min C',v,C)p) = <«

Figure 5.7: The function Get to search definition of variables for A\

env = (var * typ) list
Collect : context — typ — env —  (env x typ)
Collectfiy foc[nn — w]p = Collecta[r]plf — (1 — n);z— 7
Collecties y=princ[T]pn = Collecte|T] 1

Figure 5.8: Collect for A (new cases only)
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search for its definition using Get defined in Figure 5.7. When the variable
is bound by a let expression, Get returns its (inner-most) definition as the
decomposition of the variable. Otherwise, the variable is bound by lambda or
fix, so Get returns no decomposition. Using this decomposition function, we
can further debug into the definition of let-expressions to identify the source
of a type error.

Since the context is extended with a let context and a fix context, the def-
inition of Collect is extended accordingly as shown in Figure 5.8. It collects
types for lambda- and fix-bound variables and discards let-bound variables
since they do not appear in the type returned by the compiler. (We as-
sume that the compiler’s type inferencer returns =, — 7 as the type of
fix f x — M (and hence of f) where 7y is the type of x and 7 is the type
of M.)

As the program to be debugged becomes larger, the number of let-bound
variables increases. Since we can debug into the definition of let-bound
variables when their types conflict with the programmer’s intention, we
can skip asking for the type of let-bound variables as an oracle each time.
(For example, in the previous tree, the type debugger can skip the node
F [A\x.z]:’a—’a). Rather, we only ask for variables in a context that are
bound by lambda or fix. This is consistent with Chitil’s approach that main-

tains an environment for polymorphic variables separately.

Decomposition for N\ satisfies the decomposition property. We can confirm
that the decomposition property is still satisfied. The interesting case is for
variables. (Other cases are similar to the reasoning shown for A_,.) Assume
that C[z] is well typed. We first observe that Get(Cy, z, Cy, p) maintains an
invariant that Cy[Cy] is always the same across the recursive call, because

at each recursive call, the topmost frame of (' is simply moved to the hole
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of 5. This ensures that all the contexts appearing in the definition of Get
are well typed (as contexts), because the initial context [Cx]] with which
Get is called from Dec is well typed. Next, the returned expression C[M] is
collected only from the let case. Because Cllet x = M in C'] is well typed,
we hence have that C[M] is also well typed as required.

Observe how the decomposition property serves as a guideline for what
we have to do and what we can do to incorporate let expressions. We have to
define the decomposition function so that the let polymorphism is preserved.
On the other hand, as long as the decomposition property is satisfied, we have
the liberty of defining the decomposition in a way the debugging process be-
comes easier for programmers to understand. By defining the decomposition
of let-bound variables as their definition, the debugger’s focus moves from

the use of variables to their definition.






Chapter 6

A type debugger for extensions

In this chapter, we extend the previous type debugger with several extensions,

objects, weak polymorphism and modules.

6.1 Objects

So far, we have seen that interactive debugging is possible for various lan-
guage constructs by suitably defining a Dec function that satisfies the re-
quired property. This idea extends to advanced language constructs. In this
section, we introduce objects and see how they can be supported in a similar

way.

The language. We show the syntax of the object language A,; in Figure
6.1. It models OCaml-style objects where an object is defined using a class
(in which single inheritance is allowed) and is created by the new construct.
Besides the inheritance declaration, an object can contain method and value
declarations. In OCaml, class names (to be more precise, the object struc-
tures denoted by the class names) are used as types. We use them as is in

our type debugger, abbreviated as obj in Figure 6.1.

%)
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(L : classobj) == inherit x (inheritance declaration)
| method x = M (method declaration)
| walz=M (value declaration)

(M :term) == .| x1#xs (method invocation)
|  new x (object creation)
| class x vy...v, = (class definition)

object(v')
Ly..L,
end in M
(1 :typ) == ...| obj (object type)
(C : context) == ... |class x vy...v, = (class context)
object(v')
Ly...L,
end in C

Figure 6.1: The syntax of the object language \,; (new cases only)

Dec : context x term — (context * term) list
Dec[(C,x1#x3)] = SearchObj(C,x1,0,]])
Dec[(Cynew z)] = SearchObj(C,z,0,]])

Dec[(C,class x vy..v, = = [(Clclass z vy..v, =
object(v') object(v')
Ly...L, Ly...L,

end in M)] end in O], M)]

Figure 6.2: Dec for A\, (new cases only)
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Get : context x var x context *
(context * term) option —
Get(class x vy...v, = =
object(v')
L. L,
end in C';v,C,p)

SearchObj’: classobj list x context
SearchObj ([], C)
SearchObj’((inherit x) :: r,C)

SearchObj’((method x = M) :: r,C)
SearchObj’((val x = M) 2 1, C)

SearchObj : context * var x context *
(context x term) list
SearchObj(0,v,C, p)
SearchObj(Ax.C’',v,C,| p)
SearchObj(fix f v — C',v,C,p)

if x = v then

for Aoy,

(context x term) list
Get(C',v,Clclass x vy..v, =

—

object(v')
Ly...L,
end in O], p)

Figure 6.3: Get for \,,; (new cases only)

(context x term) list

|

SearchObj(C, x, 0, [])@
SearchObj'(r, C')

(C, M) :: SearchObj(r,C')

SearchObj (r, Cllet x = M in O]

(context x term) list

p
SearchObj(C', v, C[Az.0], p)

SearchObj(C', v, C[fix f = — O], p)
SearchObj(class x vy...v, = object(v') Ly...L, end in C',v,C,p) =

SearchObj(C", v, C|class x vy...v, = object(v') Ly...L,, end in O],

SearchObj'(Ly...Ly, C[Avy...\v,. Av).0]))
else SearchObj(C', v, Clclass © vy...v, = object(v') Ly...L, end in O], p)

Figure 6.4: The function SearchObj to search for the definition of objects
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Construction of the most general type tree. The decomposition function Dec
is extended with the new constructs in Figure 6.2 and the Get function used
in the variable case is extended with the class context in Figure 6.3. The
interesting cases are for new and method invocation of Dec. In both cases,
we need to identify the object mentioned in the expressions (in case their
types contradict with intended types, so that we can debug into the object).
For this purpose, the function SearchObj in Figure 6.4 is used. Its behavior
is similar to that of Get, but differs in that SearchObj collects all the method
declarations in the designated object. In particular, if the object contains
inheritance declaration, those method declarations are collected, too (see
SearchObj").

We collect all the declarations in an object because types of declared
methods in an object are mutually dependent. Thus, we need to ask for the
types of all these method declarations to locate the source of type errors. For

example, consider the following program:

class counter = object (self)
val mutable n = 0
method incr = n <- n+l
method get = n
end
let t = (new counter) in

t#incr; ("now, the conter is" = t#get)

The last line results in a type error, because t#get returns an integer,
which is in conflict with the intended type (i.e., string). To find the source
of this type error, we first look up t’s class definition counter and search
for the definition of the get method. However, we find here that the get

method itself does not force the type of n as an integer. It simply returns a
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value of n. Instead, n is an integer because it is assigned 0 and n+1 elsewhere
in the class. Thus, we need to examine all the declarations in an object to
find the source of type errors.

Since any method declarations can be the source of type errors, we collect
all the method declarations in a class definition, and return them as decompo-
sition of the object reference. Although this strategy is necessary in general,
it could lead to a large number of questions. Its practical implementation is

future work.

Decomposition for A\op; satisfies the decomposition property. — We can con-
firm that Dec satisfies the decomposition property as follows. First, Get will
return a list of well-typed subexpressions only, using the similar argument
we described in Section 5. For new and method invocation, we have to show
that SearchObj returns a list of well-typed subexpressions. It can be proved
by observing that SearchObj simply collects subexpressions in an object in
a suitable context. The only interesting case is for a class declaration, where
we have to properly insert bindings for the arguments to the class and the self

variable v'. Note that declared values are put into let contexts in SearchObf .

6.2 Weak polymorphism

In this section, we introduce references to see the interaction of weak poly-
morphism in our type debugging. We show the syntax in Figure 6.5. It
includes references, dereferences, and assignments to a reference. Types are
extended with a reference type. Let us consider a typical example where the

weak polymorphism arises:

let id_ref = ref (fun x -> x) in

(tid_ref 0, !id_ref true)
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(M :term) == c | x | \e.M | My My | (M, ..., M,)
|  ref M (reference)
| M (dereference)
| v=M (assignment)
| fix fvg ..o, — M | letv = M in M,
(1 : typ) = b | int | bool | ... | 741 =T | Tik..xT,
|  Tref (reference type)

(C': context) O | \.C | fiz fo.v,—C | letx=MinC

Figure 6.5: The syntax and types for the language with references

context x term) list

(C, M)]
(C, M)]
(C, M)]

Figure 6.6: Dec for the language with references (for new constructs only)

Dec : context xterm —
Dec[(C,ref M)] —
Dec[(C,!M)] —

N

(
|
Dec[(C,v := M)] [

var list

vs

ExpVar[(C,vs\ {z})]
ExpVar[(C,vs \ {f,v1, ..., vn})]
= if (is_expansive M)

then ExpVar[(C, (x :: vs))]
else ExpVar[(C,vs)]

!

ExpVar : context * var list
ExpVar[(3,vs)]
ExpVar[(Az.C,vs)]
EzxpVar[(fiz f vi..v, — C,vs)]
ExpVar[(let x = M' in C,vs)]

Figure 6.7: The function FxpVar (ExpansiveVar) to collect expansive vari-
ables

Since the identity function (fun x -> x) is put into a cell, id_ref is given
a weak polymorphic type (° _a -> ’_a) ref. The weak type variable > __a can
be instantiated only once. Since it becomes int at the first application, a type
error occurs at the second application where ’_a needs to become bool.

It is not difficult to support references in our type debugger. We simply
need to extend Dec to handle new constructs (Figure 6.6). We could then

identify the source of the above type error as the second line, because whole
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env = (var = typ) list
AttachVar : var list «xterm —  term
AttachVar[([, M)] = M
AttachVar[(v :: vs,M)] = (v, AttachVar[(vs, M)])

Figure 6.8: AttachVar to pair expansive variables with a focused expression

env = (var x typ) list
CollectVar : var list — typ — env

CollectVarg[r] = ([],7)
CollectVar,.. [T * 7] = let (u, 7) = CollectVar,s[m] in

(/“L[U - 7—1]7 T)

Figure 6.9: The function CollectVar to obtain types of expansive variables

Judge[(C,M)] = let vs = ExpVar[(C,[])] in
let M' = C[AttachVar[(vs, M)]] in
let 7 = typing M’ in
let (v,7") = Collectc[r] in
let (v, 7") = CollectVar,[7'] in
(’}/@’}/, 7_//)

Figure 6.10: Judge for the language with references

the expression is not typable but the two subexpressions together with their
context, namely
let id.ref = ref (fun x -> x) in [!id_ref 0]
and
let id.ref = ref (fun x -> x) in [!id_ref truel
are both typable. The most general type tree becomes as follows, where C'

contains a binding for id_ref:

FC[!id_ref 0]:int F C[!id_ref true] :bool
FC[('id.ref 0, !id ref true)]---Type Error
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However, the above behavior is sometimes not very informative. Consider

the following example:

let pair x y = fun f > f x y in
let fst x y = x in

let snd x y =y in

let p = pair 1 true in

(p snd, p fst)

In this program, a pair is Church-encoded using a function. Then, a pair
p of 1 and true is constructed, and its swapped tuple is returned. Because
p is bound to a non-value, however, it has a weak type (int -> bool ->
>_a) -> ’_a. When p is applied to snd of type a -> b -> ’b, the weak
type variable ’_a is instantiated to bool, and a type error occurs when p is
applied to fst of type a -> ’b -> ’a, where ’_a needs to be instantiated
to int.

For this program, our type debugger again reports that the expression (p
snd, p fst) is the source of the type error, because both p snd and p fst
are typable in the current context C' (containing four let bindings):

F Clp snd]:bool K C'[p fst]:int
FC[(p snd, p fst)]::-Type Error

if both the types are consistent with programmers intention.

However, if the programmer intends that p be fully polymorphic, he would
be puzzled why the conclusion is not typed as bool * int. In fact, although
the type of p is constrained to (int -> bool -> bool) -> bool at p snd,
that information is discarded in the most general type tree and a fresh p is
used to infer the type of p £fst. Remember that all the types are inferred

by passing each expression to the compilers type inferencer independently.
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Also, note that our type debugger asks the programmer only for the type of
focused expression and the types of its free variables that are not bound by
let. Since p is bound by let in this case, the type debugger asks only the
types of p snd and p fst (both of which have intended types). Thus, the

programmer has no opportunity to say that the type of p is too restrictive.

To handle weak polymorphism more properly, we examine the type of
weak variables and ask if their instantiation is in conflict with the program-
mers intention. In the above case, we construct the following tree:

FCL[(p, p snd)]:7 * bool FC[(p, p fst)]:m * int
FC[(p, (p snd, p fst))]:--Type Error

where 71 =(int -> bool -> bool) —> bool

75 =(int -> bool -> int) -> int

Since the definition of p is expansive, we pair it with the focused expression
and obtain its type from the compiler. We then ask the programmer if the
type of p is as intended. In our case, since 71 (and 73) is not polymorphic
enough, the programmer can reply no, and the debugger will move to the

definition of p to find why it is not polymorphic.

To enable this behavior, FxpVar in Figure 6.7 collects a list of expansive
variables, AttachVar in Figure 6.8 pairs them with the focused expression,
and CollectV ar in Figure 6.9 extracts the types of expansive variables. When
collecting expansive variables, care must be taken for variables with the same

name. For example, in the following context,
fun x -> let x = expansive_expression in O

x has to be treated as expansive (because x in O refers to the inner x),
but not when fun x -> appears inside the let expression. We can obtain a

judgement for an expression using Figure 6.10.
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We can easily confirm that the required property holds for this language,
because the decomposition function for the new constructs takes simply the
subexpression of the original expression and the pairing of expansive variables
does not affect the typability of expressions. By modifying the expression to
be typed without violating the property, we can design a type debugger that

shows more useful information for the programmer.

6.3 Modules

Similarly to objects, we can introduce modules, too. Figure 6.11 shows the
syntax. We introduce accesses to a value in a module, open, and module
declarations. A module declaration contains variable and type declarations.

The decomposition function Dec is extended to cope with new constructs
straightforwardly (Figure 6.12). SearchMod (in Figure 6.14) is defined simi-
larly to SearchObj in the previous section. Since the declarations in a module
is ordered (in contrast to method declarations in objects which are mutually
recursive), we do not collect all the declarations but maintain the order of
declarations in a context and returns a designated definition. The treatment
of open in Get (in Figure 6.13) is interesting. When we search for the defi-
nition of a variable v and the current context is open X, we search for the
definition of v in the module X. It enables us to search for the definition of
variable v that is defined in the module X, when the type error was located

at the variable v.
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(M : term)
X.x

|

|

| open X in M
| typex =71 in M
|

(C': context) =
| open X in M
|
|

Dec : context * term

Dec[(C, c)]

Dec[(C, X.x)]

Dec[(C,open X in M)]

Dec[(C,type x = 7)]
Dec[(C,module X =

struct Dy...D,, end in M)]

type x =1 in C
module X = struct Dy...D,, end in C' (module context)

C ‘ i ‘ Ax. M ’ Ml M2 ‘ (Ml,...

) Mn)
(module access)

fix fo— M |let v= M in M,

(open)
(type definition)

module X = struct Dy...D,, end in M (module definition)

(D : definition) == letx =M (value declaration)
| typex=r (type declaration)
(T:typ) == blint |bool | .. |7 — 7| T *...xT,

O | Xe.C | fix fv.v, — C|let x =M inC

(open context)
(type context)

Figure 6.11: The syntax and types of the module language

(context x term) list
[
SearchMod[(C, X, z,0, None)]
[(Clopen X in O], M)]
[(Cltype x = 7 in O], M)]
[(Clmodule X =

struct Dy...D,, end in O], M)]

Figure 6.12: Dec for the module language
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Get : context * var * contextx
(context x term) option — (context * term) list
Get[open X in C',v,C,p] = let t = SearchMod[C, X,v,0, None] i
1f t = None
then Get[(C', v, Clopen X in O], p)]
else Get[(C’,v,Clopen X in O], )]

Get[module X = struct = Get[(C'",v,Clmodule X = struct
Dy...D,, end in C" v, C, p] D;...D,, end in O)], p]
Get[(type x = 1 in C",v,C,p)] = Get[(C',v,Cltype x = 7 in O), p|]

Figure 6.13: Get for the module language
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Chapter 7

Implementation of a type
debugger

In this chapter, we explain our implementation of a type debugger. First, we
consider about the structure of type debugger. After that, we explain the

details of our implementation.

7.1 The structure of a type debugger

In the previous chapters, we assume that a program to debug is ill-typed and
all its subprograms are well-typed. This assumption is not always hold in
ill-typed programs. We have to search such points from ill-typed program
before debugging.

Therefore there are two phases when we debug an ill-typed program. The
first phase is searching the starting point for debugging. The second phase

is debugging an ill-typed program using user’s intentions.

7.1.1 The searching phase

The starting point is often different from the root of the ill-typed program.

For example, let us consider the following ill-typed program:

69
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(2 - true) + 4

This program is ill-typed, because one of its sub-programs is ill-typed. The

most general type tree of this program is as follows:
—:int -> int -> int 2:int true:bool
+:int -> int -> int (2 - true) --- ill-typed 4:int

(2 - true) + 4 --- ill-typed

In this case, the starting point of debugging is (2 - true). Because all its
sub-programs are well-typed, we can debug this program using programmer’s
intention and locate the source of the type error. To find the starting point,
we only decompose the ill-typed sub-expression. In this case the root node
is ill-typed, however it has an ill-typed sub-expression. We choose the ill-
typed sub-expression (2 - true) and check whether all its sub-expressions
are well-typed. Because all its subexpressions (-, 2 and true) are well-typed,

the starting point is (2 - true).

As just described, we can search the start point automatically. Because
we do not have the waiting time for programmer’s inputs in this process,
the computational complexity is important for practice. We consider the
computational complexity of this process is how many times this algorithm
calls compiler’s type inference. The computational complexity is linear to
the height of the of the tree. In our implementation, this process takes 1

second for a 373 line’s program.

We can consider this phase is a part of algorithmic debugging. Be-
cause programmers intend that the whole program is well-typed, all its sub-
programs are well-typed in the user’s intention. Therefore we can detect
that the ill-typed original program and its ill-typed sub-programs are not

programmer’s intended types.
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7.1.2 The debugging phase

In this section, we consider how to construct the most general tree for the

debugging phase.

The naive construction The naive idea to construct the most general
type tree is constructing the whole tree before debugging. Because this is
very simple, we can implement easily. To construct the whole of the most gen-
eral tree, we decompose the program to sub-programs and decompose them
repeatedly. Although this naive construction works fast after the construc-
tion of the tree, to construct the whole tree takes time. This computational
complexity is linear to the size of the program.

Additionally, we do not use the whole of the tree in the debugging phase.
Although it depends on the programmer’s answers, some inferences are need-

lessness.

Our construction To avoid the needless inference and reduce the con-
struction time, we do not construct the whole of the tree. To ask program-
mers about the tree, we only need one judgement at the time. After receiving
the programmer’s answer, we choose the next expression depending on pro-
grammer’s answer and infer its type. By repeating this process we can debug
ill-typed programs without the most general type tree. This is the reason

that our Dec is the one-step decomposition.

7.2 Our implementation for OCaml

We have implemented a type debugger for OCaml 3.12.1. To minimize the
implementation efforts, we utilize the following components from OCaml as

1s:
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e the abstract syntax tree for structures, expressions, and types (together

with the lexer, the parser, and the pretty printer)

e the type inferencer typing (that accepts an expression and returns its

type, both expressed using the above abstract syntax tree)

e the is_expansive function (that accepts an expression and returns
a boolean to judge whether the given expression needs to be kept

monomorphic or not)

By using exactly the same abstract syntax as OCaml, we can not only avoid
reproducing the same abstract syntax but also utilize OCaml’s own lexer,
parser, and pretty printer. In addition to the type inferencer, we utilize
the is_expansive function. Although OCaml has its own criteria for weak
polymorphism [5], we can stay away from it by using OCaml’s is_expansive
function as is. Furthermore, this approach is robust to updates of OCaml: if
the syntax and the interface of the two functions are the same, we can use
the same debugger.

A slight complication is that OCaml treats a let expression without in
differently from the one with in: the former is a structure, while the latter
is an expression. We support both styles by splitting the context into two:
the structure part and the expression part.

Another complication is the use of patterns in place of a variable decla-
ration. For example, instead of fun 1st ->, one can write fun (first
rest) ->. Because patterns have type constraints, they may be the source
of a type error. To make such an error detectable, we included patterns as
the decomposition of the expression.

The rest of the language constructs are supported without requiring any

special treatment. For each new construct, we define its decomposition and
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show that it satisfies the decomposition property. Our type debugger sup-
ports all features of OCaml including weak polymorphism and modules.

To construct the most general type tree, we use the compiler’s type in-
ferencer many times. Although it appears that our type debugger incurs
significant overhead, this is not the case, because we do not have to con-
struct the whole tree beforehand. Instead, the most general type tree is
constructed as we debug: after the root node is constructed, the rest of the

tree can be constructed during the interaction with the programmer.






Chapter 8

Weighted type error slices

In Chapters 4 to 7, we described a practical debugger on the producer side.
However, there are still problems on the user side. In Chapters 8 to 11, we
describe an approach to satisfy a property “easy to debug” for the consumer
side. In this chapter, we take a look at the problem of the previous type
debugger and propose the idea of weighted type error slices to reduce the

burden of type debugging on programmers.

8.1 A problem with our type debugger

Since the source of a type error depends on the programmer’s intentions, our
type debugger needs programmer’s inputs. The type debugger developed in
Chapters 4 to 7 has a problem that in some cases it requires programmers
to make too many inputs. To illustrate this problem more clearly, let us
consider the following example:

~

let f n 1st = List.map (fun x -> x ~ n) 1lst in

(f 2.0 [3.0; 4.0])

Because this program is ill-typed, OCaml returns the following error message.

Error: This expression has type float but an expression was

75
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expected of type string

This error message indicates that the underlined part causes a type conflict.
It says that the compiler expects 2.0 to be string, but it is float. There are
many ways to resolve this type conflict. The correctness of the fix depends
on the programmer’s intention. If a programmer intends f to be a function
that receives string as its first argument, s/he can understand this error
message immediately and fix the program. Otherwise, s/he can understand
little information that compiler expects 2.0 to be string for some reason.
Moreover, s/he has to look for the source of the type error by hand. Of course,
our type debugger can locate the source of type error by posing questions to
the programmer. The following sequence is a set of questions and answers

regarding one programmer’s intentions.

Is your intended type of f string -> string list -> string list?
> no

Do you use n as string in the definition of £f7

> no

Do you use lst as string list in the definition of £f7

> no

Is your intended type of List.map ’a -> ’a list -> ’a list?

> yes

Is your intended type of (fun x -> x ~ n) string -> string 7

> no

~

Do you use x as string in x = n?

> no

Is your intended type of ~, string -> string -> string?
> no

~

The source of the type error is located at :
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{x:’a}rx:’a {}F~ :A {n:’a}ltn:’a

{x:string, n:string}Fx ~ n:string

{}FList.map:B {x:string, n:string}-fun x -> x ~ n:string -> string {}rlst:’c
{n:string, lst:string list}FList.map (fun x -> x

{n:string}-fun 1st -> List.map (fun x -> x ~ n) lst:string list -> string list

n) lst:string list

{}rfun n -> fun 1lst -> List.map (fun x -> x "~ n) lst:string -> string list -> string list
{}Ff:string -> string list -> string list {}F2.0:float {}F-[3.0; 4.0]:float list
(f 2.0 [3.0; 4.0]):il1l-typed

A:string -> string -> string, B:(’a -> ’b) -> ’a list -> ’b list

Figure 8.1: The most general type tree

7~

By answering questions, we found that the source of this type error is in
These questions are made from the most general type tree of this program
(see Figure 8.1).

When we debug a program with the most general type tree, the type
debugger may ask questions about all areas of the tree. In this example
program, because the tree is not so big, it is not so tedious to answer all
these questions. However, if the original ill-typed program is large, its tree
will also be large. In such a case, programmers would have to answer too
many questions and may feel that debugging by hand is better. Thus, in

order to implement a practical type debugger, we have to solve this problem.

8.2 Type error slices and their problem

To see what we can do to solve this problem, let us review the previous
example. Why do type errors occur in programs? Put simply, type errors
are caused by two conflicting types. In the previous example, we have two
conflicting types in 2.0 and ~. However, two conflicting types do not cause
a type error only by themselves. Some parts of the program require that two
conflicting types are of the same type. In the previous example, we passed
2.0 (its type is float) to the function f as the first argument. However, the
type of f is forced to be string -> string list -> string list through
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{}~ :A {n:’a}tn:’a

{x:string, n:string}Fx ~ n:string

{+

Ffun n -> fun 1lst -> List.map (fun x -> x "~ n) lst:string -> string list -> string list
P g g g
Ff:string -> string list -> string list 2.0:float
g g g

(f 2.0 [3.0; 4.0]):111-typed

A:string -> string -> string, B:(’a -> ’b) -> ’a list -> ’b list

Figure 8.2: The reduced most general type tree

application of ~ (in x ~ n). This flow of unifying types contributes the type
conflict between 2.0 and ~. In this way, type errors are caused by two
things: two conflicting types and a flow of unifying types that forces the two
conflicting types to be the same. To put it the other way around, if these
two things appear in the program, surely there is a type error. Furthermore,
this means that the other parts did not cause the type error.

The following is the abstracted program of the previous example. It
contains only two conflicting types and a flow that forces the two conflicting

types to be the same.

let fn...=... fun ... => ... “n) ... in
(f 2.0 ...)
The parts abstracted by “...” do not contribute to this type conflict. In

general, these abstracted programs are called type error slices. Since they
include all parts related to a type error conflict, programmers can locate the
source of the type error by debugging only the type error slices.

By using type error slices, we can narrow the area of the most general
tree to search for the source of the type error. For the previous example,
we can obtain a reduced most general tree by using type error slices. Figure

8.2 shows the image of the reduced tree. In this tree, the gray parts are not
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contained in a type error slice and the type debugger avoid asking questions
about them.

As described above, type error slices can reduce the burden on program-
mers. Additionally the advantage of type error slices is that they do not
need user’s inputs to obtain them. However, the problem still remains: if the

original program is huge, its slice could be large.

8.3 The solution

To overcome this problem, we want to know which part is likely the source
of the type error. When we look at a type error slice of an ill-typed program,
we might conclude that each part has an equal chance of being the source
of the type error. For example, in the previous slice, 2.0 and ~ look to be
at the same level as far as the source of the type error goes. This conclu-
sion, however, is proved false by the following observation. In the previous

example, we can consider another slice:

let £ ... 1st = List.map (fun x -> x ~ ...) 1lst in
(f ... [3.0; 4.0D)

The point here is that the slice includes “°” but not “2.0.” To see this

clearly, let us consider the following slice:

let f ... ... = ... (fun ... > ... =~ ...) ... in
(£ ... ...)

This slice is the intersection of the previous two slices. Because it is well-
typed, it is not a type error slice. Although this slice may not include the
source of the type error, it does include suspicious parts of the source. This

observation about the intersection of several type error slices suggests that
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each part of a type error slice has a different chance of being the source of
the type error. If we know which expression should we see, we can reduce

the burden on programmers.

8.4 QOur approach

The intersections of type error slices are very intuitive and produce good
results. However, to obtain such intersections, we have to obtain the type
error slices first. The computational complexity needed to obtain a type error
slice of an ill-typed program is O(n?), where n is the size of the program.
Furthermore, to obtain all slices, we have to repeat this calculation n! times.
Because this cost is heavy for large programs, we need another way to obtain

the likelihood of each expression being the source of a type error.

8.4.1 Brief overview

Let us consider the program [1;2;true]. Because two elements of this list
are numbers and one element is a boolean, we think the minority true looks
wrong. This is the key point of our approach. The problem is how we can
obtain such information. The main ideas that we will exploit are abstraction
of programs and majority vote.

First, we abstract one part of the program and infer its type. The result
of doing this for the above example is shown in the table below.

one abstracted program ‘ well-typed?

[1; 2; ] o)
[1; ..; true] X
[..; 2; true] X

If an abstracted program is ill-typed, its sub-programs may contribute to
the type error. For example, because [1; ..; true] is ill-typed, its sub-

programs 1 and true contribute to the type error. Therefore, we count the
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number of contributions of each abstracted subprogram. The following table
is the result of doing so.

one abstracted program ‘ contributions

1 1
2 1
true 2

This table show us the likelihood of each expression being the source of a type
error. From this, we know that true has a higher probability of being the

source of the type error than 1 or 2 has. This result is what we anticipated.

8.4.2 The points and contributions

Our approach has two main points. One is that we use the compiler’s type
inferencer. Most type error slicers use a tailor-made type inferencer. Al-
though a tailor-made type inferencer has a certain flexibility, its results may
not correspond to those of the compiler’s type inferencer, and it has low scal-
ability. In contrast, by using the compiler’s inferencer we can make a type
error slicer that has maintainability and high scalability. To obtain type er-
ror slices using a compiler’s type inferencer, we abstract an ill-typed program
and infer its type. Although this main idea of this approach is proposed by
Schilling [19], we introduce some restriction to the obtained type error slices.

The other point is that we obtain weighted type error slices. The weights
are the likelihoods of the expressions being the source of a type error and

they help programmers during debugging.

Overview of Chapters 9, 10 and 11. In these chapters, we propose an ap-
proach to create weighted type error slices. In Chapter 9, we describe a type
error slicer using a compiler’s type inferencer. In Chapter 10, we modify this

slicer by adding weights to it and make it work in Chapter 11.






Chapter 9

An embedded type error slicer

In this chapter, we introduce a type error slicer using a compiler’s type
inferencer. We show the syntax of the target language \;; in Figure 9.1. It
extends the simply typed lambda-calculus with let expressions and tuples.
In Figure 9.1, [ denotes the labels of each expression and each label is unique
in the program. We also show the types of the target language. Because we
use the compiler’s type inferencer to obtain the type error slices, we do not
treat the types directly. We only use the information whether the program
is well-typed or ill-typed.

To obtain type error slices using the compiler’s type inferencer, we infer
the types of slices in order to know whether the slices are well-typed or ill-
typed. If a slice is ill-typed, the slice includes the minimal type error slice that
we want to obtain. However, slices are incomplete programs. Therefore, we
can not infer their types directly. To infer the types of slices using compiler’s
type inferencer, we define the correspondence between slices and complete

programs.

33
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To set an idea of what type error slices are like, let us consider the type

error slice in the previous chapter again:

let fn...=... (fun ... => ... ~n) ... in

(f 2.0 ...)

By this slice, we can obtain the following tree.

let (f)

N

fun n >

m
SN

This tree shows that there are two patterns of the abstracted parts. One
pattern abstracts a whole of sub-expression. (In the upper tree, they appear
as .. in the leaves.) The other abstracts the constructor itself containing
subprograms. (In the upper tree, they appear as .. in the nodes.) We show
the syntax of the slices in Figure 9.2. We insert two pieces of syntax into the
target syntax. One is a hole O that abstracts whole sub-expressions. The
other is a skeleton S @ S that abstracts the topmost expression itself but
contains abstracted or unabstracted sub-expressions. These new syntaxes do
not have labels.

By defining the syntax of the slices, we define the following properties of

slices.
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(I :label) = (location)

(M :term) = ¢ (constant)
| 2! (variable)
| Na.M (lambda abstraction)
| @'M M (application)
| lettx=Min M (let expression)
| (M,..,M) (tuple)

(7 : type) = « (type variable)
| int, float, ... (type constant)
| 771 (function type)
| )

T* ... kT (tuple type

Figure 9.1: The syntax and types of let-polymorphic language A\

(S : slice) = ¢ (constant)
| 2! (variable)
| Az.S (lambda abstraction)
| @'s s (application)
| lettz=81in S (let expression)
| (S,..,S) (tuple)
| O (hole)
| @S5. 95 (skeleton)

Figure 9.2: The syntax of slices

Definition 2 (Type error slices) We call a slice S as a type error slice,

iff the inferred result of S by the compiler’s type inferencer is a type error.

Definition 3 (Inclusion relation of slices) A slice S contains S’, written

SDOSiff LD L, ie the set of all labels L of S contains the set of L' of

S’
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Because there are fewer elements in a slice, it has fewer restrictions about

types. Therefore, the following lemma holds *.

Lemma 1 If a slice S is well-typed, a slice S’ such that S O S’ is well-typed

as well.

Definition 4 (Minimality of type error slices) A type error slice S is

manimal, iff all slices S" such that S O S’ are well-typed.

The minimal type error slices do not contain parts that are superfluous to
a type conflict. To obtain minimal type error slices, we abstract an ill-
typed program as much as possible while maintaining its ill-typedness. In
the following parts, we call the minimal type error slices the type error slices

simply.

9.1 The algorithm

Let us consider @(Az.\y.(Q(@Q + z)y))true ? as an example. First, let
us focus on the topmost function application and abstract each subpro-
gram or function application itself. The abstracted programs are @QOtrue,
Q(A\x.\y.(Q(Q+2)y)) 0 and @ (Az.\y.(Q(Q+ z)y)) true. Because all these
abstracted programs are well-typed, we know that we need this topmost
application maintain ill-typedness. Next, let us focus on its sub-program
(Az.Ay.(Q(Q + z)y)). Although, this sub-program is well-typed itself, the
problem is the type of the sub-program with its context. In this case, its
context is fun s -> @ s true. We keep the whole program (the focused

expression and its context) ill-typed and abstract the focused expression as

'This lemma does not hold in the language which has polymorphic recursions. To type
polymorphic recursions, we need proper type annotations (restrictions).
2This program is a curried program of (Az.\y.(x + y))true
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much as possible in its context. Therefore we abstract the focused program
(Az.A\y.(Q@(Q + z)y)) with the context fun s -> @ s true. Because the
lambda abstractions Ax.A\y.M are binders, we insert them in the context and
focus on the sub-program. In this case, by inserting Az.\y. in the context,
we obtain a new context fun s -> @ (Az.\y.s)true.

One of the abstracted programs of (Q(Q + z)y) is (@ (Q + x)y). It is
ill-typed under the context fun s -> @ (Azx.\y.s)true. Therefore, we make
the obtained slice (& (@Q + x)y) more abstract. In the second abstraction,
we obtain (& (@Q + x)0O). In the third abstraction, because all abstracted
slices of (& (@ + x)0O) are well-typed, we know this function application
itself is minimal. After that we focus on the subprograms of (@ (@ + z)0O).
However, it turns out that its sub-programs are minimal. Consequently, we
obtain a type error slice Q(Az.\y.(€ (@ + x)0))true as the final result.

In this way, we can obtain a type error slice by abstracting sub-programs
from the root of the abstraction tree and inferring their types by using the

compiler’s type inferencer.

9.2 Program

In Figures 9.3 to 9.5, we show the program for obtaining type error slices.
In this program, infer is the compiler’s type inferencer and Type_Error is
an exception that the compiler’s type inferencer raises when it finds a type
conflict.

The function abst_one receives a slice and returns a list of slices in which
each sub-program or the topmost constructor is abstracted. For example,
in the function application case @Qs;5s9, abst_one returns @ s;sy, @Osy and
@s,0. If the abstracted slice is the same as the original (in case when a sub-

program was already O), it does not return the same slice to avoid infinite
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loops.

The function check receives a slice s and its context cxt and returns a
type error slice s’ such that s D s’. First, it calls the function abst_one
and obtains a list of slices of s in which each sub-program or the topmost
constructor is abstracted. It searches for an ill-typed slice in the list by using
the compiler’s type inferencer infer. If one or more ill-typed slices appear
in the list, check returns the one that it found first. Otherwise, the slice s is
minimal about the topmost constructor. In this case, it raises an exception

Not_found and the exception will be caught by try expressions in get_slice.

The function get_slice is the main function for obtaining type error slices.
It receives a slice s and its context cxt and returns a type error slice under
the context. The following invariants hold in get_slice.
(1) A slice s is ill-typed under its context czt, and
(2) the context cxt is well-typed itself.
These invariants are needed for the proof of completeness and minimality of

type error slices.

The details of the function get_slice are as follows. In the case of a variable
v and a constant ¢, v and ¢ must be ill-typed under the context. (Otherwise,
they are abstracted by the abstraction of the upper constructor.) In the case
of a lambda abstraction Ax.s, we add Az. to the context and focus on its
subprogram s. In the other syntax, get_slice abstracts them by using check.
If the received slice is not minimal for the focused constructor, it calls check
and abstracts the slice until the slice becomes minimal. Then, it focuses
on the subprograms. For example, in the case of the function application
@ 51 89, if we assume that this function application itself is minimal, get_slice
abstracts s; first and then abstracts sy under the new s}. It returns Qs s,

in which each subprogram is minimal for itself.
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abst_one . slice — slice list
abst_one[s] = FERROR when s = c, v\, Na.s
(* This is never called *)
abst_one[@'s; s9] = [@ s159;@Q0 sy;@Qls) O]\ (@5 89)
abst_one[@ s;..s,] = [@s.0;.;@0.5,] \ (&5 s9)
abst_onellet! © = sy in so] = [let' z = O in sy;let! x = 51 in O]
\(let' © = s1 in s9)
abst_one[(s1, .., 5,)] = [(O,.,8)5 . (s1,..,0) @ 51..5,]

\(81, .y Sn)l

Figure 9.3: The function abst_one to abstract the focused constructor or its
sub-expression

check : (slice x (slice — slice)) — slice
check(s,cxt) = let abst list = abst_one[s] in
let rec loop lst = match lst with
| [| = raise Not_found
| fst::rest — try(infer (cxt fst);loop rest)
with Type_Error —
get_slice[[(fst, cxt)] in
loop abst_list

Figure 9.4: The function check to obtain a type error slice

When we call get_slice, the previous invariants have to hold. However, if
the slice is O, the invariant does not hold because O is well-typed. Therefore
we wrap get_slice with get_slice’ to check whether the received slice is O. If
the received slice is O, because it can not be abstracted any further, get_slice’

returns 0.
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get_slice : (slice x (slice — slice)) — slice
get_slice[(O, cxt)] = FERROR

(* This case never happens *)
get_slice[(v', cxt)] =
get_slice[(c!, cxt)] = d

get_slice[(Nz.s, cxt)] =

Na.(get_slice[s, (fun y — cxt(Na.y))])

get_slice[(Q's; sy, cat)] =

try(check(Q's; sy, cxt)) with Not_found —
let s} = get_slice'[(s1, (fun x — cat(Qx s)))] in
let s, = get_slice'[(sq, (fun z — cat(Q's) x)))] in
(@'sf s)

get_slice](&@sy..sp, cxt)] =

try(check(@ sy..s,, cxt)) with Not_found —
let s = get_slice'[(s1, (fun x — cxt(@ x..s,)))] in ..
let ! = get_slice'[(sp, (fun © — cxt(@ s)..x)))] in
(@ 57 s5)

get_slice[(let' x = sy in sy, cxt)] =

try(check(let' x = sy in sq, cxt)) with Not_found —
let s} = get_slice'[(s1, (fun y — cxt(let' x =y in s)))] in
let s = get_slice'[(sq, (fun y — cxt(let' x = sy in y)))] in
(let' z = 8} in sb)

get slice[((s1, .., sn)!, cat)] =

try(check((sq, .., sp)!, cxt)) with Not_found —

let s} = get_slice'[(s1, (fun y — cxt(y,...,s,)))] in ..
let ! = get_slice'[(sp, cxt(fun y — cxt(s),...,y)"))] in
(51, 87)"
get _slice’ : (slice % (slice — slice)) — slice

get_slice'[(s, cxt)] = if s= Othen O

else get_slice|(s, cxt)]

Figure 9.5: Type error slicer get_slice




Chapter 10

A weighted type error slicer

In the previous chapter, we introduced a type error slicer using compiler’s
type inferencer. In this chapter, we extend it so that it has weights. The
weights are the probabilities of each subprograms to be the source of the type
error. The target language is the same as in the previous chapter (see Figure

9.1). The syntax for slices is also the same (see Figure 9.2).

10.1 The flow of algorithm

To see how we can add weights to the slicer, let us consider an example
program (Alf.((@3(@%x f) 1),(@5f 2),(@Q%@" + f) 3))?). ' (We omit the
labels for variables and constants.) The initial context is the empty context
Az.x. First, let us focus on the topmost lambda abstraction. We add ' f. to
the context and move to its sub-program ((@3(@*x f) 1), (@5 f 2), (@Q%(@7 +
f) 3))%. Here, we abstract each subprogram or the constructor itself. The
abstracted slices of ((@3(@* % f) 1),(@°f 2),(@5(@" + f) 3))? are the fol-

lowings:

o (O,(@f 2),(@%Q" + f) 3))?
IThis program is a curried program of (Af.(f * 1, f 2, f + 3)).

91



92 CHAPTER 10. A WEIGHTED TYPE ERROR SLICER
e ((@(Q%x f)1),0,(@%(Q"+ f) 3))*
o ((@%(@%x f)1),(@°f 2),0)°

In these slices, the first and third slices are ill-typed. In an ill-typed program,
its sub-programs contribute to the type error. Therefore, we count the num-
ber of times that each sub-program is contained within ill-typed program.

The counts for this example are in the table below.

a subprogram ‘ numbers of contributions

(@@« f) 1) 1
(@f 2) 2
(@@’ + f)3) 1

From this table, we know that the sub-program labeled 5 contributes more
than the other subprograms do.

To obtain the type error slices, we choose one type error slice from the
abstracted slices and make it more abstract. If we select the first type error
slice, we obtain a minimal type error slice (O, (@° f 2), (@°(@Q"+ f) O)) about
this constructor. Although this slice is the same as the one in the previous
chapter, it has information about the weight. The node labeled 5 is heavier
than the node labeled 6.

By majority vote between sub-programs, we can find a sub-program that
is most likely to be the source of the type error. Thanks to the weighted type
error slice, the type debugger can ask about the suspicious expressions that it
finds. In the previous example, the type error slicer produces a weighted slice
A F(O,(@5f2), (@%@ + f)0O)). Using this result, the type debugger know
that it should ask about (@°f 2) first, because it has the heaviest weight
among the sub-programs. If the programmer answers that the judgement of

(@5 f 2) is correct, the type debugger will then ask about (@%(@Q7 + f) O).
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inc_one
inc_one(0)
inc_one(s)
inc_slice
inc_slice
inc_slice

(@
(€@
inc_slice(
(
(-

S1 52)
S1. 52)

l
inc_slice((sy, .., 5,)")
inc_slice(_)

check :
check((s,cxt), f) =

. slice — unit
= inc_weight [
slice — unit
= nc_weight [;inc_one s;inc_one sy
imc_one Si;..;1NcC_one So

et x = s1 in Sy) = incweight l;inc_one sy;inc_one Sg

= incweight [;inc_one sy;..;inc_one s,

= ERROR

(slice x (slice — slice)) — slice
let abst_list = abst_one[s] in
let rec loop st = match lst with
[ —=1
| fst::rest — try(infer (cxt fst);loop rest)
with Type_Error —
inc_slice fst;
fst :: (loop rest) in
let illtyped_slices = loop abst_list in
match illtyped_slices with
| [| = raise Not_found
| - — get_slice[(choice illtyped_slices, cxt)]

Figure 10.1: Weighted type error slicer

Because this weighted slice is also a type error slice, it never asks about

(@(@tx f)1).

10.2 Program

Figure 10.1 lists the program to produce weighted type error slices. We use

a hash table to save the weights of each sub-program. The key of the array

is the labels of each sub-program and its value is the weights of each sub-
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program. The function inc_weight receives a label [ and increase its weight.
The function choice selects an element from the received list.

We can extend the previous chapter’s program to a weighted type error
slicer simply by changing the function check. We show check in Figure 10.1.
The other function get _slice is the same as in the previous chapter’s program.

The function inc_one receives a slice (whose label is [) and increases the
weight of [. When the received slice is O, inc_one does nothing because O does
not contribute to the type error. This is why O has no labels. The function
inc_slice receives a slice and increases the weights of its sub-programs. For
example, if inc_slice receives a function application @Q's; s,, it increases the
weight of [ and its sub-programs. It calls inc_one to increase the weights
of the sub-programs. If it receives a skeleton expression (@ S;S5), it only
increases the weights of its sub-programs because skeletons do not contribute
to a type error.

The function check is similar to check in the previous chapter, but it
works harder than the previous one. In the previous check, loop terminates
immediately when it finds an ill-typed slice and calls the function get_slice.
In this program, loop works on all elements of an abstracted list abst_list
obtained by abst_one. During the loop, the program collects all type error
slices from all elements. The reason for this is that programmers may have
intuitions about abst_list. Therefore, after the loop, we increase the weights
according to the collected type error slices. Finally, we choose one of the
slices and make it more abstract by calling get_slice. If there are no type
error slices in the abstracted list, the behavior is the same as described in

the previous chapter.



Chapter 11

An improved weighted type
error slicer

The previous chapter described weighted type error slicer that compares the
sub-programs of an expression and the constructor itself. Although it pro-
duces a bit better type error slices than the standard type error slicers, it does
not likely match a programmer’s intuition. Because it depends on the struc-
ture of programs, it sometimes does not produce the expected result. To get
a handle on this problem, let us consider the previous example (A f.((@3(@*x
f) 1), (@ f 2),(@%@7 + f) 3))?). Here, the sub-program labeled 5 is more
suspicious than the other sub-programs. This can be inferred by comparing
the three sub-programs; two of them indicate thatf is a number. However,
the majority vote sometimes does not work well. If we change the structure
of this program to (A'f.((@3(@*x f) 1), ((@>f 2),(@5(Q" + f) 3))%)?), the
previous type error slicer does not work well. In this chapter, we improve

the type error slicer so that it will work well on this sort of example.

!The original program has a tuple of three elements, and the modified program has a
tuple of two elements in which one element is itself a tuple of two elements.
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11.1 The flow of the algorithm

Let us consider an example program (AL f.((@3(@%1x f) 1), ((@5f 2), (@5(QT +
£) 3))%)?). The outer most expression is a function abstraction; we focus on
its subprogram ((@3(@* x f) 1), ((@°f 2),(Q%(@Q7 + f) 3))¥)? and add \'f.
to the context. We abstract this focused expression and obtain the following

slices.

o (0,((@f 2),(@%Q7 + f) 3))*)?
o (@@« f)1),0)

o @ (@@« f) 1) ((@f2),(Q%(Q"+ f)3))*

Among these slices, the first and third slices are ill-typed. If we select the first
slice or third slice and abstract it, we obtain @ O((@Q°f 2), (@%(@Q" + f) 3))%.
To abstract its sub-programs, we focus on ((@°f 2), (@%(@7 4 f) 3))¥ with
the context (fun s ->A!f.(0,s)). However, this context does not have the
information that f is a number in the node labeled 3 of the original program.

In the next abstraction, we obtain the following abstracted programs:
o (O0,(@%(Q@7+ f)3))”
o ((@f2),0)"

e @ (Q@°f 2)(@5(@" + f)3)

with the context (fun s ->A\'f.(0,s)). In the upper programs, because the
third program is ill-typed and the others are well-typed, we can obtain the

following weights of each sub-program from these slices:
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a sub-program ‘ numbers of contributions
(@ f 2) 1
(@(@” + f) 3) 1

This table shows that their weights are the same. This behavior is different

from our intuition. Because f is a number in two places of the original
program (the part labeled 4 and the part labeled 7) and a function in one
place (the part labeled 5), the part labeled 5 looks to be the source of the
type error.

The problem is the lost information in the context. To preserve these
information, we use two contexts. One context is to obtain type error
slices, the same as in the previous chapter’s context. The other context
is to obtain the weights, that is, the non-abstracted context. To explain
these two contexts, let us consider the previous example. When we focus
on ((@°f 2),(@5%@7 + f) 3))?, the context for obtaining the type error
slice is (fun s ->A\!f.@ Os). Another context for obtaining the weights is
(fun s —>A'£.((@3(@*  f) 1),5)?). The latter context includes more in-
formation than the former context. Therefore, we can detect the mismatch
between the focused program and the outer context. These two contexts

make it possible to obtain the following weights:

a sub-program ‘ numbers of contributions
(@ f 2) 2
(@@’ + f) 3) 1

These weights correspond to our intuition. By using the unnecessary parts

for the type error slices, we become aware of the programmer’s intention. The
previous weighted type error slicer compares only the sub-programs of one
node; on the other hand, this improved weighted type error slicer compares
sub-programs with the outer context. The previous one can perform horizon-
tal comparisons in the tree, whereas the current one can perform horizontal

and vertical comparisons.
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check : (slice x (slice — slice) * (slice x (slice — slice))) — slice

check(s, cxt, (p,wrap)) = let abst_list = abst_one[s] in
let rec loop lst = match st with
[ =1

| fst:rest —
try(infer (wrap fst);loop rest)
with Type_Error —
nc_slice fst;
try(infer(cxt fst);loop rest)
with Type_Error — fst :: (loop rest) in
let illtyped_slices = loop abst_list in
match illtyped_slices with
| [| = raise Not_found
| _ — get_slice[(choice illtyped_slices,

cxt, (p,wrap))]

Figure 11.1: check for an improved weighted type error slicer

11.2 The program

Figure 11.1 and 11.2 show the program of an improved weighted type error
slicer. In the program, cxt is the context for obtaining the type error slices

and wrap is the context for obtaining the weights of the sub-programs.

In the Figure 11.1, the function check increases the weights if the slices
with wrap are ill-typed. This is the main change from the previous type
error slicer. The other changes are in wrap. During abstraction of a focused
program, we use the same wrap. Once the focused program becomes min-
imal, we focus on its sub-programs and change wrap. The value of wrap
is updated in the function get_slice. In the case of lambda abstraction, we
add Mz. to wrap the same way as czt. In the case of function application,

wrap needs the parts that are not included in the type error slices. To set
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make_wrap : ((slice — slice) * slice x (slice — slice))
— (slice * (slice — slice))
make_wrap(wrap, p,cxt) = try(infer (wrap O); (p, wrap))
with Type_Error — (p, cxt)

get _slice : (slice x (slice — slice) x (slice — slice)) — slice
get_slice[(v', cxt, (p, wrap))] =
get_slice[(c', cxt, (p,wrap))] = d
get_slice[(Nz.s, cat, (p,wrap))] =
N (get_slice](s, (fun y — cxt(Nz.y)), (s, (fun y — wrap(Nz.y))))])
get_slice[(Qls; sy, cat, (p,wrap))] =
let (Q'p; po) = p in
try(check(@Q's; sy, cat, (p, wrap)))
with Not_found —
let caty = (fun v — cxt(Qlx s5)) in
let s} = get_slice'[(sy, cxty,
make_wrap((fun x — wrap(Q' z py)), s1,cxty))] in
let caty = (fun v — cat(Qls] z)) in
let sty = get_slice[(sq, cxts
make_wrap((fun x — wrap(Q' p, x)), s, cats))] in

(@'s] s5)
get_slice[(s1, .., $n)'] = Omitted

get_slice’ : (slice x (slice — slice) * (slice — slice)) — slice
get_slice'[(s, cxt, (p,wrap))] = if s=0then O
else get_slice|(s, cxt, (p,wrap))]

Figure 11.2: An improved weighted type error slicer

such parts, we have to use non-abstracted expression for wrap. However,
the focused program @'s; s, may already be abstracted by the function calls
of get_slice. Therefore, we introduce a new argument p to get_slice in or-
der to preserve the original expression (non-abstracted one) and use it to

update wrap. Because the new wrap has to be well-typed itself, we check
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whether it is well-typed or not by using make_wrap. If it is ill-typed, we use
cxt, which is always well-typed. In this case, wrap lost information; however,
new information will be pushed onto non-abstracted subprograms in the next

recursions.



Chapter 12

Related work

In this chapter, we compare our work with related work. We classify related
work according to type, such as typing algorithms, type debugging systems,

and type error slicing, etc.

12.1 Typing algorithms

The typical approach to improving type error messages is to design a new type
inference algorithm. Wand [29] keeps track of the history how type variables
are instantiated and shows the conflicting history when a type error arises.
Lee and Yi [12] present the algorithm M that finds conflict of types earlier
than the algorithm W and thus reports a narrower expression as an error.
Heeren and Hage [8] use a constraint-based type inference for improving type
error messages.

Neubauer and Thiemann [17] introduce a type system using sum types.
The sum type allows the multiple types during an inference of types. The
correct type of the sum type is chosen by the types of the surrounding pro-
grams. Our idea for weighted type error slice is inspired by their approach.

The type error messages by existing compilers are improved by these
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approaches. Thanks to the improvements, if the source of the type error is
near the point located by compilers, we can often find the source of the type
error by hand. Although these improved type error messages are useful for
programmers, it is in general not possible to identify the source of type errors

by a single error message.

12.2 Type debugging systems

To locate the source of type errors, Chitil [2] uses compositional type inference
and constructs an interactive type debugger for a subset of Haskell. Based
on his work, we designed a type debugger for OCaml using the compiler’s
own type inferencer rather than a tailor-made type inferencer. The use of
the compiler’s type inferencer enables us to build a type debugger for a
larger language easily. Stuckey, Sulzmann, and Wazny [23] find the source
of type errors using type inference via CHR solving. They implement a type
debugger called Chameleon, which can explain why an inferenced type is

derived by searching. Tailor-made type inference is used for this purpose.

12.3 Type error slicing

Haack and Wells [6] use slicing with respect to types to narrow the possibly
erroneous parts of programs. By extracting the slice related to type errors,
they help the programmer to identify the source of type errors. The advan-
tage of this approach is that the process is automatic and the programmer
does not have to answer questions.

Schilling [19] obtains slices using the compiler’s type inferencer. To ob-
tain type error slice, he abstracts an ill-typed program and infers its type

by compiler’s inferencer. Although we choose the same approach there are
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some difference between them. Schilling starts from the empty program and
instantiate it by parts of ill-typed programs. On the other hand, we start
from the ill-typed programs and abstract them. Thanks to the decremental
approach, we extend type error slicing with the weights.

Our work is an extension of these works for type error slicing by the
weights. The likelihood of each expression being the source of the type error

makes type debugging easier.

12.4 Type error correction

Lerner et al. [13] propose automatic type-error correction. They replace the
erroneous part with various syntactically correct similar expressions, and
see if they type check. If they do, they are displayed as the candidates for
fixing the type error. Since the system automatically shows us possible fixes
without intervention, the system is useful if the programmer’s intended fix is

shown. Unfortunately, it does not always produce the intended program.

12.5 Visualization of types

As visualizing tools of types, Simon, Chitil, and Huch [22] show TypeView
that allows programmers to browse through the source code and to query the
types of each expression. McAdam [14] displays types as graphs and extracts
various facts from them that are useful for debugging. Our previous Emacs
interface [24] is inspired by these works, and we will continue to build such

interface.






Chapter 13

Conclusion

In this thesis, our aim is to establish the approaches to achieve practicable
type debugging. First, we proposed a manifesto of practicable type debugging.
The manifesto consists of two categories, the producer side and the consumer
side.

By satisfying the properties of the producer side, we can implement the
accurate type debuggers easily. To satisfy these properties, we propose a
type debugger using compiler’s type inferencers. The key observation is that
we only need the most general type tree with the decomposition property;
such a tree can be constructed using the compiler’s type inferencer. The de-
composition property guided the design of our type debugger: we maintained
contexts so that the property is satisfied all the time. We have fleshed out
our thesis that it is possible and also practical to write a type debugger by
piggy-backing on the built-in type inferencer of an existing compiler.

By satisfying the properties of the consumer side, type debuggers become
useful and user-friendly tools for programmers. To satisfy one of the proper-
ties, we propose a weighted type error slicer. We obtained a weighted type
error slices by observing each node to reduce the burden on programmers.

Although the conventional type error slicer may produce large type error
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slices, our approach enables to see some parts of the type error slices. The
piggy-backing on the built-in type inferencer of an existing compiler is good
idea in this topic too.

In this thesis, our main observation is the following:

e To fit existing implementation, using their features is a better idea than

reproducing new implementation.

Of course, there are some situation where this observation does not fit. For
example, it is impossible to reuse the existing implementation. However,
we believe that the meaning of “the good programming language” often in-
cludes their good tools for programming. To implement good tools for the
languages, their compiler should be easy to reuse their functions. Addition-
aly, the existing programming languages are becoming complex. Therefore
the reuse of their functions will become essential to implement good tools for
them.

The another observation is the following:

e For debugging, it is important to extract the information from the ill-

typed programs.

This looks natural, however most compilers extract the minimum informa-
tion from the ill-typed programs. In our weighted type error slicer, we could
extract more information from the ill-typed program than standard compil-
ers.

We plan to continue the present line of work as follows. First, we want to
explore how far the idea presented in this thesis scales. In particular, we are
interested in supporting type classes [7] in Haskell and GADTSs introduced

in OCaml 4.0. We will investigate how we can define decomposition of a
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program with type classes or GADTs and see if it satisfies the property
(Section 5.2). Second, we want to implement a weighted type error slicer for
our type debugger. Although almost all of the syntax is simple extension of
our proposed weighted type error slicer, we have to treat patterns as special
syntax. Third, we want to perform thorough user tests. We have built an
Emacs interface based on our previous work [24] and the type debugger is
in use in several courses in our university. From the user tests, we plan to
obtain various feedback including usefulness and how to effectively show the
type information to novices. We also plan to obtain feedback from the user

tests with skilled programmers.

Acknowledgement About our type debugger, we present papers and talks
at PPL2012 [25], computer software (a Japanese journal) [26] and the post-
proceedings of IFL2012 [27]. About weighted type error slicer, we present a
paper and a talk at PPL2013[28].
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