
Doctoral Dissertation, 2013

Practicable Type Debugging
for Functional Languages

OCHANOMIZU UNIVERSITY

Comparative Studies of Societies and Caltures,
Graduate Scholl of Humanities and Sciences

The Division of Advanced Sciences

KANAE Tsushima

September, 2013

Abstract

This thesis presents how to build a practicable type debugger. From the

time the Hindley-Milner type system was first proposed, programmers have

received benefits from types. At the same time, they have to struggle with

type errors. Many approaches have been developed to help programmers

locate the source of type errors. Although their implementations help pro-

grammers a lot, existing compilers often lack such support. We feel this sit-

uation puts too much of a burden on programmers: debugging an ill-typed

program takes up a lot of their time, and compiler’s error messages are too

difficult for many new learners to understand. This situation is a shame for

many statically typed languages.

To address this situation, we believe practicable type debugging is needed.

First, we establish a manifesto of practicable type debugging. The properties

of the manifesto can be grouped into two categories. One category is the

producer side, where the properties focus on the implementation of type

debugging systems. By satisfying these properties, a type debugging system

can be applied to many languages. The other category is the consumer side,

where the properties focus on the usability. If a type debugging system is

not user-friendly and forces the programmers to deal with too big a burden,

the programmers feel that debugging by hand would be better. Therefore,

the usability of a type debugger is a crucial factor.

3

4

The main part of this thesis consists of two parts according to our mani-

festo of practicable type debugging.

First, we focus on the producer side of type debugging. To this end,

we propose a type debugger without implementing any dedicated type in-

ferencer. Conventional type debuggers require their own type inferencers

separate from the compiler’s type inferencer. The advantage of our approach

is threefold. First, by not implementing a type inferencer, it is guaranteed

that the debugger’s type inference never disagrees with the compiler’s type

inference. Second, we can avoid the pointless reproduction of a type infer-

encer that should work precisely as the compiler’s type inferencer. Third,

our approach can withstand updates of the underlying language. The key

element of our approach is that the interactive type debugging, as proposed

by Chitil, does not require a type inference tree but only a tree with a certain

simple property. We identify the property and present how to construct a tree

that satisfies this property using the compiler’s type inferencer. The property

shows us how to build a type debugger for various language constructs. In

this topic, we describe our idea and first apply it to the simply-typed lambda

calculus. After that, we extend it with let-polymorphism and objects to see

how our technique scales.

Second, we focus on the customer side of type debugging. To this end,

we propose a weighted type error slicer. The problem of our type debugger

is that it often requires many answers by programmers. This problem is

solved partially by type error slices. Conventional type error slicers enable

programmers to narrow the area for type debugging. However, type error

slices become large when the original ill-typed programs are large. To search

the source of the type error in the large slice is a burden on programmers. To

ease this problem, we extend type error slices with the weights that means

5

the likelihood of each expression being the source of the type error. When

a programmer write a program, he has some intentions of types. Therefore

some programmer’s intentions are sprinkled into the program even if it is

ill-typed. The aim of this work is to detect programmer’s intentions from an

ill-typed program. The main idea is to abstract an ill-typed program and

judge the likelihood by majority vote. In this topic, we describe our idea and

introduce a type error slice using compiler’s type inferencer. After that, we

extend it with the simple weights and improve it to have better weights.

We propose these two approaches for practicable type debugging. Using

our approaches, it is possible to implement a type debugger for many exist-

ing functional languages. Easy type debugging contributes easy learning of

programmings and decreases the burden of programmers. This thesis is a

step to achieve easy type debugging.

概要

本論文では、関数型言語のための実用可能な型デバッガ作成手法について述
べる。Hindley-Milner の型推論が導入されて以来、プログラマは型による恩
恵を受けて来た。それは同時にプログラマと型エラーとの戦いの幕開けでも
あった。プログラマによる型エラーの原因特定を手助けするために多くの手
法が提案されており、それらの実装は実際にプログラマを助けてきたが、未
だ多くの言語が型デバッグに関する実装を欠いている。実際、型デバッグのサ
ポートがない言語では、型エラーの原因を探る際、プログラマはコンパイラ
のエラーメッセージを元に、自身で型を推論するなど時間を割いているとい
う現状がある。このような状況は初級者にとって学習の阻害になる上に、上
級者にとってもデバッグを行う時間を必要とし、プログラマに負担を強いる。

この状況を打開するためには、実用的な型デバッグ手法が必要となる。し
かし、「実用的な型デバッグ手法」とはかなり曖昧な表現であるため、まず
我々はそれが満たすべき性質を提案した。この性質は大きく二つの種類に分
けられる。ひとつ目は、型デバッガを実装する側に関する性質である。その
性質は、型デバッガを多くの言語に適用することを目的に定められている。
ふたつ目は、型デバッガを使用するユーザ側に関する性質である。その性質
は、実際にユーザにとって使いやすい型デバッガになることを目的に定めら
れている。これらの性質が合わさることで、実装面・利用面の両方から実用
的な型デバッグが実現される。

本論文は大きく分けて二つの内容を扱う。

7

8

まずひとつ目の内容では、型デバッガを実装する側に関する性質に注目
し、それらの性質を満たす型デバッガを作成する手法を提案する。これまで
の型デバッガは、それぞれ特殊な型推論器を必要としており、それが障害と
なって多くの言語への適用が困難であった。我々はコンパイラの型推論器を
使用することによって、型推論器の実装を必要としない型デバッガを提案し
た。我々の手法の利点は三点存在する。型推論器を実装せずコンパイラの型
推論器を使用することによって、コンパイラの型推論器との齟齬が発生し得
ない点、型推論器を再び作成する手間がかからない点、コンパイラの変更に
強い点である。提案する型デバッガの主軸となる方法は、Chitil の対話的な
型デバッガに基づいている。説明の流れとしては、まず提案の概要を説明し、
その提案を単純型付きラムダ計算に適用する。その後、それを let 多相やオ
ブジェクトに拡張し、この提案がどこまで拡張可能かをみる。

ふたつ目の内容では、型デバッガを使用するユーザ側に関する性質に注
目し、それらの性質のうちひとつを満たす、重み付き型エラースライスとい
う手法を提案する。これまでの型エラースライス作成手法では、型デバッグ
の際に見る範囲を小さくすることが可能であった。これは実際にデバッグを
行う際、ユーザの負担を軽減するために有効である。我々はこの方法を拡張
し、スライスの各所に重みを付けた。ここでの重みとは、それぞれの箇所が
どれくらいエラーの原因である可能性が高いかということを表す。よって、
重み付き型エラースライスを使うことで、デバッグの際にエラーの可能性が
高い箇所から質問をすることが可能となり、ユーザにとって使いやすい型デ
バッグを行うことが出来る。

このように実装面・利用面からそれぞれ型デバッガ作成手法を改良する
ことによって、関数型言語のための実用的な型デバッグが実現された。これ
によって、型デバッグ機能を欠いた多くのプログラミング言語を対象とした
型デバッガの実装が可能になる。型エラーの修正が容易になることは、型付
きプログラミングの学習への貢献や、プログラム作成時の障害が減ることに

9

よる信頼性の高いソフトウェア開発などに繋がっており、そのための一歩が
本研究によって為されたと考えている。

Acknowledgement

I’d like to thank my supervisor, Prof. Kenichi Asai. When I was an under-

graduate student, I took Kenichi’s course “Functional languages”. I found

type systems are beautiful in the class and felt type errors should be fixed

easier. Therefore, his course motivates me to choose the topic of this thesis,

type debugging. After I joined his laboratory, I learned a lot of things from

him, for example, reading papers, writing papers, presenting talks and so on.

I really feel this work is supported by him.

I’d like to thank Dr. Olaf Chitil. Because my type debugger in this thesis

is based on his work [2], I asked him to give me some advices after writing

the paper [27]. He gave me a lot of advices from a different perspective. The

discussions with him made my work good.

In spring of 2012, I visited Prof. Olivier Danvy at Aarhus university for

two months. He gave me advices of my researches, and advices for living

abroad. The weekly talks held at the university were very interesting for

me since there are many programming language labs. When I visited Aarhus

again at September of 2012, I talked in the seminar and the participants gave

me a lot of comments. Thanks to a Ph.D. student of Olivier, Ian Zerny, I

could have contact with the students at Aarhus university.

From June of 2012, I joined IPL seminar at NII. The seminar is held by

a group of Prof. Zhenjiang Hu. Although their research area (bidirectional

11

12

transformation) is not near my research area, the talks in the seminar were

very interesting and the discussions about my work in the seminar helped

me a lot. I presented three talks about my research in IPL seminar.

After I joined Kenichi’s lab, I attended PPL (Programming and Program-

ming Language workshop) every year. I had three presentations at PPL. I

gained inspiration from the participants of PPL, especially their attitude to

researches.

I’d like to thank Moe Masuko, my colleague of Kenichi’s lab. We of-

ten discussed many things about programming languages, and I sometimes

got ideas for research from the discussion. Because we often went to many

conferences together, I could try many things.

I’d like to thank the colleagues of Kenichi’s lab and the members of Prof.

Daisuke Bekki’s lab. Thanks to them, I enjoyed good life in the lab.

The last acknowledgment is for my family. My life as a Ph.D. student is

supported by them.

謝辞

学部時代からの指導教官である、浅井健一先生に厚くお礼を申し上げます。
そもそも本研究の動機は、先生の授業「関数型言語」や「コンパイラ構成論」
を受講した際に感じたことがきっかけでした。関数型言語の授業では型シス
テムによって保たれる性質の美しさを、コンパイラ構成論の授業では型推論
の実装を通じて型システムの美しさを学びました。それと同時に、なぜ型エ
ラーメッセージはもっと適切な場所を指摘してくれないのだろうか？なぜ推
論した型を見せてくれないのだろうか？という疑問を感じ、それらの疑問が
本研究の動機となっています。まず研究動機を与えてくださったことに大変
感謝をしております。また研究室に配属されてからは、論文の読み方、書き
方、発表の仕方等、多くのことを丁寧に教えて頂きました。これまでの研究
や本研究の多くの部分を先生に支えて頂きました。厚くお礼を申し上げます。

Kent 大学の Olaf Chitil 先生の既存研究が本研究の型デバッガの基礎と
なっています。そのため Chitil 先生には、論文・内容に関してたくさんのア
ドバイスを頂きました。多くの違った視点からのアドバイスや先生とのメー
ルでの議論によって本研究の型デバッガを改良することが出来たことに、大
変感謝をしております。

Aarhus 大学の Olivier Danvy 先生のご好意により、2012 年の春には
Aarhus 大学に 2 ヶ月滞在し、研究を行いました。Danvy 先生には研究に
ついてご意見を頂いたことはもちろん、初めて滞在する海外の大学について
多くのことを教えて頂きました。毎週 Aarhus 大学のプログラミング言語グ

13

14

ループで行われるセミナーは大変有意義で面白く、2012年の 9月に再び訪問
した際には、型デバッガについて発表を行い、参加者の皆様からは多くのご
意見を頂きました。また、Danvy 先生のもとで博士課程在学中の Ian Zerny

氏の助力によって、多くの学生の皆さんと交流出来たことを大変有り難く思っ
ております。

2012 年の 6 月からは、NII で行われている胡振江先生のグループの IPL

セミナーに参加させて頂きました。胡先生のグループとは私の研究分野は異
なりますが、異なる分野の発表も大変面白く、本研究についても三度発表す
る機会を頂き、多くのご意見を頂きました。
浅井先生の研究室に所属してからは毎年 PPL (Programming and Pro-

gramming Language workshop)に参加し、参加者のプログラミング言語の研
究者の方々には大変お世話になりました。PPL では本研究の内容について二
度、修士時代の研究について一度発表する機会を頂きました。PPL の参加者
の方々との交流を通じて、研究に対する姿勢などを学べたことを大変有り難
く思っております。
浅井研究室の増子萌氏には多くのことでご助力を頂きました。彼女との

プログラミング言語に関する議論によって、多くのことに気づかされ、研究
のアイデアになることもありました。海外の学会へ共に参加することが多く、
また Aarhus大学にも一緒に訪問しました。思い返すと彼女が居たからこそ、
挑戦出来たことが多くあったことに気づかされます。彼女の助力によって充
実した研究生活を送れたことに厚くお礼を申し上げます。
浅井研究室の皆様、また戸次研究室の皆様には、大変お世話になりまし

た。楽しく充実した研究室生活を過ごせたことに、大変感謝しております。
最後に、研究生活を支えてくれた家族に感謝を捧げます。

Contents

1 Introduction 19

1.1 Type checking and type errors 22

1.1.1 Type checking . 22

1.1.2 Two conflicting expressions 23

1.1.3 The source of a type error 24

1.2 Thesis outline . 24

2 Background 27

2.1 Typing algorithms . 27

2.1.1 Algorithm W . 28

2.1.2 Algorithm M . 29

2.1.3 Compositional typing 30

2.1.4 Essentials of typing algorithms 30

2.2 Type debugging . 31

2.3 Type error slicing . 32

3 A manifesto of practicable type debugging 33

3.1 Producer side . 33

3.2 Consumer side . 35

15

16 CONTENTS

4 An embedded type debugger 37

4.1 Locating the source of a type error 37

4.2 Problems . 40

4.3 Our approach . 41

5 A type debugger for Hindley-Milner type system 43

5.1 The simply-typed lambda calculus 43

5.2 The decomposition property 47

5.3 Let polymorphism . 49

6 A type debugger for extensions 55

6.1 Objects . 55

6.2 Weak polymorphism . 59

6.3 Modules . 64

7 Implementation of a type debugger 69

7.1 The structure of a type debugger 69

7.1.1 The searching phase 69

7.1.2 The debugging phase 71

7.2 Our implementation for OCaml 71

8 Weighted type error slices 75

8.1 A problem with our type debugger 75

8.2 Type error slices and their problem 77

8.3 The solution . 79

8.4 Our approach . 80

8.4.1 Brief overview . 80

8.4.2 The points and contributions 81

CONTENTS 17

9 An embedded type error slicer 83

9.1 The algorithm . 86

9.2 Program . 87

10 A weighted type error slicer 91

10.1 The flow of algorithm . 91

10.2 Program . 93

11 An improved weighted type error slicer 95

11.1 The flow of the algorithm . 96

11.2 The program . 98

12 Related work 101

12.1 Typing algorithms . 101

12.2 Type debugging systems . 102

12.3 Type error slicing . 102

12.4 Type error correction . 103

12.5 Visualization of types . 103

13 Conclusion 105

Bibliography 109

Chapter 1

Introduction

To ensure the reliability of programs, types are introduced to many languages.

The benefit of types is that they guarantee various properties of well-typed

programs. One popular property is “If a program is well-typed, the evalua-

tion of the program will go well1.” Thanks to these kinds of properties, we

can receive many benefits. For example, a previous property ensured that

programmers can run a well-typed program in safety, and another popular

property states that “If a program is well-typed, its evaluation will surely

halt.” This property is accomplished with a strict type system (e.g, simply

typed lambda-calculus).

The role of types is to sort programs according to our need. Here, this

“need” has two sides: we need strong properties and expressive programs at

the same time. However, to give an example of the difficulty of this, to have

a halting property of programs, the expressiveness of the programs is weaker

than languages which do not have halting properties. Put simply, types mean

placing restrictions on programs. Properties ensured by types have a trade-

off in the form expressiveness of programs. Research on advanced types show

the history of searching for a good balance of these properties. Here, let us

1“go well” means the program does not cause any runtime type errors.

19

20 CHAPTER 1. INTRODUCTION

take a look at some of the advanced types.

Advanced types. Many advanced type systems based on the Hindley-Milner

type system [15] have been proposed. Most of them were designed to increase

the expressiveness of types (increasing acceptive programs) or the strength

of properties.

One feature of these advanced types is “polymorphicness”. The main

idea of a polymorphic type is that it can be used to express several types.

One polymorphic type, called a let-polymorphism, allows polymorphic types

to be used for let-bounded functions. Because let-polymorphism allow pro-

grammers to reuse functions, it is used in ML (e.g. OCaml[3, 9], Standard

ML [16] et al.). There are many polymorphic types, including rank-2 poly-

morphism [10, 11], parametric polymorphism [31], and so on. Because this

thesis does not touch on these other polymorphic types, we do not present

their details here.

Another feature of the advanced types is the dependent type, which allows

types to dependent value or the other types. This type ensures the property

that “if a program is well-typed, there are no errors caused by an out-of-

bounds.” Because dependent types ensure stronger properties than standard

types, they are used in Coq [1], Agda [32] and Epigram [33].

There are many other types that have been proposed for properties re-

lating to programs and expressiveness. Some of these are used in many

languages, while most of them are just beginning to be used.

The balance of properties and expressiveness is one aspect of types. An-

other aspect is how to obtain the types of each expression to check the con-

sistency of the programs. There are two main approaches to this. One

approach requires programmers to write annotations (types in programs)

21

and cast types as much as possible. Because this approach often lack good

properties, it is called “weakly typed.” The other approach does not require

annotations and instead, a compiler infers the types of each expression au-

tomatically. Because this approach often have some good properties, it is

called “strongly typed.” The benefit of this approach is strong properties

and the unnecessity of writing types. However, this unnecessity often causes

complicated type errors, so our target language in this thesis is the latter

approach.

Difficulty of writing well-typed programs. Writing a well-typed program is

not always easy, even in the Hindley-Milner type system. Furthermore, it is

very difficult problem in advanced type systems. Although a compiler gives

us an error message when a type error occurs, there is no straightforward

explanation to why the type error occurred. Compounding the problem, the

source of a type error can be far from the place reported by the compiler.

We believe that type debugging systems are needed for advanced type

systems to become widespread. Although current compilers often lack a

debugging system, this is compensated for by programmers’ efforts, such as

inferring types themselves. However, such efforts become impossible as type

systems become more complicated. Therefore, we present a practicable type

debugging system in this thesis.

Note on this thesis. In this thesis, we focus on strongly typed functional

languages, especially the OCaml language [3, 9]. We use the syntax of OCaml

version 3.12.1 as example programs.

22 CHAPTER 1. INTRODUCTION

1.1 Type checking and type errors

In this section, we give a basic overview of type errors. First, we describe

how type checking processes proceed, and then we discuss why type errors

are caused and where they come from.

1.1.1 Type checking

The checks that a compiler performs for the consistency of the types are

called type checking. In statically typed language, type checking is performed

during compiling. Type checking is often called type inference in strongly

typed functional languages because compilers infer types in the checking

phase. Because the expressions are checked before execution, the safety of

the types is maintained.

To see the flow of type checking, let us consider an example program of

1 + 2. When we see this program, we think we can evaluate it successfully,

for three reasons:

• “+” is an operator that receives two numbers.

• 1 and 2 are numbers.

• Because the upper two have no conflicts, the expression can be evalu-

ated successfully.

The type checkers of compilers also judge this program as well-typed with

the same reasoning:

• Because + receives two numbers and returns one number, the type of +

is int -> int -> int.

• Because 1 and 2 are numbers, their types are int.

1.1. TYPE CHECKING AND TYPE ERRORS 23

• Because there is no conflict, we can evaluate the program.

Because the types of a function “+” and its two arguments match, that is,

this program is well-typed, this program never causes type errors in the

evaluation phase.

To see an example of how type checking fails, let us consider an example

program of 1 + true. This program has a type conflict because + requires

two numbers and the second argument is not a number. In this case, the

program is ill-typed. This is how the type checking process proceeds. If the

final result of an expression can be typed, the programmers receive benefits

immediately. Otherwise, the programmers have to struggle with type errors.

1.1.2 Two conflicting expressions

There are many cases in which written programs are not well-typed. In this

subsection, we take a look at why type errors are caused.

A type error occurs when types of two expressions conflict with each

other. Let us consider the following example:

let rec f g lst = match lst with

| [] -> []

| fst :: rest -> (g fst) :: (f g rest) in

(f 1 [2;3;4]) @ [5;6;7]

In this program, the two boxed expressions have a type conflict causing a

type error. The first argument g of the function f is used as a function in (g

fst), but an integer 1 is passed as g in (f 1 [2;3;4]). Because a function

type ’a -> ’b cannot be unified with int, a type error occurs. To locate

these two conflicting expressions is useful when one of them is the source of

a type error. Unfortunately, that is not always the case.

24 CHAPTER 1. INTRODUCTION

1.1.3 The source of a type error

The source of a type error cannot be determined solely from the conflict

of types. For example, suppose that a call to f in the previous example is

wrapped by a call to h.

let rec f g lst = match lst with

| [] -> []

| fst :: rest -> (g fst) :: (f g rest) in

let h n lst = f n lst in

(h 1 [2;3;4]) @ [5;6;7]

In this program, although (g fst) and (h 1 [2;3;4]) are the conflicting

expressions, the source of the type error may be in the definition of h: if we

replace the boxed expression with (f (fun x -> x + n) lst), the program

is well-typed. Because which of these expressions is the source of the type

error depends on the programmer’s intention, we cannot locate the source of

the type error automatically.

1.2 Thesis outline

When programmers encounter type errors, they usually wish to locate the

sources by type debugging systems automatically. Unfortunately, this is

impossible. However, type debugging systems have the potential to support

programmers by removing some of their struggles. To overcome the problem

of many compilers lacking type debugging systems, our aim here is to provide

practicable type debugging systems.

In the next chapter, we present an overview of approaches to type errors.

We classify them into three categories: typing algorithms, type error slicing,

1.2. THESIS OUTLINE 25

and type debugging. All of them are used in this thesis, and after this

overview they are described in details in Chapter 12.

In Chapter 3, we discuss our manifesto for practicable type debugging.

We consider “practicable” from two sides. One is the implementation side. To

implement type debuggers for many existing compilers, their implementation

must be both easy and accurate. The other side is for use. If we implement

a type debugger but it is not useful, the type debugger is meaningless.

Because “practicable type debugging” has two meanings, the main topic

of this thesis consists of two parts.

The first topic relates to the implementation side and is covered in Chap-

ters 4 to 7. The main idea of this topic is to use a compiler’s type inferencer

for constructing a tree for debugging. Thanks to the type inferencer, we

can implement the debugger easily. In Chapter 4, we describe why type

debugging is needed and the problems inherent in previous systems. After

that, we present our idea of how to solve the problems. In Chapter 5, we

apply the idea to simply-typed lambda calculus and extend the language

with let-polymorphism. To keep our type debugger accurate, we introduce

a property. In Chapter 6, we extend the language to other features, such as

objects, modules, and weak polymorphism to see how our technique scales.

In Chapter 7, we describe our implementation of a type debugger for OCaml

and conclude this topic.

The second topic relates to the user side and is covered in Chapters 8 to

11. The main idea of this topic is to reduce the burden on the programmers

for type debugging by weighted type error slicing. Although this approach

also uses a compiler’s type inferencer, its most unique point is that it focuses

on which part is likely to be the source of the type error. When we write

programs, we have some intentions of types even if the programs are ill-typed.

26 CHAPTER 1. INTRODUCTION

The programmer’s intentions obtained by ill-typed programs are useful for

type debugging. In Chapter 8, we describe the problem of our type debugger

and ways of solving it. In Chapter 9, we introduce a type error slicer using

the compiler’s type inferencer. In Chapter 10, we extend it to have weights

that mean the likelihood of each expression being the source of the type error.

by simple majority vote. In Chapter 11, we improve the weighted type error

slice to have better weights.

Chapter 2

Background

In this chapter, we present an overview of the background of this work. To

analyse the necessary property of practicable type debugging, we overview

several techniques for type errors, such as typing algorithms, type debugging,

and type error slicing.

2.1 Typing algorithms

The popular approach to support programmers for type errors is constructing

a new type inference for improving type error messages. In this section, we

take a look at three algorithms.

The standard purpose of type inference algorithms is to infer the type

of the expressions. When the expressions are well typed, their final results

are generally the same. However, when the expressions are ill-typed, their

behaviors are quite different.

To see the difference between typing algorithms, let us consider the fol-

lowing three ill-typed examples:

(fun x -> (x + 1, x 3)) 4 (1)

27

28 CHAPTER 2. BACKGROUND

In this program, because we use x as int in x + 1 and as a function in x 3,

type error occurs. Here, we assume that the source of this type error is in x

3. Although the programmer who wrote it thinks that the type of x is int,

he forgot to write + in x 3.

(fun x -> (x ^ x) *. 3.) (2)

In this program, because ^ is a string concatenation in OCaml, x ^ x returns

string. However it is passed to float-point multiplication *.. In this way,

this program is ill-typed. We assume that the source of the type error in

this program is ^. Although the programmer misunderstood that ^ is the

exponential operator, it is string concatenation in OCaml.

List.map (fun (fst :: snd) -> fst + snd) [(1, 2); (2, 3)] (3)

In this program, because we use snd as ’a list in (fst :: snd) and as

int in fst + snd, type error occurs. We assume that the source of the type

error in this program is (fst :: snd). If we replace :: with ,, this program

becomes well-typed. Using these examples, we see how different the three

typing algorithms are.

2.1.1 Algorithm W

Algorithm W [4] is the de facto standard typing algorithm. It receives an

expression and an environment for inferring types. The received environment

includes the expected types for variables. The point of algorithm W is these

environments. The environments are carried during the type checking process

and updated by the uses of the variables.

If the types of an environment are all programmer’s intended types, al-

gorithm W often locates the source of the type error correctly. Otherwise

2.1. TYPING ALGORITHMS 29

algorithm W misidentifies the source of the type error by the wrong environ-

ment. For example, in (1), when it infers the type of x + 1, algorithm W

has an environment {x:int} . This environment is correct for the program-

mer. After that, algorithm W infer the type of x 3. Because the program

x 3 has a type conflict with the environment {x:int}, algorithm W locates

the source of the type error is in x 3. In this example, algorithm W works

well. However, in (2), algorithm W does not locate the source of the type

error. Because the type of (x ^ x) is string along of the type of ^ string

-> string -> string and the type of *. is float -> float -> float,

there is a type conflict. Algorithm W misidentifies the source of the type

error is in (x ^ x) *. 3. As just described, if the obtained environment

and inferred type are the correct, algorithm W works well. Otherwise, it

misidentifies the source of the type error.

2.1.2 Algorithm M

Algorithm M [12] receives an expression and an environment the same way

as W, and it receives the expected type of the expression additionally. If the

types of an environment and the expected type are correct for programmer,

this algorithm works well. Otherwise, it misidentifies the source of the type

error by wrong information. For example, in (2), because the type of *. is

float -> float -> float, it requires float to its arguments. Algorithm

M uses this information when it infers the type of (x ^ x). Because this ex-

pected type float requires ^ to be ’a -> float and the type of ^ is string

-> string -> string, algorithm M locate the source of the type error is ^.

However, in (3), algorithm M does not locate the source of the type error.

When it infers the type of (fst :: rest), it has an environment {fst:’a,
snd:’a list}. Although this environment is not correct for programmers,

30 CHAPTER 2. BACKGROUND

the typing algorithm has no way to know it. It continues typing and infers

the type of fst + snd. Because this expression has a type conflict with the

environments, it misidentifies fst + snd is the source of the type error.

2.1.3 Compositional typing

Compositional typing has been proposed by Chitil [2] for type debugging. We

will take a look of its debugging side later (Section 2.3). Because this typing

does not require an environment or an expected types of an expression, the

identified parts are larger than the previous two algorithms. The previous

two type inferences assume inferred types are correct during type inference.

Because compositional type inference removes this assumption, it can infer

as many types as possible.

2.1.4 Essentials of typing algorithms

Because algorithm M carried more information than algorithm W and com-

positional typing, Algorithm M stops earlier than they do. If the information

is correct for programmers, it produces better result than them. Otherwise, it

misidentifies the source of the type error. This problem is also in algorithm

W. Although type inference algorithms sometimes identify the source of a

type error correctly, it is impossible for them to always identify the source of

a type error correctly by just one error message. Let us consider the following

example:

let rec f lst n = match lst with

| [] -> []

| fst :: rest -> (fst ^ n) :: (f rest n)

in f [1;2;3]

2.2. TYPE DEBUGGING 31

In OCaml, the operator ^ is a function of the concatenation of two strings.

Although ^ requires that f has type string list -> string -> string,

we apply f to [1;2;3]. This is why this program is ill-typed.

In this case, we can consider several potential error sources. For example,

the source of the type error may be in ^. If we replace ^ with ** (a function

for an exponentiation), this program becomes well-typed. On the other hand,

the source of the type error may be in [1;2;3]. If we replace [1;2;3] with

["1";"2";"3"], this program becomes well-typed, as well.

In other words, if we consider exactly the same ill-typed program, the

source of the type error is going to be different depending on the program-

mer’s intention.

2.2 Type debugging

To locate the sources of type errors, we have to debug programs somehow with

our intended types. Without a special type debugging system, we often use

our intended types to debug an ill-typed program by annotations. Because

annotations are the same as writing programmer’s intended types, a type

inferencer could potentially produce better type error messages.

The other approach is type debugging systems. The type debugger that

Chitil proposed [2] asks programmers several questions about their intended

types. It then uses the types to locate the source of the type error.

These debugging systems have two main advantages over annotations.

First, they enable us to omit writing types in programs. Because this is a

benefit of type inference, we can say this point preserves the benefit of type

inference. Second, it is quite frankly unrealistic to annotate every part of a

program. Although annotations can help programmers, they do not always

locate the source of the type error.

32 CHAPTER 2. BACKGROUND

The advantage of type debugging system as the technique for type errors

is that they can locate the source of the type error. The disadvantage is

that the need of programmer’s intention, sometimes become a burden on

programmers.

2.3 Type error slicing

Type error slicing is often used for type debugging. It is a popular technique

to narrows the area that relates to type errors. A type error slice consists of

some parts of an ill-typed program. Each part of a type error slice relates to

the type error. A type error slice of the previous example in Section 2.1.4 is

let rec f ... n = ...

| ... -> ...

| ... -> (... ^ n) ...

in f [1;2;3]

This slice includes the parts we consider as potential sources of the type

error. The advantage here is that we can obtain type error slices without

any special programmer’s input (e.g., annotations), unlike type debugging.

Although it narrow the area, it can not locate the source of the type error.

Moreover, a type error slice for a large program may also be large. To locate

the source of the type error, programmers must search for the source of the

type error from a slice, which can be time-consuming.

Chapter 3

A manifesto of practicable type
debugging

In this chapter, we discuss the required properties for practicable type de-

bugging. In this thesis, “practicable” has two meanings. One is the producer

side of type debuggers, and the other is the consumer side.

3.1 Producer side

First, let us consider the producer side of type debuggers. The producer

side relates to the implementation of type debuggers. One problem here is

that many languages lack type debugging systems. There have been several

implementation proposed for improving the type errors, but because new

languages are proposed and changed so quickly, many of them still lack type

debugging systems. To overcome this situation, we need a type debugging

system that can be applied to many languages easily.

Producer (implementer) side To implement type debuggers for existing

languages, the type debugging systems should satisfy following properties:

(1) Have type debugger behavior and compiler behavior that is consistent

33

34CHAPTER 3. A MANIFESTO OF PRACTICABLE TYPE DEBUGGING

Usually, programmers use particular language compilers. When they

debug programs by a type debugger, it must produce the same result

as the compilers. This means the type debugger should infer exactly

the same types for expressions as the compiler’s type inferencer. If the

object language is small, this is not so difficult. However, if we want an

implementation for a wide variety of languages, it becomes very hard

and we have to simply deal with it as best we can.

(2) Be easy to implement

(3) Be easy to adapt to updated compiler

These two properties are important to ensure that type debuggers will

work with existing compilers. They include not only easing the effort

of implementing the debugger itself but also the conceptual under-

standing of how to design and extend the debugger for larger language

constructs. Because a type debugging system must be expanded to

cope with more languages, the expansion must be easy to understand.

Additionally, to preserve property (1), we have to catch and deal with

compiler updates.

(4) Be accurate

The part located by the type debugger must be the source of the type

error the programmers made. If this property is lacking, the type de-

bugger is meaningless.

(5) Be applicable to many languages

To implement type debuggers for languages that lack type debuggers,

the type debugging system should be applicable to many languages.

3.2. CONSUMER SIDE 35

Therefore, they need low restrictions. To compare this measure, type

debugging systems need to establish their restrictions.

3.2 Consumer side

The other side is for the uses of type debuggers. If we can make a type debug-

ger easily but it is not useful for programmers, it is meaningless. Essentially,

a practicable type debugger must be practical for programmers.

Consumer (user) side

(1) Be easy to debug

The debugging process should require minimal effort on the part of the

programmers. If type debugging is not easy, the programmers will feel

that hand debugging is better. Practicable type debugging cannot be

realized without this property.

(2) Produce good messages

This property is important for programmers to understand why type

errors occur. When a type debugger locates the source of a type er-

ror, it should explain why it is the source. This property is mostly

accomplished by a manifesto of type error messages [30].

(3) Have a good user interface

Type debuggers often have to show a focused part of the ill-typed pro-

gram. To show it exactly and clearly, graphical user interfaces are

required.

(4) Be quick enough to use

36CHAPTER 3. A MANIFESTO OF PRACTICABLE TYPE DEBUGGING

Type debuggers are often used interactively by programmers. To use

them without stress, they have to be quick. Because type debuggers

are interactive, they can use the waiting time for user inputs.

Chapter 4

An embedded type debugger

From this Chapter 4 to Chapter 7, we focus on the producer side of type

debuggers. In this chapter, we describe how we can locate the source of a

type error by previous systems and what is the problems of them. After that,

we present our idea to solve the problems.

As we saw in Chapters 1 and 2, the main purpose of type debuggers is to

locate the source of a type error. First, we see how we can locate the source

of a type error using programmer’s intention.

4.1 Locating the source of a type error

A standard type inference tree. To locate the source of a type error, we

basically detect the difference between an inferred type and a programmer’s

intended type. Let us consider a small example:

(fun x -> x + x) true

This program is ill-typed, because true is passed to x, but x is consumed

by an integer addition +. Let us assume that the programmer wrote this

program, because he mistakenly thought that + was the logical or operator.1

1This is an example of the source of this type error. If the programmer has a different

37

38 CHAPTER 4. AN EMBEDDED TYPE DEBUGGER

Since the logical or operator in OCaml is ||, the programmer’s intended

program is (fun x -> x || x) true.

We show a standard type inference tree for this example constructed by

the compiler in Figure 4.1 and programmer’s intended type tree in Figure 4.2.

By detecting the difference between these two type inference trees, we can

locate an expression that includes the source of a type error. For example,

since types of expressions in the boxed part differ in Figures 4.1 and 4.2,

the source of the type error resides in the expression (fun x -> x + x).

However, we cannot further identify which subexpression of this expression

is the root cause of the type error, as long as we use a compiler’s type inference

tree.

The standard type inference tree is not suited for type debugging, because

a type of an expression can depend on the types of other expressions. In

the above example, the type of x does not have to be int if it appears

independently. It becomes int, because it is used as an argument of +. Such

information is lost in the standard type inference tree, because the type of x

becomes int throughout, once it is unified with the argument type of +.

The most general type tree. To break the dependency between expressions,

we introduce the most general type tree. We show the most general type tree

for our example in Figure 4.3. The most general type tree holds the most

general type for each subexpression. For example, x has a typing {x:’a}
` x:’a for any type ’a, because x alone does not require any constraints

on its type. The type of x is constrained only when it is used in a context.

For example, x + x has a typing {x:int} ` x + x:int, because + requires

that x has type int. Using this most general type tree, we can exactly locate

the source of a type error by detecting difference between inferred types and

intention, other fixes are possible, such as replacing true with 1.

4.1. LOCATING THE SOURCE OF A TYPE ERROR 39

{x:int} `x:int {x:int} `(+):int -> int -> int {x:int} `x:int
{x:int} `x + x:int

{} `(fun x -> x + x):int -> int {} `true:bool
(fun x -> x + x) true · · · Type Error

Figure 4.1: A standard type inference tree

{x:bool} `x:bool {x:bool} `(+):bool -> bool -> bool {x:bool} `x:bool
{x:bool} `x + x:bool

{} `(fun x -> x + x):bool -> bool {} `true:bool
{} `(fun x -> x + x) true:bool

Figure 4.2: Programmer’s intended type tree

{x:’a} `x:’a {x:int} `(+):int -> int -> int {x:’a}`x:’a
{x:int} `x + x:int

{} `(fun x -> x + x):int -> int {} `true:bool
(fun x -> x + x) true · · · Type Error

Figure 4.3: The most general type tree

intended types. By comparing Figures 4.3 and 4.2, we find that the type

conflict occurs in the boxed part of Figure 4.3. We can then locate the

source of the type error to be +. Note that the type of x (at the two leaves

of the tree) does not contradict with programmer’s intended type, because

bool is an instance of ’a.

Algorithmic debugging. Of course, a tree with programmer’s intended types

exists only in programmer’s mind. To extract programmer’s intention, we

use algorithmic debugging proposed by Shapiro [20]. Algorithmic debugging

is used to identify the location of an error in a tree by traversing over the

tree according to oracles. For oracles, questions for the programmer are often

used. It is originally used for Prolog, but algorithmic debugging can be used

for any tree structures and is applied to various areas, to locate run-time

errors [18], semantic errors [21], etc. To debug Figure 4.3 using algorithmic

40 CHAPTER 4. AN EMBEDDED TYPE DEBUGGER

debugging, we start from the root of the tree where a type error occurs. The

type debugger first asks if the two child nodes are correctly typed according

to programmer’s intention. Since the programmer’s intended type for (fun x

-> x + x) is not int -> int but bool -> bool, the programmer answers

no to the first question. From this answer, the type debugger determines that

the source of the type error resides within this expression. Next, the type

debugger asks whether the intended type of x + x is int. Again, the answer

is no, and the type debugger moves into the subexpression. By repeating

this process, the type debugger locates the source of the type error as +.

4.2 Problems

Chitil [2] constructed the most general type tree by inferring types composi-

tionally, and located the source of a type error interactively using algorithmic

debugging. Using his type debugger, one can locate the source of a type error

by simply answering questions.

Following Chitil’s work, we implemented a type debugger for a subset

of OCaml together with some improvements [24] and used it in a course in

our university. However, due to the need to implement a tailor-made type

inferencer, we encountered at least three problems.

Implementation of a type inferencer. First, to implement a type inferencer

that returns exactly the same type as the compiler’s type inferencer is tedious

and error-prone. Even for a small language, we had to fully understand the

behavior of the compiler’s type inferencer. For example, a compiler has an

initial environment for typing. If a tailor-made type inferencer lacks a part of

the initial environment, it cannot infer the same type as the compiler’s type

inferencer. Furthermore, the discrepancy between the two type inferencers

becomes apparent only when we find unexpected debugging behavior. It

4.3. OUR APPROACH 41

makes it hard to detect errors in the tailor-made type inferencer.

Support for advanced features. Secondly, to implement a type inferencer

for advanced features, such as objects and modules, is difficult and takes

time. In our previous type debugger [24], we could implement the main

subset of OCaml, including functions, lists, and pattern matching, but not

the advanced features, such as user-defined data structures, objects, and

modules. This is unfortunate: a type debugger would be particularly useful

in the presence of such advanced features.

Compiler’s updates. Thirdly, to reimplement the type inferencer every time

the compiler is updated is costly. In the last three years, the OCaml compiler

had two major updates and two minor updates. It is not realistic to follow

all these updates and reimplement the type inferencer.

To solve these problems, we propose not to implement a tailor-made type

inferencer but to use the compiler’s own type inferencer as is to construct

the most general type tree.

4.3 Our approach

Rather than implementing our own type inferencer, we use a compiler’s type

inferencer to construct the most general type tree. Construction consists of

two stages. First, the erroneous program to be debugged is decomposed into

subprograms. This decomposition determines the overall shape of the tree.

Then, the type of each subprogram is inferred by passing the subprogram to

the compiler’s type inferencer. For example, if a program M is decomposed

into subprograms, M1, . . . ,Mn, we first construct the left tree below.

⇒ÚÚ
M1 ... Mn

M
M1 : τ1 ... Mn : τn

M : τ

42 CHAPTER 4. AN EMBEDDED TYPE DEBUGGER

We then infer their types (possibly an error) by passing each of Mi (and M)

to the compiler’s type inferencer to obtain its type τi (and τ). Note that un-

like the standard type inference, types of subexpressions are not determined

by applying typing rules to the parent expression. Rather, they are deter-

mined by executing the compiler’s type inferencer for each subexpression

independently.

The above explanation is somewhat simplistic, because we did not con-

sider bindings. To cope with bindings properly, we actually maintain a con-

text C of an expression M , treating C[M] as a complete closed program

(where C[M] is the expression C whose hole is filled with M , possibly cap-

turing free variables of M). We call M in C[M] the focused expression.

Overview from Chapter 5 to Chapter 7. In the rest of this topic, we first

show a type debugger for the simply-typed lambda calculus in Section 5.1 and

a necessary property for decomposition in Section 5.2. To expand the type

debugger to Hindley-Milner type system, we extend it with let polymorphism

in Section 5.3.

In Chapter 6, we extend the type debugger with several extension to see

how our technique scales. The extension includes objects in Section 6.1,

weak polymorphism in Section 6.2 and modules in Section 6.3. Although

these extensions is a bit complicated, the basic idea is the same.

We describe our implementation of a type debugger for OCaml that uses

OCaml’s own type inferencer in Section 7. We explain how to find a minimum

part of an ill-typed program and debug it in Section 7.1. After that, we

describe the details of our implementation in Section 7.2, and concludes in

Section ??.

Chapter 5

A type debugger for
Hindley-Milner type system

In this chapter, we propose a type debugger using the idea which we intro-

duced in the previous chapter. First, we present a type debugger for the

simply-typed lambda calculus. After that, to extend it to Hindley-Milner

type system, we expand its syntax with let-polymorphism. Because the type

debugger for Hindley-Milner type system is the basics of our approach, it

explains most of our type debugger.

5.1 The simply-typed lambda calculus

In this section, we introduce a type debugger for the simply-typed lambda

calculus. Although simple, it is enough to explain the basic behavior of our

type debugger.

The language. We show the syntax of lambda calculus λ→ in Figure 5.1.

It includes constants, variables, abstractions, and applications. We assume

that basic primitive operations (such as + that we will use in examples) are

predefined as constants. Types include type variables, type constants, and

43

44CHAPTER 5. A TYPE DEBUGGER FOR HINDLEY-MILNER TYPE SYSTEM

function types.

Tree structure determined by decomposition. Let us consider a type infer-

ence tree for λx.x + 1. Since the only subprogram of λx.x + 1 is x + 1 and

it is further decomposed into three subprograms, x, (+), and 1, the overall

structure of the tree should look like:

Γ0 ` x Γ0 ` (+) Γ0 ` 1

Γ0 ` x + 1
Γ0 ` λx.x + 1

where Γ0 is the initial environment used by the type inferencer of the un-

derlying compiler and contains all the bindings for the supported constants.

However, the above subprograms are not directly typable using the compiler’s

type inferencer, because they include free variables (such as x).

Decomposition with contexts. To make a subprogram typable, we enclose

it with a context that supplies necessary bindings for free variables. In this

language, a context is defined as either an empty context 2 or a lambda

binding λx.C (Figure 9.1). The most general type tree of λx.x + 1 becomes

as follows:

Γ0 ` λx.[x] : ’a -> [’a] Γ0 ` λx.[(+)] : ’a -> [int -> int -> int] Γ0 ` λx.[1] : ’a -> [int]

Γ0 ` λx.[x + 1] : int -> [int]

Γ0 ` [λx.x + 1] : [int -> int]

Looking at the focused expressions filled in the context, we see that it has the

same structure as the previous tree. Thanks to the contexts, all the subpro-

grams are now typable under Γ0. The types enclosed by [...] correspond

to the types of focused expressions.

Although the above tree is similar to the standard type inference tree for

λ→:

5.1. THE SIMPLY-TYPED LAMBDA CALCULUS 45

(M : term) ::= c (constant)
| x (variable)
| λx.M (abstraction)
| M1 M2 (application)

(τ : typ) ::= b (type variable)
| int, bool, ... (type constants)
| τ1 → τ2 (function type)

(C : context) ::= 2 (empty context)
| λx.C (lambda context)

Figure 5.1: The syntax of simply-typed lambda calculus λ→

Dec : context ∗ term → (context ∗ term) list
Dec[[(C, c)]] = []
Dec[[(C, x)]] = []

Dec[[(C, λx.M)]] = [(C[λx.2],M)]
Dec[[(C, M1 M2)]] = [(C, M1); (C, M2)]

Figure 5.2: The decomposition function Dec for λ→

env = (var ∗ typ) list
Collect : context → typ → env → (env ∗ typ)

Collect2[[τ]]µ = (µ, τ)
Collectλx.C [[τ1 → τ2]]µ = CollectC [[τ2]]µ[x 7→ τ1]

Figure 5.3: The function Collect to obtain types of free variables for λ→

Judge[[(C, M)]] = let M ′ = C[M] in
let τ = typing M ′ in
let (γ, τ ′) = CollectC [[τ]][] in
(γ, τ ′)

Figure 5.4: The function Judge to obtain typing for λ→

46CHAPTER 5. A TYPE DEBUGGER FOR HINDLEY-MILNER TYPE SYSTEM

Γ0, x : int ` x : int Γ0, x : int ` (+) : int -> int -> int Γ0, x : int ` 1 : int
Γ0, x : int ` x + 1 : int

Γ0 ` λx.x + 1 : int -> int

they have two important differences. First, the type of x is not constrained

to int at the leaf nodes. Since we treat all the subderivations independently,

each judgement depends only on its subexpressions. It enables us to locate

where the type of x is first forced to int. Secondly, the type environment

contains only the predefined constants. It enables us to use the compiler’s

type inferencer to infer the type of each expression. We simply pass it to

the compiler’s type inferencer and obtain its type. This is in contrast to the

standard type inference tree where the environment contains free variables.

Other Approach. A compiler’s type inferencer is usually designed to accept

an open expression and an environment for its free variables. Although we

could use this extra flexibility for the type debugger, it does not lead to a

simpler type debugger. In this thesis, we chose to use contexts, to avoid

going into the underlying compiler implementation together with the rep-

resentation of environments. If we want to implement type debuggers for

various languages, it would require substantial investigation of the under-

lying compiler. The method proposed here has an advantage that we can

treat the compiler’s type inferencer completely as a black box that accepts

an expression and returns its type.

Construction of the most general type tree. The most general type tree is

built as follows. A program to be debugged C[M] is first decomposed into

subprograms using the decomposition function Dec defined in Figure 5.2. It

basically decomposes M and returns a list of its subprograms, but it main-

5.2. THE DECOMPOSITION PROPERTY 47

tains its contexts properly so that the resulting subprograms (pairs of a con-

text and a decomposed term) are always closed. When the decomposition

of C[M] is [C1[M1]; . . . ; Cn[Mn]], all the subprograms become the children of

C[M] in the tree.

The type of each subprogram C[Mi] is determined using the compiler’s

type inferencer by passing C[Mi] to it. When the context C is empty 2, the

returned type is the type of the expression. When the context is not empty,

we split the obtained type into two: types for free variables and the type for

the focused expression. If we obtain the type of λx.[x+1] as int -> int, for

example, we associate the type of x to be int (the argument part of int ->

int) and the type of x + 1 to be int (the body part of int -> int). This

is done by the function Collect in Figure 5.3.

Using Dec and Collect, we construct a judgement for C[M] in the tree

as shown in Figure 5.4. First, we construct a closed term M ′ by plugging M

into C. It is then passed to the compiler’s type inferencer written as typing

here. When we obtain a type τ of M ′, we split it into an environment γ

holding types of variables in the context and a type τ ′ for M . Using them,

we can construct a judgement for (possibly open) M (in the context C) as

Γ0, γ ` M : τ ′. For λx.[x+1], for example, we have Γ0, x : int ` x+1 : int.1

5.2 The decomposition property

In our type debugger, the most general type tree is constructed by first

decomposing an expression into subexpressions and then inferring their types

using the compiler’s type inferencer. The shape of the tree is determined by

1Before, we wrote Γ0 ` λx.[x + 1] : int -> [int] to emphasize that we are using the
compiler’s type inferencer to infer the type of M in C. Since we are interested in the type
of M itself together with the types of its free variables, we also write it using the standard
notation Γ0, x : int ` x + 1 : int.

48CHAPTER 5. A TYPE DEBUGGER FOR HINDLEY-MILNER TYPE SYSTEM

how we decompose an expression. However, it does not mean that we can

use any arbitrary decomposition. We require that the decomposition satisfies

the following necessary property:

Definition 1 (The decomposition property) The decomposition function

Dec should satisfy the following property for any context C and term M :

T (C[M]) ⇒ ∀(C ′,M ′) ∈ Dec[[(C, M)]], T (C ′[M ′])

where T is a predicate stating that a given expression is well typed (under the

compiler’s type inferencer).

The decomposition property states that if a program C[M] is well typed,

all of its decomposed subprograms are also well typed. Although this prop-

erty looks trivial, it does preclude x + 1 as a decomposition of λx.x + 1,

because the latter is well typed, but the former is not typable with unbound

x. In the next section, we will see how this property guides us to define

decomposition that is suitable for type debugging.

This property is essential for our type debugger. Since the source of a type

error is detected by tracking conflicts between inferred types and intended

types, we can no longer continue type debugging into subexpressions if their

inferred types are not available from the compiler’s type inferencer. There-

fore, we design decomposition carefully so that it satisfies the property and

thus keeps the typability of expressions. In the following sections, we sketch

why the presented decomposition satisfies this decomposition property. For

the simply-typed lambda calculus, we reason as follows.

Decomposition for λ→ satisfies the decomposition property. We need to show

that for each case of the definition of Dec in Figure 5.2, all the subexpressions

in the right hand side are well typed if the left hand side is well typed. For

5.3. LET POLYMORPHISM 49

constants and variables, it is satisfied vacuously. For abstraction, because

the expression in the left hand side C[λx.M] is identical to the expression in

the right hand side C[λx.[M]], the decomposition property is satisfied. For

application, we notice that if C[M1M2] is well typed, M1M2 is also well typed

in a type environment consistent with C (formally proven by induction on

C). Hence, both M1 and M2 are well typed in the same environment. Since

C has all the necessary bindings for M1 and M2 and C simply adds binding

to them, both C[M1] and C[M2] are well typed as required.

5.3 Let polymorphism

In this section, we extend our idea to let polymorphism.

The language. We show the syntax of λlet in Figure 5.5. It extends the

simply-typed lambda calculus with pairs, fixed points, and let expressions.

Types are also extended accordingly. Unlike the standard let-polymorphic

calculus, we do not introduce type schemes. Type schemes are required only

for inferring types. Once the type inference is done (in the compiler), all

the expressions in the most general type tree are given mono types (possibly

containing type variables).

Naive decomposition. To support a let expression in the type debugger, we

first need to define its decomposition. Because a let expression contains

two subexpressions, the let-bound expression and the main body, we are

tempted to define its decomposition as these two subexpressions. However,

straightforward decomposition leads to violation of the decomposition prop-

erty (Section 5.2). Let us consider the following program:

1 + (let id = λx.x in (id id) 2.0)

50CHAPTER 5. A TYPE DEBUGGER FOR HINDLEY-MILNER TYPE SYSTEM

Since id in the second subexpression (id id) 2.0 is free, we need to supply its

context. If we naively follow the previous section, however, we end up with

the following tree:

` [1] : int [+] : int→int→int

` [λx.x] : ’a→’a ` (λid.[(id id) 2.0]) · · · Type Error

` [let id = λx.x in (id id) 2.0] : float

` [1 + (let id = λx.x in (id id) 2.0)] · · ·Type Error

Although the bottom expression in the boxed part is well typed, one of its

subexpressions is not well typed. Thus, this decomposition does not satisfy

the decomposition property.

The reason why (λid.[(id id) 2.0]) is not typable is clear. In the original

expression, id is used polymorphically, while in the decomposed subexpres-

sion, id is bound by λ and thus monomorphic. From this example, we observe

that we need to preserve the polymorphic types of let-bound variables, when

decomposing expressions.

Decomposition with let context. To preserve polymorphic types of let-bound

variables, we extend the context with a let context (Figure 5.5). We also

extend it with a fix context since it is a (monomorphic) binder. Using the

let context, the above tree changes as follows, satisfying the decomposition

property:

` [1] : int [+] : int→int→int

` [λx.x] : ’a→’a ` (let id = λx.x in [(id id) 2.0]) : float

` [let id = λx.x in (id id) 2.0] : float

` [1 + (let id = λx.x in (id id) 2.0)] · · · Type Error

Construction of the most general type tree. To enable inspection of the defi-

nition of let-bound variables, we change the decomposition function as shown

in Figure 5.6. The definition is the straightforward extension of the previous

definition except for the variable case. When we decompose a variable, we

5.3. LET POLYMORPHISM 51

(M : term) ::= ... | (M1, ..., Mn) (tuple)
| fix f x → M (fixed point)
| let x = M1 in M2 (let expression)

(τ : typ) ::= ... | τ1 ∗ ... ∗ τn (product type)
(C : context) ::= ... | fix f x → C (fix context)

| let x = M in C (let context)

Figure 5.5: The syntax of the let-polymorphic language λlet (new cases only)

Dec : context ∗ term → (context ∗ term) list
Dec[[(C, x)]] = Get(C, x, 2, None)

Dec[[(C, (M1, ...,Mn))]] = [(C, M1); ...; (C, Mn)]
Dec[[(C, fix f x → M)]] = [(C[fix f x → 2],M)]

Dec[[(C, let x = M1 in M2)]] = [(C, M1); (C[let x = M1 in 2],M2)]

Figure 5.6: Dec for λlet (new cases only)

Get : context ∗ var ∗ context∗
(context ∗ term) option → (context ∗ term) list

Get(2, v, C, p) =

{
[] if p = None
[(C ′,M)] if p = Some(C ′,M)

Get(λx.C ′, v, C, p) =

{
Get(C ′, v, C[λx.2], None) if x = v
Get(C ′, v, C[λx.2], p) if x 6= v

Get(fix f x → C ′, v, C, p) =

Get(C ′, v, C[fix f x → 2], None)

if v ∈ {f , x}
Get(C ′, v, C[fix f x → 2], p)

if v /∈ {f , x}

Get(let x = M in C ′, v, C, p) =

Get(C ′, v, C[let x = M in 2],

Some(C, M)) if x = v
Get(C ′, v, C[let x = M in 2], p)

if x 6= v

Figure 5.7: The function Get to search definition of variables for λlet

env = (var ∗ typ) list
Collect : context → typ → env → (env ∗ typ)

Collectfix f x→C [[τ1 → τ2]]µ = CollectC [[τ2]]µ[f 7→ (τ1 → τ2); x 7→ τ1]
Collectlet x=M in C [[τ]]µ = CollectC [[τ]]µ

Figure 5.8: Collect for λlet (new cases only)

52CHAPTER 5. A TYPE DEBUGGER FOR HINDLEY-MILNER TYPE SYSTEM

search for its definition using Get defined in Figure 5.7. When the variable

is bound by a let expression, Get returns its (inner-most) definition as the

decomposition of the variable. Otherwise, the variable is bound by lambda or

fix, so Get returns no decomposition. Using this decomposition function, we

can further debug into the definition of let-expressions to identify the source

of a type error.

Since the context is extended with a let context and a fix context, the def-

inition of Collect is extended accordingly as shown in Figure 5.8. It collects

types for lambda- and fix-bound variables and discards let-bound variables

since they do not appear in the type returned by the compiler. (We as-

sume that the compiler’s type inferencer returns τ1 → τ2 as the type of

fix f x → M (and hence of f) where τ1 is the type of x and τ2 is the type

of M .)

As the program to be debugged becomes larger, the number of let-bound

variables increases. Since we can debug into the definition of let-bound

variables when their types conflict with the programmer’s intention, we

can skip asking for the type of let-bound variables as an oracle each time.

(For example, in the previous tree, the type debugger can skip the node

` [λx.x]:’a→’a). Rather, we only ask for variables in a context that are

bound by lambda or fix. This is consistent with Chitil’s approach that main-

tains an environment for polymorphic variables separately.

Decomposition for λlet satisfies the decomposition property. We can confirm

that the decomposition property is still satisfied. The interesting case is for

variables. (Other cases are similar to the reasoning shown for λ→.) Assume

that C[x] is well typed. We first observe that Get(C1, x, C2, p) maintains an

invariant that C2[C1] is always the same across the recursive call, because

at each recursive call, the topmost frame of C1 is simply moved to the hole

5.3. LET POLYMORPHISM 53

of C2. This ensures that all the contexts appearing in the definition of Get

are well typed (as contexts), because the initial context [C[x]] with which

Get is called from Dec is well typed. Next, the returned expression C[M] is

collected only from the let case. Because C[let x = M in C ′] is well typed,

we hence have that C[M] is also well typed as required.

Observe how the decomposition property serves as a guideline for what

we have to do and what we can do to incorporate let expressions. We have to

define the decomposition function so that the let polymorphism is preserved.

On the other hand, as long as the decomposition property is satisfied, we have

the liberty of defining the decomposition in a way the debugging process be-

comes easier for programmers to understand. By defining the decomposition

of let-bound variables as their definition, the debugger’s focus moves from

the use of variables to their definition.

Chapter 6

A type debugger for extensions

In this chapter, we extend the previous type debugger with several extensions,

objects, weak polymorphism and modules.

6.1 Objects

So far, we have seen that interactive debugging is possible for various lan-

guage constructs by suitably defining a Dec function that satisfies the re-

quired property. This idea extends to advanced language constructs. In this

section, we introduce objects and see how they can be supported in a similar

way.

The language. We show the syntax of the object language λobj in Figure

6.1. It models OCaml-style objects where an object is defined using a class

(in which single inheritance is allowed) and is created by the new construct.

Besides the inheritance declaration, an object can contain method and value

declarations. In OCaml, class names (to be more precise, the object struc-

tures denoted by the class names) are used as types. We use them as is in

our type debugger, abbreviated as obj in Figure 6.1.

55

56 CHAPTER 6. A TYPE DEBUGGER FOR EXTENSIONS

(L : classobj) ::= inherit x (inheritance declaration)
| method x = M (method declaration)
| val x = M (value declaration)

(M : term) ::= ... | x1#x2 (method invocation)
| new x (object creation)
| class x v1...vn = (class definition)

object(v′)
L1...Ln

end in M
(τ : typ) ::= ... | obj (object type)

(C : context) ::= ... | class x v1...vn = (class context)
... | object(v′)
... | L1...Ln

... | end in C

Figure 6.1: The syntax of the object language λobj (new cases only)

Dec : context ∗ term → (context ∗ term) list
Dec[[(C, x1#x2)]] = SearchObj(C, x1,2, [])
Dec[[(C, new x)]] = SearchObj(C, x, 2, [])

Dec[[(C, class x v1...vn = = [(C[class x v1...vn =
Dec[[(C, object(v′) [(C[object(v′)

L1...Ln [(C[L1...Ln

end in M)]] [(C[end in 2],M)]

Figure 6.2: Dec for λobj (new cases only)

6.1. OBJECTS 57

Get : context ∗ var ∗ context∗
(context ∗ term) option → (context ∗ term) list

Get(class x v1...vn = = Get(C ′, v, C[class x v1...vn =
object(v′) Get(C ′, v, C[object(v′)

L1...Ln Get(C ′, v, C[L1...Ln

end in C ′, v, C, p) Get(C ′, v, C[end in 2], p)

Figure 6.3: Get for λobj (new cases only)

SearchObj’ : classobj list ∗ context → (context ∗ term) list
SearchObj’([], C) = []

SearchObj’((inherit x) :: r, C) = SearchObj(C, x, 2, [])@
SearchObj′(r, C)

SearchObj’((method x = M) :: r, C) = (C, M) :: SearchObj’(r, C)
SearchObj’((val x = M) :: r, C) = SearchObj’(r, C[let x = M in 2])

SearchObj : context ∗ var ∗ context∗
(context ∗ term) list → (context ∗ term) list

SearchObj(2, v, C, p) = p
SearchObj(λx.C ′, v, C, p) = SearchObj(C ′, v, C[λx.2], p)

SearchObj(fix f x → C ′, v, C, p) =
SearchObj(C ′, v, C[fix f x → 2], p)

SearchObj(class x v1...vn = object(v′) L1...Ln end in C ′, v, C, p) =
if x = v then

SearchObj(C ′, v, C[class x v1...vn = object(v′) L1...Ln end in 2],
SearchObj′(L1...Ln, C[λv1...λvn.λv′

v.2]))
else SearchObj(C ′, v, C[class x v1...vn = object(v′) L1...Ln end in 2], p)

Figure 6.4: The function SearchObj to search for the definition of objects
for λobj

58 CHAPTER 6. A TYPE DEBUGGER FOR EXTENSIONS

Construction of the most general type tree. The decomposition function Dec

is extended with the new constructs in Figure 6.2 and the Get function used

in the variable case is extended with the class context in Figure 6.3. The

interesting cases are for new and method invocation of Dec. In both cases,

we need to identify the object mentioned in the expressions (in case their

types contradict with intended types, so that we can debug into the object).

For this purpose, the function SearchObj in Figure 6.4 is used. Its behavior

is similar to that of Get, but differs in that SearchObj collects all the method

declarations in the designated object. In particular, if the object contains

inheritance declaration, those method declarations are collected, too (see

SearchObj ′).

We collect all the declarations in an object because types of declared

methods in an object are mutually dependent. Thus, we need to ask for the

types of all these method declarations to locate the source of type errors. For

example, consider the following program:

class counter = object (self)

val mutable n = 0

method incr = n <- n+1

method get = n

end

let t = (new counter) in

t#incr; ("now, the conter is" ^ t#get)

The last line results in a type error, because t#get returns an integer,

which is in conflict with the intended type (i.e., string). To find the source

of this type error, we first look up t’s class definition counter and search

for the definition of the get method. However, we find here that the get

method itself does not force the type of n as an integer. It simply returns a

6.2. WEAK POLYMORPHISM 59

value of n. Instead, n is an integer because it is assigned 0 and n+1 elsewhere

in the class. Thus, we need to examine all the declarations in an object to

find the source of type errors.

Since any method declarations can be the source of type errors, we collect

all the method declarations in a class definition, and return them as decompo-

sition of the object reference. Although this strategy is necessary in general,

it could lead to a large number of questions. Its practical implementation is

future work.

Decomposition for λobj satisfies the decomposition property. We can con-

firm that Dec satisfies the decomposition property as follows. First, Get will

return a list of well-typed subexpressions only, using the similar argument

we described in Section 5. For new and method invocation, we have to show

that SearchObj returns a list of well-typed subexpressions. It can be proved

by observing that SearchObj simply collects subexpressions in an object in

a suitable context. The only interesting case is for a class declaration, where

we have to properly insert bindings for the arguments to the class and the self

variable v′. Note that declared values are put into let contexts in SearchObj′.

6.2 Weak polymorphism

In this section, we introduce references to see the interaction of weak poly-

morphism in our type debugging. We show the syntax in Figure 6.5. It

includes references, dereferences, and assignments to a reference. Types are

extended with a reference type. Let us consider a typical example where the

weak polymorphism arises:

let id_ref = ref (fun x -> x) in

(!id_ref 0, !id_ref true)

60 CHAPTER 6. A TYPE DEBUGGER FOR EXTENSIONS

(M : term) ::= c | x | λx.M | M1 M2 | (M1, ..., Mn)
| ref M (reference)
| !M (dereference)
| v := M (assignment)
| fix f v1 ... vn → M | let v = M1 in M2

(τ : typ) ::= b | int | bool | ... | τ1 → τ2 | τ1 ∗ ... ∗ τn

| τ ref (reference type)
(C : context) ::= 2 | λx.C | fix f v1...vn → C | let x = M in C

Figure 6.5: The syntax and types for the language with references

Dec : context ∗ term → (context ∗ term) list
Dec[[(C, ref M)]] → [(C, M)]

Dec[[(C, !M)]] → [(C, M)]
Dec[[(C, v := M)]] → [(C, M)]

Figure 6.6: Dec for the language with references (for new constructs only)

ExpVar : context * var list → var list
ExpVar [[(2, vs)]] = vs

ExpVar [[(λx.C, vs)]] = ExpV ar[[(C, vs \ {x})]]
ExpVar [[(fix f v1...vn → C, vs)]] = ExpV ar[[(C, vs \ {f, v1, ..., vn})]]

ExpVar [[(let x = M ′ in C, vs)]] = if (is expansive M ′)
then ExpV ar[[(C, (x :: vs))]]
else ExpV ar[[(C, vs)]]

Figure 6.7: The function ExpV ar (ExpansiveVar) to collect expansive vari-
ables

Since the identity function (fun x -> x) is put into a cell, id ref is given

a weak polymorphic type (’ a -> ’ a) ref. The weak type variable ’ a can

be instantiated only once. Since it becomes int at the first application, a type

error occurs at the second application where ’ a needs to become bool.

It is not difficult to support references in our type debugger. We simply

need to extend Dec to handle new constructs (Figure 6.6). We could then

identify the source of the above type error as the second line, because whole

6.2. WEAK POLYMORPHISM 61

env = (var ∗ typ) list
AttachVar : var list ∗ term → term

AttachVar [[([],M)]] = M
AttachVar [[(v :: vs, M)]] = (v, AttachV ar[[(vs,M)]])

Figure 6.8: AttachV ar to pair expansive variables with a focused expression

env = (var ∗ typ) list
CollectVar : var list → typ → env

CollectVar [][[τ]] = ([], τ)
CollectVar v:: vs[[τ1 ∗ τ2]] = let (µ, τ) = CollectV arvs[[τ2]] in

(µ[v → τ1], τ)

Figure 6.9: The function CollectV ar to obtain types of expansive variables

Judge[[(C, M)]] = let vs = ExpV ar[[(C, [])]] in
let M ′ = C[AttachV ar[[(vs, M)]]] in
let τ = typing M ′ in
let (γ, τ ′) = CollectC [[τ]] in
let (γ′, τ ′′) = CollectV arvs[[τ

′]] in
(γ@γ′, τ ′′)

Figure 6.10: Judge for the language with references

the expression is not typable but the two subexpressions together with their

context, namely

let id ref = ref (fun x -> x) in [!id ref 0]

and

let id ref = ref (fun x -> x) in [!id ref true]

are both typable. The most general type tree becomes as follows, where C

contains a binding for id ref:

` C[!id ref 0]:int ` C[!id ref true]:bool
` C[(!id ref 0, !id ref true)] · · · Type Error

62 CHAPTER 6. A TYPE DEBUGGER FOR EXTENSIONS

However, the above behavior is sometimes not very informative. Consider

the following example:

let pair x y = fun f -> f x y in

let fst x y = x in

let snd x y = y in

let p = pair 1 true in

(p snd, p fst)

In this program, a pair is Church-encoded using a function. Then, a pair

p of 1 and true is constructed, and its swapped tuple is returned. Because

p is bound to a non-value, however, it has a weak type (int -> bool ->

’ a) -> ’ a. When p is applied to snd of type ’a -> ’b -> ’b, the weak

type variable ’ a is instantiated to bool, and a type error occurs when p is

applied to fst of type ’a -> ’b -> ’a, where ’ a needs to be instantiated

to int.

For this program, our type debugger again reports that the expression (p

snd, p fst) is the source of the type error, because both p snd and p fst

are typable in the current context C (containing four let bindings):

` C[p snd]:bool ` C[p fst]:int

` C[(p snd, p fst)] · · · Type Error

if both the types are consistent with programmers intention.

However, if the programmer intends that p be fully polymorphic, he would

be puzzled why the conclusion is not typed as bool * int. In fact, although

the type of p is constrained to (int -> bool -> bool) -> bool at p snd,

that information is discarded in the most general type tree and a fresh p is

used to infer the type of p fst. Remember that all the types are inferred

by passing each expression to the compilers type inferencer independently.

6.2. WEAK POLYMORPHISM 63

Also, note that our type debugger asks the programmer only for the type of

focused expression and the types of its free variables that are not bound by

let. Since p is bound by let in this case, the type debugger asks only the

types of p snd and p fst (both of which have intended types). Thus, the

programmer has no opportunity to say that the type of p is too restrictive.

To handle weak polymorphism more properly, we examine the type of

weak variables and ask if their instantiation is in conflict with the program-

mers intention. In the above case, we construct the following tree:

` C[(p, p snd)]:τ1 * bool ` C[(p, p fst)]:τ2 * int

` C[(p, (p snd, p fst))] · · · Type Error

where τ1 =(int -> bool -> bool) -> bool

τ2 =(int -> bool -> int) -> int

Since the definition of p is expansive, we pair it with the focused expression

and obtain its type from the compiler. We then ask the programmer if the

type of p is as intended. In our case, since τ1 (and τ2) is not polymorphic

enough, the programmer can reply no, and the debugger will move to the

definition of p to find why it is not polymorphic.

To enable this behavior, ExpV ar in Figure 6.7 collects a list of expansive

variables, AttachV ar in Figure 6.8 pairs them with the focused expression,

and CollectV ar in Figure 6.9 extracts the types of expansive variables. When

collecting expansive variables, care must be taken for variables with the same

name. For example, in the following context,

fun x -> let x = expansive expression in 2

x has to be treated as expansive (because x in 2 refers to the inner x),

but not when fun x -> appears inside the let expression. We can obtain a

judgement for an expression using Figure 6.10.

64 CHAPTER 6. A TYPE DEBUGGER FOR EXTENSIONS

We can easily confirm that the required property holds for this language,

because the decomposition function for the new constructs takes simply the

subexpression of the original expression and the pairing of expansive variables

does not affect the typability of expressions. By modifying the expression to

be typed without violating the property, we can design a type debugger that

shows more useful information for the programmer.

6.3 Modules

Similarly to objects, we can introduce modules, too. Figure 6.11 shows the

syntax. We introduce accesses to a value in a module, open, and module

declarations. A module declaration contains variable and type declarations.

The decomposition function Dec is extended to cope with new constructs

straightforwardly (Figure 6.12). SearchMod (in Figure 6.14) is defined simi-

larly to SearchObj in the previous section. Since the declarations in a module

is ordered (in contrast to method declarations in objects which are mutually

recursive), we do not collect all the declarations but maintain the order of

declarations in a context and returns a designated definition. The treatment

of open in Get (in Figure 6.13) is interesting. When we search for the defi-

nition of a variable v and the current context is open X, we search for the

definition of v in the module X. It enables us to search for the definition of

variable v that is defined in the module X, when the type error was located

at the variable v.

6.3. MODULES 65

(M : term) ::= c | x | λx.M | M1 M2 | (M1, ..., Mn)
| X.x (module access)
| fix f x → M | let v = M1 in M2

| open X in M (open)
| type x = τ in M (type definition)
| module X = struct D1...Dn end in M (module definition)

(D : definition) ::= let x = M (value declaration)
| type x = τ (type declaration)

(τ : typ) ::= b | int | bool | ... | τ1 → τ2 | τ1 ∗ ... ∗ τn

(C : context) ::= 2 | λx.C | fix f v1...vn → C | let x = M in C
| open X in M (open context)
| type x = τ in C (type context)
| module X = struct D1...Dn end in C (module context)

Figure 6.11: The syntax and types of the module language

Dec : context ∗ term → (context ∗ term) list
Dec[[(C, c)]] = []

Dec[[(C, X.x)]] = SearchMod[[(C, X, x, 2, None)]]
Dec[[(C, open X in M)]] = [(C[open X in 2],M)]

Dec[[(C, type x = τ)]] = [(C[type x = τ in 2], M)]
Dec[[(C, module X = = [(C[module X =

struct D1...Dn end in M)]] struct D1...Dn end in 2],M)]

Figure 6.12: Dec for the module language

66 CHAPTER 6. A TYPE DEBUGGER FOR EXTENSIONS

Get : context ∗ var ∗ context∗
(context ∗ term) option → (context ∗ term) list

Get[[open X in C ′, v, C, p]] = let t = SearchMod[[C, X, v, 2, None]] in
if t = None
then Get[[(C ′, v, C[open X in 2], p)]]
else Get[[(C ′, v, C[open X in 2], t)]]

Get[[module X = struct = Get[[(C ′, v, C[module X = struct
D1...Dn end in C ′, v, C, p]] D1...Dn end in 2)], p]]

Get[[(type x = τ in C ′, v, C, p)]] = Get[[(C ′, v, C[type x = τ in 2), p]]]

Figure 6.13: Get for the module language

6.3. MODULES 67

S
ea

rc
h
M

od
′
:
d
ef

in
it

io
n

li
st

∗
v
a
r∗

→
(c

on
te

x
t
∗

te
rm

)
op

ti
on

S
ea

rc
h
M

od
′ [[
([

],
v
,C

,p
)]]

=
p

S
ea

rc
h
M

od
′ [[
((

le
t

x
=

M
)

::
r,

v
,C

,p
)]]

=
if

v
=

v
′

th
en

S
ea

rc
h
M

od
′ [[
(r

,v
,C

[l
et

x
=

M
in

2
],

S
om

e(
C

,M
))

]]
el

se
S
ea

rc
h
M

od
′ [[
(r

,v
,C

[l
et

x
=

M
in

2
],

p)
]]

S
ea

rc
h
M

od
′ [[
((

ty
pe

x
=

τ
)

::
r,

v
,C

,p
)]]

=
S
ea

rc
h
M

od
′ [[
(r

,v
,C

[t
y
pe

x
=

τ
in

2
],

p)
]]

S
ea

rc
h
M

od
:
co

n
te

x
t
∗

v
a
r
∗

v
a
r∗

→
(c

on
te

x
t
∗

te
rm

)
op

ti
on

co
n
te

x
t
∗

(c
on

te
x
t
∗

te
rm

)o
pt

io
n

S
ea

rc
h
M

od
[[(

2
,V

,C
,p

)]]
=

p
S
ea

rc
h
M

od
[[(

λ
x
.C

′ ,
V
,v

,V
,p

)]]
=

S
ea

rc
h
M

od
[[(

C
′ ,

V
,v

,C
[λ

x
.2

],
p)

]]
S
ea

rc
h
M

od
[[(

f
ix

f
v 1

..
.v

n
→

C
′ ,

V
,v

,C
,p

)]]
=

S
ea

rc
h
M

od
[[(

C
′ ,

V
,v

,C
[f

ix
f
v 1

..
.v

n
→

2
],

p)
]]

S
ea

rc
h
M

od
[[(

le
t

x
=

M
in

C
′ ,

V
,v

,C
,p

)]]
=

S
ea

rc
h
M

od
[[(

C
′ ,

V
,v

,C
[l
et

x
=

M
in

2
],

p)
S
ea

rc
h
M

od
[[(

op
en

X
in

C
′ ,

V
,v

,C
,p

)]]
=

S
ea

rc
h
M

od
[[(

C
′ ,

V
,v

,C
[o

pe
n

X
in

2
],

p)
S
ea

rc
h
M

od
[[(

m
od

u
le

X
=

st
ru

ct
D

1
..
.D

n
en

d
in

C
′ ,

V
,v

,C
,p

)]]
=

if
X

=
V

th
en

le
t

t
=

S
ea

rc
h
M

od
′ [[
(D

1
..
.D

n
,v

,C
,N

on
e)

]]
in

(i
f

t
=

N
on

e
th

en
S
ea

rc
h
M

od
[[(

C
′ ,

V
,v

,C
[m

od
u
le

X
=

st
ru

ct
D

1
..
.D

n
en

d
in

P
],

N
on

e)
]]

el
se

S
ea

rc
h
M

od
[[(

C
′ ,

V
,v

,C
[m

od
u
le

X
=

st
ru

ct
D

1
..
.D

n
en

d
in

P
],

t)
]])

el
se

S
ea

rc
h
M

od
[[(

C
,V

,v
,C

[m
od

u
le

X
=

st
ru

ct
D

1
..
.D

n
en

d
in

P
],

p)
]]

S
ea

rc
h
M

od
[[(

ty
pe

x
=

τ
in

C
′ ,

V
,v

,C
,p

)
=

S
ea

rc
h
M

od
[[(

C
′ ,

V
,v

,C
[t
y
pe

x
=

τ
in

P
],

p)
]]

F
ig

u
re

6.
14

:
T

h
e

fu
n
ct

io
n

S
ea

rc
h
M

od
to

co
ll
ec

t
d
efi

n
it

io
n

of
m

o
d
u
le

s

Chapter 7

Implementation of a type
debugger

In this chapter, we explain our implementation of a type debugger. First, we

consider about the structure of type debugger. After that, we explain the

details of our implementation.

7.1 The structure of a type debugger

In the previous chapters, we assume that a program to debug is ill-typed and

all its subprograms are well-typed. This assumption is not always hold in

ill-typed programs. We have to search such points from ill-typed program

before debugging.

Therefore there are two phases when we debug an ill-typed program. The

first phase is searching the starting point for debugging. The second phase

is debugging an ill-typed program using user’s intentions.

7.1.1 The searching phase

The starting point is often different from the root of the ill-typed program.

For example, let us consider the following ill-typed program:

69

70 CHAPTER 7. IMPLEMENTATION OF A TYPE DEBUGGER

(2 - true) + 4

This program is ill-typed, because one of its sub-programs is ill-typed. The

most general type tree of this program is as follows:

+:int -> int -> int
-:int -> int -> int 2:int true:bool

(2 - true) · · · ill-typed 4:int

(2 - true) + 4 · · · ill-typed

In this case, the starting point of debugging is (2 - true). Because all its

sub-programs are well-typed, we can debug this program using programmer’s

intention and locate the source of the type error. To find the starting point,

we only decompose the ill-typed sub-expression. In this case the root node

is ill-typed, however it has an ill-typed sub-expression. We choose the ill-

typed sub-expression (2 - true) and check whether all its sub-expressions

are well-typed. Because all its subexpressions (-, 2 and true) are well-typed,

the starting point is (2 - true).

As just described, we can search the start point automatically. Because

we do not have the waiting time for programmer’s inputs in this process,

the computational complexity is important for practice. We consider the

computational complexity of this process is how many times this algorithm

calls compiler’s type inference. The computational complexity is linear to

the height of the of the tree. In our implementation, this process takes 1

second for a 373 line’s program.

We can consider this phase is a part of algorithmic debugging. Be-

cause programmers intend that the whole program is well-typed, all its sub-

programs are well-typed in the user’s intention. Therefore we can detect

that the ill-typed original program and its ill-typed sub-programs are not

programmer’s intended types.

7.2. OUR IMPLEMENTATION FOR OCAML 71

7.1.2 The debugging phase

In this section, we consider how to construct the most general tree for the

debugging phase.

The naive construction The naive idea to construct the most general

type tree is constructing the whole tree before debugging. Because this is

very simple, we can implement easily. To construct the whole of the most gen-

eral tree, we decompose the program to sub-programs and decompose them

repeatedly. Although this naive construction works fast after the construc-

tion of the tree, to construct the whole tree takes time. This computational

complexity is linear to the size of the program.

Additionally, we do not use the whole of the tree in the debugging phase.

Although it depends on the programmer’s answers, some inferences are need-

lessness.

Our construction To avoid the needless inference and reduce the con-

struction time, we do not construct the whole of the tree. To ask program-

mers about the tree, we only need one judgement at the time. After receiving

the programmer’s answer, we choose the next expression depending on pro-

grammer’s answer and infer its type. By repeating this process we can debug

ill-typed programs without the most general type tree. This is the reason

that our Dec is the one-step decomposition.

7.2 Our implementation for OCaml

We have implemented a type debugger for OCaml 3.12.1. To minimize the

implementation efforts, we utilize the following components from OCaml as

is:

72 CHAPTER 7. IMPLEMENTATION OF A TYPE DEBUGGER

• the abstract syntax tree for structures, expressions, and types (together

with the lexer, the parser, and the pretty printer)

• the type inferencer typing (that accepts an expression and returns its

type, both expressed using the above abstract syntax tree)

• the is_expansive function (that accepts an expression and returns

a boolean to judge whether the given expression needs to be kept

monomorphic or not)

By using exactly the same abstract syntax as OCaml, we can not only avoid

reproducing the same abstract syntax but also utilize OCaml’s own lexer,

parser, and pretty printer. In addition to the type inferencer, we utilize

the is_expansive function. Although OCaml has its own criteria for weak

polymorphism [5], we can stay away from it by using OCaml’s is_expansive

function as is. Furthermore, this approach is robust to updates of OCaml: if

the syntax and the interface of the two functions are the same, we can use

the same debugger.

A slight complication is that OCaml treats a let expression without in

differently from the one with in: the former is a structure, while the latter

is an expression. We support both styles by splitting the context into two:

the structure part and the expression part.

Another complication is the use of patterns in place of a variable decla-

ration. For example, instead of fun lst ->, one can write fun (first ::

rest) ->. Because patterns have type constraints, they may be the source

of a type error. To make such an error detectable, we included patterns as

the decomposition of the expression.

The rest of the language constructs are supported without requiring any

special treatment. For each new construct, we define its decomposition and

7.2. OUR IMPLEMENTATION FOR OCAML 73

show that it satisfies the decomposition property. Our type debugger sup-

ports all features of OCaml including weak polymorphism and modules.

To construct the most general type tree, we use the compiler’s type in-

ferencer many times. Although it appears that our type debugger incurs

significant overhead, this is not the case, because we do not have to con-

struct the whole tree beforehand. Instead, the most general type tree is

constructed as we debug: after the root node is constructed, the rest of the

tree can be constructed during the interaction with the programmer.

Chapter 8

Weighted type error slices

In Chapters 4 to 7, we described a practical debugger on the producer side.

However, there are still problems on the user side. In Chapters 8 to 11, we

describe an approach to satisfy a property “easy to debug” for the consumer

side. In this chapter, we take a look at the problem of the previous type

debugger and propose the idea of weighted type error slices to reduce the

burden of type debugging on programmers.

8.1 A problem with our type debugger

Since the source of a type error depends on the programmer’s intentions, our

type debugger needs programmer’s inputs. The type debugger developed in

Chapters 4 to 7 has a problem that in some cases it requires programmers

to make too many inputs. To illustrate this problem more clearly, let us

consider the following example:

let f n lst = List.map (fun x -> x ^ n) lst in

(f 2.0 [3.0; 4.0])

Because this program is ill-typed, OCaml returns the following error message.

Error: This expression has type float but an expression was

75

76 CHAPTER 8. WEIGHTED TYPE ERROR SLICES

expected of type string

This error message indicates that the underlined part causes a type conflict.

It says that the compiler expects 2.0 to be string, but it is float. There are

many ways to resolve this type conflict. The correctness of the fix depends

on the programmer’s intention. If a programmer intends f to be a function

that receives string as its first argument, s/he can understand this error

message immediately and fix the program. Otherwise, s/he can understand

little information that compiler expects 2.0 to be string for some reason.

Moreover, s/he has to look for the source of the type error by hand. Of course,

our type debugger can locate the source of type error by posing questions to

the programmer. The following sequence is a set of questions and answers

regarding one programmer’s intentions.

Is your intended type of f string -> string list -> string list?

> no

Do you use n as string in the definition of f?

> no

Do you use lst as string list in the definition of f?

> no

Is your intended type of List.map ’a -> ’a list -> ’a list?

> yes

Is your intended type of (fun x -> x ^ n) string -> string ?

> no

Do you use x as string in x ^ n?

> no

Is your intended type of ^, string -> string -> string?

> no

The source of the type error is located at : ^

8.2. TYPE ERROR SLICES AND THEIR PROBLEM 77

{}`List.map:B

{x:’a}`x:’a {}`^ :A {n:’a}`n:’a
{x:string, n:string}`x ^ n:string

{x:string, n:string}`fun x -> x ^ n:string -> string {}`lst:’c
{n:string, lst:string list}`List.map (fun x -> x ^ n) lst:string list

{n:string}`fun lst -> List.map (fun x -> x ^ n) lst:string list -> string list

{}`fun n -> fun lst -> List.map (fun x -> x ^ n) lst:string -> string list -> string list

{}`f:string -> string list -> string list {}`2.0:float {}`[3.0; 4.0]:float list

(f 2.0 [3.0; 4.0]):ill-typed

A:string -> string -> string, B:(’a -> ’b) -> ’a list -> ’b list

Figure 8.1: The most general type tree

By answering questions, we found that the source of this type error is in ”^”.

These questions are made from the most general type tree of this program

(see Figure 8.1).

When we debug a program with the most general type tree, the type

debugger may ask questions about all areas of the tree. In this example

program, because the tree is not so big, it is not so tedious to answer all

these questions. However, if the original ill-typed program is large, its tree

will also be large. In such a case, programmers would have to answer too

many questions and may feel that debugging by hand is better. Thus, in

order to implement a practical type debugger, we have to solve this problem.

8.2 Type error slices and their problem

To see what we can do to solve this problem, let us review the previous

example. Why do type errors occur in programs? Put simply, type errors

are caused by two conflicting types. In the previous example, we have two

conflicting types in 2.0 and ^. However, two conflicting types do not cause

a type error only by themselves. Some parts of the program require that two

conflicting types are of the same type. In the previous example, we passed

2.0 (its type is float) to the function f as the first argument. However, the

type of f is forced to be string -> string list -> string list through

78 CHAPTER 8. WEIGHTED TYPE ERROR SLICES

{}`List.map:B

{x:’a}`x:’a {}`^ :A {n:’a}`n:’a
{x:string, n:string}`x ^ n:string

{x:string, n:string}`fun x -> x ^ n:string -> string lst:’c

{n:string, lst:string list}`List.map (fun x -> x ^ n) lst:string list

{n:string}`fun lst -> List.map (fun x -> x ^ n) lst:string list -> string list

{}`fun n -> fun lst -> List.map (fun x -> x ^ n) lst:string -> string list -> string list

{}`f:string -> string list -> string list {}`2.0:float {}`[3.0; 4.0]:float list

(f 2.0 [3.0; 4.0]):ill-typed

A:string -> string -> string, B:(’a -> ’b) -> ’a list -> ’b list

Figure 8.2: The reduced most general type tree

application of ^ (in x ^ n). This flow of unifying types contributes the type

conflict between 2.0 and ^. In this way, type errors are caused by two

things: two conflicting types and a flow of unifying types that forces the two

conflicting types to be the same. To put it the other way around, if these

two things appear in the program, surely there is a type error. Furthermore,

this means that the other parts did not cause the type error.

The following is the abstracted program of the previous example. It

contains only two conflicting types and a flow that forces the two conflicting

types to be the same.

let f n ... = ... (fun ... -> ... ^ n) ... in

(f 2.0 ...)

The parts abstracted by “...” do not contribute to this type conflict. In

general, these abstracted programs are called type error slices. Since they

include all parts related to a type error conflict, programmers can locate the

source of the type error by debugging only the type error slices.

By using type error slices, we can narrow the area of the most general

tree to search for the source of the type error. For the previous example,

we can obtain a reduced most general tree by using type error slices. Figure

8.2 shows the image of the reduced tree. In this tree, the gray parts are not

8.3. THE SOLUTION 79

contained in a type error slice and the type debugger avoid asking questions

about them.

As described above, type error slices can reduce the burden on program-

mers. Additionally the advantage of type error slices is that they do not

need user’s inputs to obtain them. However, the problem still remains: if the

original program is huge, its slice could be large.

8.3 The solution

To overcome this problem, we want to know which part is likely the source

of the type error. When we look at a type error slice of an ill-typed program,

we might conclude that each part has an equal chance of being the source

of the type error. For example, in the previous slice, 2.0 and ^ look to be

at the same level as far as the source of the type error goes. This conclu-

sion, however, is proved false by the following observation. In the previous

example, we can consider another slice:

let f ... lst = List.map (fun x -> x ^ ...) lst in

(f ... [3.0; 4.0])

The point here is that the slice includes “^” but not “2.0.” To see this

clearly, let us consider the following slice:

let f = ... (fun ... -> ... ^ ...) ... in

(f)

This slice is the intersection of the previous two slices. Because it is well-

typed, it is not a type error slice. Although this slice may not include the

source of the type error, it does include suspicious parts of the source. This

observation about the intersection of several type error slices suggests that

80 CHAPTER 8. WEIGHTED TYPE ERROR SLICES

each part of a type error slice has a different chance of being the source of

the type error. If we know which expression should we see, we can reduce

the burden on programmers.

8.4 Our approach

The intersections of type error slices are very intuitive and produce good

results. However, to obtain such intersections, we have to obtain the type

error slices first. The computational complexity needed to obtain a type error

slice of an ill-typed program is O(n2), where n is the size of the program.

Furthermore, to obtain all slices, we have to repeat this calculation n! times.

Because this cost is heavy for large programs, we need another way to obtain

the likelihood of each expression being the source of a type error.

8.4.1 Brief overview

Let us consider the program [1;2;true]. Because two elements of this list

are numbers and one element is a boolean, we think the minority true looks

wrong. This is the key point of our approach. The problem is how we can

obtain such information. The main ideas that we will exploit are abstraction

of programs and majority vote.

First, we abstract one part of the program and infer its type. The result

of doing this for the above example is shown in the table below.

one abstracted program well-typed?
[1; 2; ..] ◦

[1; ..; true] ×
[..; 2; true] ×

If an abstracted program is ill-typed, its sub-programs may contribute to

the type error. For example, because [1; ..; true] is ill-typed, its sub-

programs 1 and true contribute to the type error. Therefore, we count the

8.4. OUR APPROACH 81

number of contributions of each abstracted subprogram. The following table

is the result of doing so.

one abstracted program contributions
1 1
2 1

true 2

This table show us the likelihood of each expression being the source of a type

error. From this, we know that true has a higher probability of being the

source of the type error than 1 or 2 has. This result is what we anticipated.

8.4.2 The points and contributions

Our approach has two main points. One is that we use the compiler’s type

inferencer. Most type error slicers use a tailor-made type inferencer. Al-

though a tailor-made type inferencer has a certain flexibility, its results may

not correspond to those of the compiler’s type inferencer, and it has low scal-

ability. In contrast, by using the compiler’s inferencer we can make a type

error slicer that has maintainability and high scalability. To obtain type er-

ror slices using a compiler’s type inferencer, we abstract an ill-typed program

and infer its type. Although this main idea of this approach is proposed by

Schilling [19], we introduce some restriction to the obtained type error slices.

The other point is that we obtain weighted type error slices. The weights

are the likelihoods of the expressions being the source of a type error and

they help programmers during debugging.

Overview of Chapters 9, 10 and 11. In these chapters, we propose an ap-

proach to create weighted type error slices. In Chapter 9, we describe a type

error slicer using a compiler’s type inferencer. In Chapter 10, we modify this

slicer by adding weights to it and make it work in Chapter 11.

Chapter 9

An embedded type error slicer

In this chapter, we introduce a type error slicer using a compiler’s type

inferencer. We show the syntax of the target language λlet in Figure 9.1. It

extends the simply typed lambda-calculus with let expressions and tuples.

In Figure 9.1, l denotes the labels of each expression and each label is unique

in the program. We also show the types of the target language. Because we

use the compiler’s type inferencer to obtain the type error slices, we do not

treat the types directly. We only use the information whether the program

is well-typed or ill-typed.

To obtain type error slices using the compiler’s type inferencer, we infer

the types of slices in order to know whether the slices are well-typed or ill-

typed. If a slice is ill-typed, the slice includes the minimal type error slice that

we want to obtain. However, slices are incomplete programs. Therefore, we

can not infer their types directly. To infer the types of slices using compiler’s

type inferencer, we define the correspondence between slices and complete

programs.

83

84 CHAPTER 9. AN EMBEDDED TYPE ERROR SLICER

To set an idea of what type error slices are like, let us consider the type

error slice in the previous chapter again:

let f n ... = ... (fun ... -> ... ^ n) ... in

(f 2.0 ...)

By this slice, we can obtain the following tree.

let(f)

fun n ->

..

..

..
@

..
^ n

..

@

f 2.0
..

This tree shows that there are two patterns of the abstracted parts. One

pattern abstracts a whole of sub-expression. (In the upper tree, they appear

as .. in the leaves.) The other abstracts the constructor itself containing

subprograms. (In the upper tree, they appear as .. in the nodes.) We show

the syntax of the slices in Figure 9.2. We insert two pieces of syntax into the

target syntax. One is a hole 2 that abstracts whole sub-expressions. The

other is a skeleton S @= S that abstracts the topmost expression itself but

contains abstracted or unabstracted sub-expressions. These new syntaxes do

not have labels.

By defining the syntax of the slices, we define the following properties of

slices.

85

(l : label) := (location)
(M : term) := cl (constant)

| xl (variable)
| λlx.M (lambda abstraction)
| @lM M (application)
| letl x = M in M (let expression)
| (M, .., M)l (tuple)

(τ : type) := α (type variable)
| int, f loat, ... (type constant)
| τ → τ (function type)
| τ ∗ ∗ τ (tuple type)

Figure 9.1: The syntax and types of let-polymorphic language λlet

(S : slice) := cl (constant)
| xl (variable)
| λlx.S (lambda abstraction)
| @lS S (application)
| letl x = S in S (let expression)
| (S, .., S)l (tuple)
| 2 (hole)
| @= S .. S (skeleton)

Figure 9.2: The syntax of slices

Definition 2 (Type error slices) We call a slice S as a type error slice,

iff the inferred result of S by the compiler’s type inferencer is a type error.

Definition 3 (Inclusion relation of slices) A slice S contains S ′, written

S ⊃ S ′, iff L ⊃ L′, i.e. the set of all labels L of S contains the set of L′ of

S ′.

86 CHAPTER 9. AN EMBEDDED TYPE ERROR SLICER

Because there are fewer elements in a slice, it has fewer restrictions about

types. Therefore, the following lemma holds 1.

Lemma 1 If a slice S is well-typed, a slice S ′ such that S ⊃ S ′ is well-typed

as well.

Definition 4 (Minimality of type error slices) A type error slice S is

minimal, iff all slices S ′ such that S ⊃ S ′ are well-typed.

The minimal type error slices do not contain parts that are superfluous to

a type conflict. To obtain minimal type error slices, we abstract an ill-

typed program as much as possible while maintaining its ill-typedness. In

the following parts, we call the minimal type error slices the type error slices

simply.

9.1 The algorithm

Let us consider @(λx.λy.(@(@ + x)y)) true 2 as an example. First, let

us focus on the topmost function application and abstract each subpro-

gram or function application itself. The abstracted programs are @2 true,

@(λx.λy.(@(@ + x)y))2 and @= (λx.λy.(@(@ + x)y)) true. Because all these

abstracted programs are well-typed, we know that we need this topmost

application maintain ill-typedness. Next, let us focus on its sub-program

(λx.λy.(@(@ + x)y)). Although, this sub-program is well-typed itself, the

problem is the type of the sub-program with its context. In this case, its

context is fun s -> @ s true. We keep the whole program (the focused

expression and its context) ill-typed and abstract the focused expression as

1This lemma does not hold in the language which has polymorphic recursions. To type
polymorphic recursions, we need proper type annotations (restrictions).

2This program is a curried program of (λx.λy.(x + y))true

9.2. PROGRAM 87

much as possible in its context. Therefore we abstract the focused program

(λx.λy.(@(@ + x)y)) with the context fun s -> @ s true. Because the

lambda abstractions λx.λy.M are binders, we insert them in the context and

focus on the sub-program. In this case, by inserting λx.λy. in the context,

we obtain a new context fun s -> @(λx.λy.s) true.

One of the abstracted programs of (@(@ + x)y) is (@= (@ + x)y). It is

ill-typed under the context fun s -> @(λx.λy.s) true. Therefore, we make

the obtained slice (@= (@ + x)y) more abstract. In the second abstraction,

we obtain (@= (@ + x)2). In the third abstraction, because all abstracted

slices of (@= (@ + x)2) are well-typed, we know this function application

itself is minimal. After that we focus on the subprograms of (@= (@ + x)2).

However, it turns out that its sub-programs are minimal. Consequently, we

obtain a type error slice @(λx.λy.(@= (@ + x)2)) true as the final result.

In this way, we can obtain a type error slice by abstracting sub-programs

from the root of the abstraction tree and inferring their types by using the

compiler’s type inferencer.

9.2 Program

In Figures 9.3 to 9.5, we show the program for obtaining type error slices.

In this program, infer is the compiler’s type inferencer and Type Error is

an exception that the compiler’s type inferencer raises when it finds a type

conflict.

The function abst one receives a slice and returns a list of slices in which

each sub-program or the topmost constructor is abstracted. For example,

in the function application case @s1s2, abst one returns @= s1s2, @2s2 and

@s12. If the abstracted slice is the same as the original (in case when a sub-

program was already 2), it does not return the same slice to avoid infinite

88 CHAPTER 9. AN EMBEDDED TYPE ERROR SLICER

loops.

The function check receives a slice s and its context cxt and returns a

type error slice s′ such that s ⊃ s′. First, it calls the function abst one

and obtains a list of slices of s in which each sub-program or the topmost

constructor is abstracted. It searches for an ill-typed slice in the list by using

the compiler’s type inferencer infer. If one or more ill-typed slices appear

in the list, check returns the one that it found first. Otherwise, the slice s is

minimal about the topmost constructor. In this case, it raises an exception

Not found and the exception will be caught by try expressions in get slice.

The function get slice is the main function for obtaining type error slices.

It receives a slice s and its context cxt and returns a type error slice under

the context. The following invariants hold in get slice.

(1) A slice s is ill-typed under its context cxt, and

(2) the context cxt is well-typed itself.

These invariants are needed for the proof of completeness and minimality of

type error slices.

The details of the function get slice are as follows. In the case of a variable

v and a constant c, v and c must be ill-typed under the context. (Otherwise,

they are abstracted by the abstraction of the upper constructor.) In the case

of a lambda abstraction λx.s, we add λx. to the context and focus on its

subprogram s. In the other syntax, get slice abstracts them by using check.

If the received slice is not minimal for the focused constructor, it calls check

and abstracts the slice until the slice becomes minimal. Then, it focuses

on the subprograms. For example, in the case of the function application

@s1 s2, if we assume that this function application itself is minimal, get slice

abstracts s1 first and then abstracts s2 under the new s′1. It returns @s′1 s′2

in which each subprogram is minimal for itself.

9.2. PROGRAM 89

abst one : slice → slice list
abst one[[s]] = ERROR when s = cl, vl, λlx.s

(* This is never called *)
abst one[[@ls1s2]] = [@= s1s2; @2 s2; @

ls1 2] \ (@ls1 s2)
abst one[[@= s1..sn]] = [@= s1..2; ..; @= 2..sn] \ (@= s1 s2)
abst one[[letl x = s1 in s2]] = [letl x = 2 in s2; let

l x = s1 in 2]
\(letl x = s1 in s2)

abst one[[(s1, .., sn)l]] = [(2, .., sn)l; ..; (s1, .., 2)l; @= s1..sn]
\(s1, .., sn)l

Figure 9.3: The function abst one to abstract the focused constructor or its
sub-expression

check : (slice ∗ (slice → slice)) → slice
check(s, cxt) = let abst list = abst one[[s]] in

let rec loop lst = match lst with
| [] → raise Not found
| fst :: rest → try(infer (cxt fst); loop rest)
| fst :: rest → with Type Error →
| fst :: rest → with Typeget slice[[(fst, cxt)]] in
loop abst list

Figure 9.4: The function check to obtain a type error slice

When we call get slice, the previous invariants have to hold. However, if

the slice is 2, the invariant does not hold because 2 is well-typed. Therefore

we wrap get slice with get slice′ to check whether the received slice is 2. If

the received slice is 2, because it can not be abstracted any further, get slice′

returns 2.

90 CHAPTER 9. AN EMBEDDED TYPE ERROR SLICER

get slice : (slice ∗ (slice → slice)) → slice
get slice[[(2, cxt)]] = ERROR

(* This case never happens *)
get slice[[(vl, cxt)]] = vl

get slice[[(cl, cxt)]] = cl

get slice[[(λlx.s, cxt)]] =
λlx.(get slice[[s, (fun y → cxt(λlx.y))]])

get slice[[(@ls1 s2, cxt)]] =
try(check(@ls1 s2, cxt)) with Not found →
let s′1 = get slice′[[(s1, (fun x → cxt(@lx s2)))]] in
let s′2 = get slice′[[(s2, (fun x → cxt(@ls′1 x)))]] in
(@ls′1 s′2)

get slice[[(@=s1..sn, cxt)]] =
try(check(@= s1..sn, cxt)) with Not found →
let s′1 = get slice′[[(s1, (fun x → cxt(@= x..sn)))]] in ..
let s′n = get slice′[[(sn, (fun x → cxt(@= s′1..x)))]] in
(@= s′1 s′2)

get slice[[(letl x = s1 in s2, cxt)]] =
try(check(letl x = s1 in s2, cxt)) with Not found →
let s′1 = get slice′[[(s1, (fun y → cxt(letl x = y in s2)))]] in
let s′2 = get slice′[[(s2, (fun y → cxt(letl x = s1 in y)))]] in
(letl x = s′1 in s′2)

get slice[[((s1, .., sn)l, cxt)]] =
try(check((s1, .., sn)l, cxt)) with Not found →
let s′1 = get slice′[[(s1, (fun y → cxt(y, ..., sn)l))]] in ..
let s′n = get slice′[[(sn, cxt(fun y → cxt(s′1, ..., y)l))]] in
(s′1, .., s

′
n)l

get slice′ : (slice ∗ (slice → slice)) → slice
get slice′[[(s, cxt)]] = if s = 2then 2

else get slice[[(s, cxt)]]

Figure 9.5: Type error slicer get slice

Chapter 10

A weighted type error slicer

In the previous chapter, we introduced a type error slicer using compiler’s

type inferencer. In this chapter, we extend it so that it has weights. The

weights are the probabilities of each subprograms to be the source of the type

error. The target language is the same as in the previous chapter (see Figure

9.1). The syntax for slices is also the same (see Figure 9.2).

10.1 The flow of algorithm

To see how we can add weights to the slicer, let us consider an example

program (λ1f.((@3(@4 ∗ f) 1), (@5f 2), (@6(@7 + f) 3))2). 1 (We omit the

labels for variables and constants.) The initial context is the empty context

λx.x. First, let us focus on the topmost lambda abstraction. We add λ1f. to

the context and move to its sub-program ((@3(@4 ∗ f) 1), (@5f 2), (@6(@7 +

f) 3))2. Here, we abstract each subprogram or the constructor itself. The

abstracted slices of ((@3(@4 ∗ f) 1), (@5f 2), (@6(@7 + f) 3))2 are the fol-

lowings:

• (2, (@5f 2), (@6(@7 + f) 3))2

1This program is a curried program of (λf.(f ∗ 1, f 2, f + 3)).

91

92 CHAPTER 10. A WEIGHTED TYPE ERROR SLICER

• ((@3(@4 ∗ f) 1),2, (@6(@7 + f) 3))2

• ((@3(@4 ∗ f) 1), (@5f 2),2)2

In these slices, the first and third slices are ill-typed. In an ill-typed program,

its sub-programs contribute to the type error. Therefore, we count the num-

ber of times that each sub-program is contained within ill-typed program.

The counts for this example are in the table below.

a subprogram numbers of contributions
(@3(@4 ∗ f) 1) 1

(@5f 2) 2
(@6(@7 + f) 3) 1

From this table, we know that the sub-program labeled 5 contributes more

than the other subprograms do.

To obtain the type error slices, we choose one type error slice from the

abstracted slices and make it more abstract. If we select the first type error

slice, we obtain a minimal type error slice (2, (@5f 2), (@6(@7+ f) 2)) about

this constructor. Although this slice is the same as the one in the previous

chapter, it has information about the weight. The node labeled 5 is heavier

than the node labeled 6.

By majority vote between sub-programs, we can find a sub-program that

is most likely to be the source of the type error. Thanks to the weighted type

error slice, the type debugger can ask about the suspicious expressions that it

finds. In the previous example, the type error slicer produces a weighted slice

λ1f.(2, (@5f 2), (@6(@7 + f) 2)). Using this result, the type debugger know

that it should ask about (@5f 2) first, because it has the heaviest weight

among the sub-programs. If the programmer answers that the judgement of

(@5f 2) is correct, the type debugger will then ask about (@6(@7 + f) 2).

10.2. PROGRAM 93

inc one : slice → unit
inc one(2) = ()
inc one(sl) = inc weight l

inc slice : slice → unit
inc slice(@ls1 s2) = inc weight l; inc one s1; inc one s2

inc slice(@= s1..s2) = inc one s1; ..; inc one s2

inc slice(letl x = s1 in s2) = inc weight l; inc one s1; inc one s2

inc slice((s1, .., sn)l) = inc weight l; inc one s1; ..; inc one sn

inc slice() = ERROR

check : (slice ∗ (slice → slice)) → slice
check((s, cxt), f) = let abst list = abst one[[s]] in

let rec loop lst = match lst with
| [] → []
| fst :: rest → try(infer (cxt fst); loop rest)
| fst :: rest → with Type Error →
| fst :: rest → withinc slice fst;
| fst :: rest → withfst :: (loop rest) in
let illtyped slices = loop abst list in
match illtyped slices with
| [] → raise Not found
| → get slice[[(choice illtyped slices, cxt)]]

Figure 10.1: Weighted type error slicer

Because this weighted slice is also a type error slice, it never asks about

(@3(@4 ∗ f) 1).

10.2 Program

Figure 10.1 lists the program to produce weighted type error slices. We use

a hash table to save the weights of each sub-program. The key of the array

is the labels of each sub-program and its value is the weights of each sub-

94 CHAPTER 10. A WEIGHTED TYPE ERROR SLICER

program. The function inc weight receives a label l and increase its weight.

The function choice selects an element from the received list.

We can extend the previous chapter’s program to a weighted type error

slicer simply by changing the function check. We show check in Figure 10.1.

The other function get slice is the same as in the previous chapter’s program.

The function inc one receives a slice (whose label is l) and increases the

weight of l. When the received slice is 2, inc one does nothing because 2 does

not contribute to the type error. This is why 2 has no labels. The function

inc slice receives a slice and increases the weights of its sub-programs. For

example, if inc slice receives a function application @ls1 s2, it increases the

weight of l and its sub-programs. It calls inc one to increase the weights

of the sub-programs. If it receives a skeleton expression (@= S1 S2), it only

increases the weights of its sub-programs because skeletons do not contribute

to a type error.

The function check is similar to check in the previous chapter, but it

works harder than the previous one. In the previous check, loop terminates

immediately when it finds an ill-typed slice and calls the function get slice.

In this program, loop works on all elements of an abstracted list abst list

obtained by abst one. During the loop, the program collects all type error

slices from all elements. The reason for this is that programmers may have

intuitions about abst list. Therefore, after the loop, we increase the weights

according to the collected type error slices. Finally, we choose one of the

slices and make it more abstract by calling get slice. If there are no type

error slices in the abstracted list, the behavior is the same as described in

the previous chapter.

Chapter 11

An improved weighted type
error slicer

The previous chapter described weighted type error slicer that compares the

sub-programs of an expression and the constructor itself. Although it pro-

duces a bit better type error slices than the standard type error slicers, it does

not likely match a programmer’s intuition. Because it depends on the struc-

ture of programs, it sometimes does not produce the expected result. To get

a handle on this problem, let us consider the previous example (λ1f.((@3(@4∗
f) 1), (@5f 2), (@6(@7 + f) 3))2). Here, the sub-program labeled 5 is more

suspicious than the other sub-programs. This can be inferred by comparing

the three sub-programs; two of them indicate thatf is a number. However,

the majority vote sometimes does not work well. If we change the structure

of this program to (λ1f.((@3(@4 ∗ f) 1), ((@5f 2), (@6(@7 + f) 3))2′)2)1, the

previous type error slicer does not work well. In this chapter, we improve

the type error slicer so that it will work well on this sort of example.

1The original program has a tuple of three elements, and the modified program has a
tuple of two elements in which one element is itself a tuple of two elements.

95

96CHAPTER 11. AN IMPROVED WEIGHTED TYPE ERROR SLICER

11.1 The flow of the algorithm

Let us consider an example program (λ1f.((@3(@4∗f) 1), ((@5f 2), (@6(@7 +

f) 3))2′)2). The outer most expression is a function abstraction; we focus on

its subprogram ((@3(@4 ∗ f) 1), ((@5f 2), (@6(@7 + f) 3))2′)2 and add λ1f.

to the context. We abstract this focused expression and obtain the following

slices.

• (2, ((@5f 2), (@6(@7 + f) 3))2′)2

• ((@3(@4 ∗ f) 1),2)2

• @= (@3(@4 ∗ f) 1) ((@5f 2), (@6(@7 + f) 3))2′

Among these slices, the first and third slices are ill-typed. If we select the first

slice or third slice and abstract it, we obtain @= 2((@5f 2), (@6(@7 + f) 3))2′ .

To abstract its sub-programs, we focus on ((@5f 2), (@6(@7 + f) 3))2′ with

the context (fun s ->λ1f.(2, s)). However, this context does not have the

information that f is a number in the node labeled 3 of the original program.

In the next abstraction, we obtain the following abstracted programs:

• (2, (@6(@7 + f) 3))2′

• ((@5f 2), 2)2′

• @= (@5f 2)(@6(@7 + f) 3)

with the context (fun s ->λ1f.(2, s)). In the upper programs, because the

third program is ill-typed and the others are well-typed, we can obtain the

following weights of each sub-program from these slices:

11.1. THE FLOW OF THE ALGORITHM 97

a sub-program numbers of contributions
(@5f 2) 1

(@6(@7 + f) 3) 1

This table shows that their weights are the same. This behavior is different

from our intuition. Because f is a number in two places of the original

program (the part labeled 4 and the part labeled 7) and a function in one

place (the part labeled 5), the part labeled 5 looks to be the source of the

type error.

The problem is the lost information in the context. To preserve these

information, we use two contexts. One context is to obtain type error

slices, the same as in the previous chapter’s context. The other context

is to obtain the weights, that is, the non-abstracted context. To explain

these two contexts, let us consider the previous example. When we focus

on ((@5f 2), (@6(@7 + f) 3))2′ , the context for obtaining the type error

slice is (fun s ->λ1f.@= 2s). Another context for obtaining the weights is

(fun s ->λ1f.((@3(@4 ∗ f) 1), s)2′). The latter context includes more in-

formation than the former context. Therefore, we can detect the mismatch

between the focused program and the outer context. These two contexts

make it possible to obtain the following weights:

a sub-program numbers of contributions
(@5f 2) 2

(@6(@7 + f) 3) 1

These weights correspond to our intuition. By using the unnecessary parts

for the type error slices, we become aware of the programmer’s intention. The

previous weighted type error slicer compares only the sub-programs of one

node; on the other hand, this improved weighted type error slicer compares

sub-programs with the outer context. The previous one can perform horizon-

tal comparisons in the tree, whereas the current one can perform horizontal

and vertical comparisons.

98CHAPTER 11. AN IMPROVED WEIGHTED TYPE ERROR SLICER

check : (slice ∗ (slice → slice) ∗ (slice ∗ (slice → slice))) → slice
check(s, cxt, (p, wrap)) = let abst list = abst one[[s]] in

let rec loop lst = match lst with
| [] → []
| fst :: rest →

try(infer (wrap fst); loop rest)
with Type Error →

inc slice fst;
try(infer(cxt fst); loop rest)
with Type Error → fst :: (loop rest) in

let illtyped slices = loop abst list in
match illtyped slices with
| [] → raise Not found
| → get slice[[(choice illtyped slices,

cxt, (p, wrap))]]

Figure 11.1: check for an improved weighted type error slicer

11.2 The program

Figure 11.1 and 11.2 show the program of an improved weighted type error

slicer. In the program, cxt is the context for obtaining the type error slices

and wrap is the context for obtaining the weights of the sub-programs.

In the Figure 11.1, the function check increases the weights if the slices

with wrap are ill-typed. This is the main change from the previous type

error slicer. The other changes are in wrap. During abstraction of a focused

program, we use the same wrap. Once the focused program becomes min-

imal, we focus on its sub-programs and change wrap. The value of wrap

is updated in the function get slice. In the case of lambda abstraction, we

add λlx. to wrap the same way as cxt. In the case of function application,

wrap needs the parts that are not included in the type error slices. To set

11.2. THE PROGRAM 99

make wrap : ((slice → slice) ∗ slice ∗ (slice → slice))
→ (slice ∗ (slice → slice))

make wrap(wrap, p, cxt) = try(infer (wrap 2); (p, wrap))
with Type Error → (p, cxt)

get slice : (slice ∗ (slice → slice) ∗ (slice → slice)) → slice
get slice[[(vl, cxt, (p, wrap))]] = vl

get slice[[(cl, cxt, (p, wrap))]] = cl

get slice[[(λlx.s, cxt, (p, wrap))]] =
λlx.(get slice[[(s, (fun y → cxt(λlx.y)), (s, (fun y → wrap(λlx.y))))]])

get slice[[(@ls1 s2, cxt, (p, wrap))]] =
let (@lp1 p2) = p in
try(check(@ls1 s2, cxt, (p, wrap)))
with Not found →
let cxt1 = (fun x → cxt(@lx s2)) in
let s′1 = get slice′[[(s1, cxt1,

make wrap((fun x → wrap(@l x p2)), s1, cxt1))]] in
let cxt2 = (fun x → cxt(@ls′1 x)) in
let s′2 = get slice′[[(s2, cxt2

make wrap((fun x → wrap(@l p1 x)), s1, cxt2))]] in
(@ls′1 s′2)

get slice[[(s1, .., sn)l]] = Omitted

get slice′ : (slice ∗ (slice → slice) ∗ (slice → slice)) → slice
get slice′[[(s, cxt, (p, wrap))]] = if s = 2 then 2

else get slice[[(s, cxt, (p, wrap))]]

Figure 11.2: An improved weighted type error slicer

such parts, we have to use non-abstracted expression for wrap. However,

the focused program @ls1 s2 may already be abstracted by the function calls

of get slice. Therefore, we introduce a new argument p to get slice in or-

der to preserve the original expression (non-abstracted one) and use it to

update wrap. Because the new wrap has to be well-typed itself, we check

100CHAPTER 11. AN IMPROVED WEIGHTED TYPE ERROR SLICER

whether it is well-typed or not by using make wrap. If it is ill-typed, we use

cxt, which is always well-typed. In this case, wrap lost information; however,

new information will be pushed onto non-abstracted subprograms in the next

recursions.

Chapter 12

Related work

In this chapter, we compare our work with related work. We classify related

work according to type, such as typing algorithms, type debugging systems,

and type error slicing, etc.

12.1 Typing algorithms

The typical approach to improving type error messages is to design a new type

inference algorithm. Wand [29] keeps track of the history how type variables

are instantiated and shows the conflicting history when a type error arises.

Lee and Yi [12] present the algorithm M that finds conflict of types earlier

than the algorithm W and thus reports a narrower expression as an error.

Heeren and Hage [8] use a constraint-based type inference for improving type

error messages.

Neubauer and Thiemann [17] introduce a type system using sum types.

The sum type allows the multiple types during an inference of types. The

correct type of the sum type is chosen by the types of the surrounding pro-

grams. Our idea for weighted type error slice is inspired by their approach.

The type error messages by existing compilers are improved by these

101

102 CHAPTER 12. RELATED WORK

approaches. Thanks to the improvements, if the source of the type error is

near the point located by compilers, we can often find the source of the type

error by hand. Although these improved type error messages are useful for

programmers, it is in general not possible to identify the source of type errors

by a single error message.

12.2 Type debugging systems

To locate the source of type errors, Chitil [2] uses compositional type inference

and constructs an interactive type debugger for a subset of Haskell. Based

on his work, we designed a type debugger for OCaml using the compiler’s

own type inferencer rather than a tailor-made type inferencer. The use of

the compiler’s type inferencer enables us to build a type debugger for a

larger language easily. Stuckey, Sulzmann, and Wazny [23] find the source

of type errors using type inference via CHR solving. They implement a type

debugger called Chameleon, which can explain why an inferenced type is

derived by searching. Tailor-made type inference is used for this purpose.

12.3 Type error slicing

Haack and Wells [6] use slicing with respect to types to narrow the possibly

erroneous parts of programs. By extracting the slice related to type errors,

they help the programmer to identify the source of type errors. The advan-

tage of this approach is that the process is automatic and the programmer

does not have to answer questions.

Schilling [19] obtains slices using the compiler’s type inferencer. To ob-

tain type error slice, he abstracts an ill-typed program and infers its type

by compiler’s inferencer. Although we choose the same approach there are

12.4. TYPE ERROR CORRECTION 103

some difference between them. Schilling starts from the empty program and

instantiate it by parts of ill-typed programs. On the other hand, we start

from the ill-typed programs and abstract them. Thanks to the decremental

approach, we extend type error slicing with the weights.

Our work is an extension of these works for type error slicing by the

weights. The likelihood of each expression being the source of the type error

makes type debugging easier.

12.4 Type error correction

Lerner et al. [13] propose automatic type-error correction. They replace the

erroneous part with various syntactically correct similar expressions, and

see if they type check. If they do, they are displayed as the candidates for

fixing the type error. Since the system automatically shows us possible fixes

without intervention, the system is useful if the programmer’s intended fix is

shown. Unfortunately, it does not always produce the intended program.

12.5 Visualization of types

As visualizing tools of types, Simon, Chitil, and Huch [22] show TypeView

that allows programmers to browse through the source code and to query the

types of each expression. McAdam [14] displays types as graphs and extracts

various facts from them that are useful for debugging. Our previous Emacs

interface [24] is inspired by these works, and we will continue to build such

interface.

Chapter 13

Conclusion

In this thesis, our aim is to establish the approaches to achieve practicable

type debugging. First, we proposed a manifesto of practicable type debugging.

The manifesto consists of two categories, the producer side and the consumer

side.

By satisfying the properties of the producer side, we can implement the

accurate type debuggers easily. To satisfy these properties, we propose a

type debugger using compiler’s type inferencers. The key observation is that

we only need the most general type tree with the decomposition property;

such a tree can be constructed using the compiler’s type inferencer. The de-

composition property guided the design of our type debugger: we maintained

contexts so that the property is satisfied all the time. We have fleshed out

our thesis that it is possible and also practical to write a type debugger by

piggy-backing on the built-in type inferencer of an existing compiler.

By satisfying the properties of the consumer side, type debuggers become

useful and user-friendly tools for programmers. To satisfy one of the proper-

ties, we propose a weighted type error slicer. We obtained a weighted type

error slices by observing each node to reduce the burden on programmers.

Although the conventional type error slicer may produce large type error

105

106 CHAPTER 13. CONCLUSION

slices, our approach enables to see some parts of the type error slices. The

piggy-backing on the built-in type inferencer of an existing compiler is good

idea in this topic too.

In this thesis, our main observation is the following:

• To fit existing implementation, using their features is a better idea than

reproducing new implementation.

Of course, there are some situation where this observation does not fit. For

example, it is impossible to reuse the existing implementation. However,

we believe that the meaning of “the good programming language” often in-

cludes their good tools for programming. To implement good tools for the

languages, their compiler should be easy to reuse their functions. Addition-

aly, the existing programming languages are becoming complex. Therefore

the reuse of their functions will become essential to implement good tools for

them.

The another observation is the following:

• For debugging, it is important to extract the information from the ill-

typed programs.

This looks natural, however most compilers extract the minimum informa-

tion from the ill-typed programs. In our weighted type error slicer, we could

extract more information from the ill-typed program than standard compil-

ers.

We plan to continue the present line of work as follows. First, we want to

explore how far the idea presented in this thesis scales. In particular, we are

interested in supporting type classes [7] in Haskell and GADTs introduced

in OCaml 4.0. We will investigate how we can define decomposition of a

107

program with type classes or GADTs and see if it satisfies the property

(Section 5.2). Second, we want to implement a weighted type error slicer for

our type debugger. Although almost all of the syntax is simple extension of

our proposed weighted type error slicer, we have to treat patterns as special

syntax. Third, we want to perform thorough user tests. We have built an

Emacs interface based on our previous work [24] and the type debugger is

in use in several courses in our university. From the user tests, we plan to

obtain various feedback including usefulness and how to effectively show the

type information to novices. We also plan to obtain feedback from the user

tests with skilled programmers.

Acknowledgement About our type debugger, we present papers and talks

at PPL2012 [25], computer software (a Japanese journal) [26] and the post-

proceedings of IFL2012 [27]. About weighted type error slicer, we present a

paper and a talk at PPL2013[28].

Bibliography

[1] Barras, Bruno, Samuel Boutin, Cristina Cornes, Judicael Courant, Jean-

Christophe Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Ce-

sar Munoz, Chetan Murthy, Catherine Parent, Christine Paulin-Mohring,

Amokrane Saibi, and Benjamin Werner. The Coq proof assistant reference

manual : Version 6.1. Technical Report RT-0203, Inria (Institut National

de Recherche en Informatique et en Automatique), France, 1997.

[2] Chitil, O. “Compositional Explanation of Types and Algorithmic De-

bugging of Type Errors,” Proceedings of the sixth ACM SIGPLAN inter-

national conference on Functional programming (ICFP’01), pp. 193–204

(2001).

[3] Cousineau, Guy and Michel Mauny. The Functional Approach to Pro-

gramming. Cambridge University Press, 1998.

[4] Damas, Luis and Robin Milner. “Principal type schemes for functional

programs”. In ACM Symposium on Principles of Programming Languages

(POPL), Albuquerque, New Mexico, pp. 207–212, 1982.

[5] Garrigue, J. “Relaxing the value restriction,” In Y. Kameyama and P.

J. Stuckey, editors, Functional and Logic Programming (LNCS 2998),

pp. 196–213 (April 2004).

109

110 BIBLIOGRAPHY

[6] Haack, C., J. B. Wells. “Type Error Slicing in Implicitly Typed Higher-

Order Languages,” Science of Computer Programming - Special issue on

12th European symposium on programming (ESOP’03), Volume 50 Issue

1-3 (2004).

[7] Hall, C., K. Hammond, S. P. Jones and P. Wadler. “Type classes in

Haskell,” ACM Transactions on Programming Languages and Systems

(TOPLAS) Volume 18 Issue 2 (1996).

[8] Heeren, B., J. Hage. “Parametric Type Inferencing for Helium,” Technical

Report UU-CS-2002-035, Utrecht University, 2002.

[9] INRIA, http://caml.inria.fr, http://www.ocaml.org

[10] Jim, Trevor. “Rank-2 type systems and recursive definitions,” Technical

Report MIT/LCS/TM-531, Massachusetts Institute of Technology, Labo-

ratory for Computer Science, November 1995.

[11] Jim, Trevor. “What are principal typings and what are they good for?,”

In ACM Symposium on Principles of Programming Languages (POPL),

St. Petersburg Beach, Florida, pp. 42–53. ACM, 1996.

[12] Lee, O., K. Yi. “Proofs about a Folklore let-polymorphic Type Inference

Algorithm,” ACM Transactions on Programming Languages and Systems,

pp. 707-723 (1998).

[13] Lerner, B. S., M. Flower, D. Grossman, C. Chambers. “Searching for

Type-Error Messages,” Proceedings of the 2007 ACM SIGPLAN confer-

ence on Programming language design and implementation (PLDI’07),

pp. 425–434 (2007).

BIBLIOGRAPHY 111

[14] McAdam, B. J. “Generalising techniques for type debugging,” In Trends

in Functional Programming, chapter 6. Intellect, (2000).

[15] Milner, H. “A Theory of Type Polymorphism in Programming,” Journal

of Computer and System Science (JCSS) 17, pp. 348–374

[16] Milner, R., M. Tofte, R. Harper and D. MacQueen. The Definition of

Standard ML (Revised). MIT Press, 1997.

[17] Neubauer, M.m and P. Thiemann. “Discriminative Sum Types Locate

the Source of Type Errors,” Proceedings of the eighth ACM SIGPLAN

international conference on Functional programming (ICFP’03) pp. 15–

26, 2003.

[18] Nilsson, H. Declarative Debugging for Lazy Functional Languages, PhD

thesis, Linköping, Sweden (1998).

[19] Schilling, T. “Constraint Free Type Error Slicing,” Proceedings of

the 12th international conference on Trends in Functional Programming

(TFP’11), pp. 1–16 (2012).

[20] Shapiro, E. Y. Algorithmic Program Debugging, MIT Press (1983).

[21] Silva, J., and O. Chitil. “Combining Algorithmic Debugging and Pro-

gram Slicing,” Proceedings of the 8th ACM SIGPLAN international con-

ference on Principles and practice of declarative programming (PPDP’06),

pp. 157–166 (2006).

[22] Simon, A., O. Chitil and F. Huch. “Typeview: A tool for understanding

type errors,” Draft Proceedings of the 12th International Workshop on

Implementation of Functional Languages, PP. 63–69 (2000).

112 BIBLIOGRAPHY

[23] Stuckey, P. J., M. Sulzmann, J. Wazny, “Interactive type debugging in

Haskell,” Proceedings of the 2003 ACM SIGPLAN workshop on Haskell

(Haskell’03), pp. 72–83 (2003).

[24] Tsushima, K., and K. Asai. “Report on an OCaml type debugger,” ACM

SIGPLAN Workshop on ML, 3 pages, (2011).

[25] Tsushima, K., and K. Asai. “A Type Debugging Approach using Com-

piler’s Type inferencer,” 14th Programming and Programming Language

workshop (PPL2012)

[26] Tsushima, K. and K. Asai. A Type Debugging Approach using Com-

piler’s Type Inferencer (In Japanese) Computer Software (Japanese Jour-

nal) vol.30, no.1, pp.180–186, 2013.

[27] Tsushima, K., and Asai, K.. “An Embedded Type Debugger,” Proceed-

ings of the 24th International Workshop on Implementation of Functional

Languages (IFL’12), to appear in LNCS, Springer (2013).

[28] Tsushima, K., and K. Asai. “A Weighted Type Error Slicing,”

(in Japanese) 15th Programming and Programming Language workshop

(PPL2013)

[29] Wand, M. “Finding the Source of Type Errors,” Proceedings of the 13th

ACM SIGACT-SIGPLAN symposium on Principles of programming lan-

guages (POPL’86), pp. 38–43 (1986).

[30] Yang, J., G. Michaelson., P. Trinder., and J. B. Wells. “Improved Type

Error Reporting,” International Workshop on Implementation of Func-

tional Languages, pp. 71–86 (2000).

BIBLIOGRAPHY 113

[31] Pierce, Benjamin C., Types and Programming Languages, The MIT

Press

[32] http://wiki.portal.chalmers.se/agda/pmwiki.php

[33] https://code.google.com/p/epigram/

