
外国語要旨

学位論文題目：Practicable Type Debugging for Functional Languages

氏名：Kanae Tsushima

This thesis presents how to build a practicable type debugger. From

the time the Hindley-Milner type system was first proposed, programmers

have received benefits from types. At the same time, they have to struggle

with type errors. Many approaches have been developed to help program-

mers locate the source of type errors. Although their implementations help

programmers a lot, existing compilers often lack such support. We feel this

situation puts too much of a burden on programmers: debugging an ill-typed

program takes up a lot of their time, and compiler’s error messages are too

difficult for many new learners to understand. This situation is a shame for

many languages.

To address this situation, we believe practicable type debugging is needed.

First, we establish a manifesto of practicable type debugging. The properties

of the manifesto can be grouped into two categories. One category is the pro-

ducer side, where the properties focus on the implementation. By satisfying

these properties, a type debugging system can be applied to many languages.

The other category is the consumer side, where the properties focus on the

usability. If a type debugger is not user-friendly and forces the programmers

to deal withtoo big a burden, the programmers feel that debugging by hand

would be better. Therefore, the usability of a type debugger is a crucial

factor.

The main part of this thesis consists of two parts.

First, we focus on the producer side of type debugging. To this end,

we propose a type debugger without implementing any dedicated type in-

ferencer. Conventional type debuggers require their own type inferencers

separate from the compiler’s type inferencer. The advantage of our approach

is threefold. First, by not implementing a type inferencer, it is guaranteed

1



that the debugger’s type inference never disagrees with the compiler’s type

inference. Second, we can avoid the pointless reproduction of a type infer-

encer that should work precisely as the compiler’s type inferencer. Third,

our approach can withstand updates of the underlying language. The key

element of our approach is that the interactive type debugging, as proposed

by Chitil, does not require a type inference tree but only a tree with a certain

simple property. We identify the property and present how to construct a

tree that satisfies this property using the compiler’s type inferencer. The

property shows us how to build a type debugger for various language con-

structs. In this paper, we describe our idea and first apply it to the simply

typed lambda-calculus. After that, we extend it with let-polymorphism and

objects to see how our technique scales.

Second, we focus on the customer side of type debugging. To this end, we

propose a weighted type error slicer. Conventional type error slicers enable

users to narrow the area for type debugging. The advantage of our approach

is the weight for each subexpression of slices, which here means the level of

relation to the type errors. By weighted type error slices, type debuggers

can ask questions in an order that relates to the type errors. The problem

with conventional type error slicers is that the slice becomes large when the

original ill-typed program is too big. Using weighted type error slicing solves

this program by the ordering.

2


