
2 Gravitational wave

2.1 Einstein equations

The space-time that shift slightly from Minkowski metric ηij is rep-
resented as below.

gij = ηij + hij (1)

ηij =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


|hij(x)| ¿ 1

(hij(x) is the symmetric tensor.)

Assume that each component of hij is far less than 1, above sec-
ond order of hij is ignored. Under this approximation, contravariant
metric tensor gij is

gij = ηij + hij (2)

Contravariant metric tensor ηij is defined as ηijηjk = δi
k.

ηij =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Here define

φij ≡ hij −
1

2
hgij = hij −

1

2
hηij (3)

h ≡ hi
j = gijhij = ηijhij (4)

Therefore

hij = φij −
1

2
φηij (5)

φ = φi
i = −h (6)

Tij is stress‐energy‐momentum tensor. Einstein equations is

Rij −
1

2
Rgij =

8πG

c4
Tij (7)
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Ricci tensor is

Rik =
1

2

[
∂

∂xi

(
∂hj

k

∂xj
− 1

2

∂h

∂xk

)
+

∂

∂xk

(
∂hj

i

∂xj
− 1

2

∂h

∂xl

)
− 2hik

]
(8)

Scalar curvature is

R =
∂2φij

∂xi∂j
− 1

2
2h (9)

Therefore the Einstein equation is represented as below.

2φij −
∂

∂xi

(
∂φk

j

∂xk

)
− ∂

∂xj

(
∂φk

i

∂xk

)
−− ∂

∂xk

(
∂φl

m

∂xl

)
ηkm

ij = −16πG

c4
Tij(10)

From Gauge transformation

x,i = xi + ξi

and Gauge condition,
∂φ,j

i

∂x,j
= 0

The Einstein equations is rewritten by

2φij = −16πG

c4
Tij (11)
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Figure 1: Gravitational wave modes

2.2 Plane wave propagation

Assuming the plane wave in a vacuum, the wave equation is repre-
sented as below.

2φij = 0

Solution of this equation is

φij = aij exp iklx
l

This satisfies follow relations.

klk
l = 0

kl is the 4 dimension vector of gravitational wave propagation. aij

is the symmetric constant tensor, that stands for amplitude. By
Gauge condition,

aijk
j = 0

and assuming the angular frequency ω,

ω = kc.

Under the Gauge transformation, amplitude after transformation
a,

ij by original one,

a,
ij = aij − εikj − εjki + ηijεlkl

Supposing that gravitational wave is propagating x3 direction.
x0 = ct , x3 = z for simplifying, by optimizing the εi,

a,
00 = a,

01 = a,
02 = 0

9



and
a,

11 = −a,
22

or
a,

12 = a,
21

Therefore A+, A× represent each amplitude mode

φij = A+e+
ijexp(−ikx0 + ikx3) + A×e×ijexp(−ikx0 + ikx3) (12)

e+
ij =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0



e×ij =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


By equation (5),

hij = φij = A+e+
ijexp(−ikx0 + ikx3) + A×e×ijexp(−ikx0 + ikx3)(13)

There are 2 vibration modes that are transverse wave with light
speed.

2.3 Energy of gravitational wave

From the compensated momentum equation, the one-round time
average of gravitational field energy < tji > is represented as follow.

< tji >=
k2c4

32πG
(A+2 + A×2)


−1 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 1


Therefore the energy flow to the x3 direction is

F 3 =< t30 > c =
k2c5

32πG
(A+2 + A×2)
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Frequency [Hz] Detector Source

∼ 10−16
Anisotropy
of microwave
background

Primordial

∼ 10−9 pulsar timing
Primordial,
cosmic
strings

∼ 10−4 to 10−1

Doppler
tracking of
Space craft

binary
stars, su-
permassive
black holes

∼ 10 to 103 Laser interferometer

inspiral:
NS+NS,
BH+BH,
NS+BH

103 ∼
Cryogenic
resonant bar
detector

supernovae,
spinning
neutron stars

Table 1: The relation sources and range

Source Distance Event rate (per year)
Binary neutron stars coalescence 8.2 ∗ 109ly 5

Black holes coalescence 65 ∗ 109ly 1∼30
Supernova explosion 33 ∗ 106ly 1
Quasi-normal mode 100 ∗ 109ly

Table 2: KAGRA estimation

2.4 Sources of gravitational wave

Gravitational wave is emitted by merging binaries, supermassive
black holes and stochastic background.

1. Merging compact binary systems
The coalescence of a compact binary system can be classified

in three phase: (1) During the inspiral. (2) During merging
phase. (3) After merged phase. Two neutron stars, two black
holes, or one neutron star and one black hole have huge mass
and are close together, they rotate rapidly. They start out by
spiraling each other at some distance. When their orbital sep-
aration is on the order of kilometers, they radiate an enormous
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amount of energy in a short time. They emitted gravitational
waves increase in amplitude and this waveform is called a chirp.
Eventually the stars will coalesce. When they have merged into
a single star, the system de-excites by emitting gravitational
waves. It is predicted that merging compact binary system
emit gravitational wave s in the 10Hz to 1000 Hz frequency
bands. It is possible to determine the distance to these objects
by analyzing their waveforms.

2. Supermassive black holes
One of the most exciting topics in astronomy concerns the

mystery of why the number density of active galactic nuclei
decrease with increasing redshift. A popular hypothesis is that
black holes with thousands to billions of solar masses are at
the center of every galaxy. Such black hole events include coa-
lescences, collapses of individual such black holes and gravita-
tional slingshots. By measuring such events it might be deter-
mine such black hole masses, mechanism by which they form,
their rate of formation, and the rate at which they coalesce or
collapse.

3. Stochastic background
Just as density fluctuation in the early universe resulted in the
anisotropic cosmic microwave background, so might these ini-
tial perturbations have caused a stochastic background of grav-
itational waves. The most important difference between the
stochastic background and the cosmic microwave background
is that, since they couple so weekly to matter, gravitational
waves did not thermalize. Thus, the gravitational wave spec-
trum should come to us unaltered from whatever produced it.
If it is possible to detect the stochastic background, it would
be able to make inferences about a much earlier universe than
we have been able to do with electromagnetic radiation.

12



Figure 2: Fabry Perot cavity lock system for verification mirror mounts stability.
Cavity could be locked with 20m radius of mirror curvature against the 10cm
cavity.

3 Interferometer

Gravitational wave is tidal distortion. The ways to detect of gravi-
tational wave are the pulsar timing by observe the interval of pulse,
resonant bar, which uses the elasticity of material, and interferom-
eter. Now the most developing method is the interferometer. This
interferometer is basically Michelson interferometer. Michelson in-
terferometer has two perpendicular arms. The distortion could be
the phase variations of laser and these two beams from those arms
could be interfered each other in detection port of interferometer.
This variation is only 10−21m in ground detector. Therefore there
are some techniques for high sensitivity of interferometer. For in-
stance the longer arm could detect with the higher sensitivity. The
possible frequency of gravitational wave is restricted by some param-
eters. Space antenna is another option for lower range by 1000km
arm length.
In this section, interferometer principle and related things are in-

troduced.
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Figure 3: Detection by michelson interferometer

3.1 Detection of space-time distortion by laser

The end test mass displacement by δ = a sin ωt could be the phase
modulation shown below. E0 is input field and E1, E2 is inline and
perpendicular field at antisymmetric port. Assume in this calcula-
tion that the power reflectivity and transmittance of beam splitter
are 0.5 each.

E1(t) =
tr

2
E0e

i 2L+2δ
c

Ω

E2(t) =
rt

2
E0e

i 2L−2δ
c

Ω

(14)

∆ is the phase change by end mirror displacement.

∆ = 2π
c

λ

2a sin ωt

c

= 2π2
a

λ
sin ωt
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i∆ =
4π

2

a

λ
(eiωt − e−iωt)

E1(t) =
tr

2
E0e

i 2L
c

Ωei 2δ
c

Ω

=
tr

2
E0e

i 2L
c

Ω(1 + i∆) (15)

E2(t) =
tr

2
E0e

i 2L
c

Ωei 2δ
c

Ω

=
tr

2
E0e

i 2L
c

Ω(1 − i∆) (16)

(17)

E2(t) =
tr

2
E0e

i 2L
c

Ω
(
1 − 2π

a

λ
(eiωt − e−iωt)

)
= E0

2 + E+
2 + E−

2 (18)

E0
2 =

tr

2
E0e

i 2L
c

Ω

E+
2 = −2πa

λ

tr

2
E0e

i 2L
c

Ωei(Ω+ω)t

E−
2 = +

2πa

λ

tr

2
E0e

i 2L
c

Ωei(Ω−ω)t

This is the effect of modulation ω by displacement. Seeing above
equations, the tidal distortion by gravitational wave could be the
phase modulation. The interferometer like Michelson interferometer
that has orthogonal lines for light traveling could rightly detect those
phase as fringe at the detection port.
If the detection port is set by dark fringe, the sum of those light is
as follow. Assume in this calculation that the power reflectivity and
transmittance of beam splitter is 0.5 each.

|E1 − E2| = 2|E+
2 + E−

2 |

=
(

2πa

λ

tr

2
E0e

i(Ω+ω)t − 2πa

λ

tr

2
E0e

i(Ω−ω)t
)

=
(

2πa

λ

rt

2
E0e

iΩt ∗ [eiωt − e−iωt]
)

|E1 − E2|2 ∝ |E0|2 (1 + cos 2ωt) (19)
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On the other hand, laser phase φ after traveling one round
through the arm has been changed by∫ t

t− 2L
c

1

2
h(t′)cdt′ =

hc

ΩGW

sin
LΩGW

c
sin

(
ΩGW t − LΩGW

c

)
(20)

When
LΩGW

c
¿ π

2
,

δ L is the differential distance by gravitational wave and that is

δL ∼ L × h. (21)

(22)

φ is phase and that is

φ = 2π × 2δL

λ
. (23)

Therefore the distance change effect by gravitational wave is con-
verted to laser phase, and then the signal is detected as the fringe.
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Figure 4: Michelson interferometer sensitivity

3.2 Michelson Interferometer

Michelson interferometer (MI) is the simple interferometer for grav-
itational wave detector. The arm length is defined as distance from
beam splitter to the each end test mass. This arm length deter-
mine the detectable gravitational wave frequency fGW by Michelson
interferometer.

fGW =
c

4L
(24)

The phase shift being accumulated in the arm at the higher fre-
quency, the laser interferometer sensitivity is degraded. Figure4
shows comparison by arm length.
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Figure 5: Free spectral range

3.3 Fabry Perot cavity

Fabry Perot Michelson interferometer (FPMI) is the MI with Fabry
Perot (FP) cavity in each arm. This system is equivalent to length-
ened arm. Each FP cavity is composed of 2 mirrors whose reflective
surfaces confront. Laser beam travels several rounds at the FP cav-
ity according to the finesse F.

Free spectral range Cavity could amplify particular frequency light.
And the light could be transmitting through the cavity. In
frequency range, there is the periodic maximum transmitted
power from the cavity. This period is called as the free spectral
range (FSR). This FSR (νFSR) is written as follow using the
cavity length L.

νFSR =
c

2L

Cavity finesse Cavity finesse F is defined as the sharpness of res-
onance of cavity. This is defined by νFSR and νFWHM . νFSR,
which is the one cycle frequency that is maximizing transmitted
power, what is called free spectral range (FSR), and νFWHM is
the full width at half maximum. Therefore that is notated by
input test mass and end test mass amplitude reflectivity (r1,
r2). F is as follow.

F =
νFSR

νFWHM

=
π
√

r1r2

1 − r1r2

(25)
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Finesse is depending only on reflectivity of mirrors composing
cavity.

Stability of cavity The cavity stability especially about longitu-
dinal mode determine by the radius curvature of mirrors that
are constructing the cavity. This parameter is g-factor. g-factor
is

g = 1 − L

R
.

And the condition of cavity stable is 0 ≤ g1 ∗ g2 ≤ 1. g1, g2 are
the g-factor of input mirror and end mirror each.
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Figure 6: FP cavity transfer function

Cavity response Assuming that T1, t1, which is the intensity and
amplitude transmittance of input test mass each (therefore
T1 = t21) and φ, which is the phase shift in the FP cavity,
the cavity response is calculated as below.

∣∣∣∣Eout

Ein

∣∣∣∣2 =
∣∣∣∣ t1
1 − r1r2eiφ

∣∣∣∣2
=

∣∣∣∣∣ t1
1 − r1r2(1 + iφ)

∣∣∣∣∣
2

=

∣∣∣∣∣ t21
(1 − r1r2)2 + (r1r2)2φ2

∣∣∣∣∣
=

t21(
T1

2

)2
+ φ2

=
T1/

(
T1

2

)2

1 +
(

2
T1

)2
φ2

=
4

T1

1

1 +
(

2
T1

φ
)2 (26)

Maximum power in cavity is 4
T1

.

∣∣∣∣Pout

Pin

∣∣∣∣ =
4

T1

1

1 +
(

2
T1

2π 2δ
λ

)2

=
4

T1

1

1 +
(
2π δ

∆

)2 (27)
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Figure 7: FP cavity transfer function

∆ =
T1

4
λ (28)

δ is difined as distance. ∆ is the decay of power in cavity.

Cavity pole Furthermore cavity pole γ, which is cut-off frequency
of detector, is

γ =
T1c

4L
. (29)

The figure shows that floor level is proportional to the fi-
nesse, while cavity pole is inverse proportional to finesse. At
lower range, high finesse has good sensitivity and narrow band.
Lower finesse cavity has wider band and good sensitivity at
higher range.

Reflectivity of cavity The front mirror reflectivity and transmit-
tance are ′r′1,

′t′1 and end mirror are ′r′2,
′t′2. The cavity reflec-

tivity R is represented as follow.

R = −r1 +
t21r2e

iφ

1 − r1r2eiφ
(30)
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This value is changeable according to the cavity resonance con-
dition. If the cavity is on resonant, the reflectivity of cavity Rres

is

Rres =
−r1 + r2

1 − r1r2

.

On the other hand, if anti-resonant, the reflectivity of cavity
Ranti is

Ranti = − r1 + r2

1 + r1r2

.
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Figure 8: various IFO types

3.4 Various interferometers

There are some combinations of interferometer. Each type has own
properties.

• Long arm length is for broad band sensitivity.
Fabry Perot cavity in the arms makes it possible to effective
distance to travel the gravitational wave. Finesse is the indica-
tion of number of recycling in the arm. This finesse is defined
by arms reflectivity. High finesse cavity is more amplify the
gravitational wave signal while the linear range for the control
of length is narrower.
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Figure 9: Comparison of shot noise

Interferometer types → FPMI, PRFPMI, RSE.

• High power laser reduces shot noise.
The reflected field goes directly to symmetric port, and was

disposed before. Instead of wasting this power, put the addi-
tional mirror at symmetric port in front of the laser. This mir-
ror works as the power recycling. Power recycling gain GPRM is
defined by interferometer total loss Lloss.

GPRM =
1

Lloss

Interferometer types →PRMI, PRFPMI, RSE

• Signal amplification to optimize shot noise.
Signal extraction mirror at anti-symmetric port make the grav-
itational wave signal extract before the cancellation in the high
finesse arm cavity. This mirror make the signal extraction cav-
ity finesse lower, then the signal could be obtained while am-
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plified by arm cavity.
Interferometer types →Dual Recycling, RSE

Figure9 shows those interferometer comparison in the point of shot
noise.
The shot noise is white noise in the Michelson interferometer. If

applied the Fabry Perot cavity in the arm, this shot noise decreases
at DC by increasing power in arm and increase at high frequency
by signal phase is cancelled.
Adding power recycling mirror makes it possible to reuse the power
back to the laser, therefore the shot noise is suppressed.
Comparing to the high finesse power recycling MI and low finesse

one, the shot noise at DC is decreased by the finesse. And RSE
interferometer seeing the later caption, which could make the arm
cavity finesse high and low finesse power recycling for thermal noise,
can make shot noise lower than low finesse power recycling FPMI
at high frequency, higher than high finesse power recycling FPMI at
DC though.
As this principle, RSE is optimized to the shot noise and could

detect the neutron stars coalescence in 6.2 ∗ 109ly.
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Figure 10: KAGRA design sensitivity and noise budget

3.5 Sensitivity

The sensitivity of detector is limited various noises. There are
seismic noise, radiation pressure noise, thermal noise, violin modes,
and shot noise. For instance, Figure10 is the KAGRA sensitivity.

• Seismic noise
Suspended mirror displacement z(f) by seismic motion is writ-
ten in follow. m is the mass, z is the position of mass, l is the
suspension length and s(t) is the displacement of suspension
point.

mg
z − s(t)

l
= −mz̈

g

l
(z(f) − s(f)) = f 2z(f)

z(f) =
−f2

0

f 2 − f 2
0

s(f)f0 =

√
g

l

(31)

s(f) is the unique parameter depending on the local seismic
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motion. For KAGRA, s(f) = 10−9.

• Thermal noise
Heat bath gives the energy to the materials in the interferom-
eter and gives them noise. This thermal noise has two kinds
of categories, which are suspension thermal noise and mirror
thermal noise.

– Suspension thermal noise
Thermal noise causes the fluctuations of the center of grav-
ity of mirror. This is suspension thermal noise (Ss).

Ss =
4kBT (2πfpen)

mΩ5
φpen

(32)

– Mirror thermal noise
Thermal noise causes the mirror surface fluctuations by
thermal excitation of mirror elastic vibration. This is sus-
pension thermal noise (Sm)

Sm =
4kBT

Ω

1 − ν2

√
πY ω0

φ

(33)

Y is young modules, ν is Poisson’s ratio and φ is the me-
chanical loss. These equations are from fluctuation dissi-
pation theorem,

Sx =
8kBTW

Ω2F 2
0

(34)

W is dissipation by force F0.

• Quantum noise
Quantum noise is originated from the laser light composing of
photon. Radiation pressure noise, which is originated from that
photon give the energy to mirror, and shot noise, which is orig-
inated from photon counting statistic error at photo detector,
is categorized as quantum noise. [1]
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– Radiation pressure noise
Photon energy is h̄ν. It gives its momentum to the mirror.
This cause the excitation of mirror.

– Shot noise
There are statistic frequency depended noise according to
the photon counting.

In total, there is the standard quantum limit (SQL) that can
not be beaten. This SQL required from uncertainty principle
is follow.

h2
SQL ≥ 8h̄

mΩ2L2
(35)

κ =
(I0/ISQL)2 ∗ γ4

Ω2(γ2 + Ω2)
(36)

Sh =
h2

SQL

2
(
1

κ
+ κ) (37)

ISQL =
mL2γ4

4Ω
(38)

κ is the opto-mechanical coupling constant. κ(Ω = γ) = 1 min-
imazes Sh From these equations, the shot noise and radiation
pressure noise could be gained. When ω ¿ γ, the shot noise is

√
Ssh ≈

√
h̄Ω

2ω0I0

. (39)

When ω À γ, the radiation pressure noise is

√
Srd ≈ 8

mL2γΩ2

√
h̄ω0I0

2
. (40)

Each noise should be eliminated by some technique. For in-
stance, reducing the seismic motion, mirrors are suspended and
detector itself of course is built in quiet place. Reducing ther-
mal noise, mirror is cooled to 20K. Because those are origi-
nated from photons, if the laser power were increased, shot
noise would be reduced. On the other hand radiation pressure
noise would become larger. Therefore squeezing light for shot
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noise, or heavier test mass for radiation pressure noise are ones
of good selection to solve.
For instance the test mass of DECIGO, which is the space

antenna of Japan, is expected 100kg while that of KAGRA is
30kg.
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detector country arm length IFO type start from

1st G

TAMA300 Japan 300m FPMI 1999
LIGO U.S. 4km(2sites) FPMI 2002

VIRGO Italy, France 3km PRFPMI 2003

GEO600
Germany
England

600m
Dual
Recycling

2002

2nd G
KAGRA Japan 3km RSE 2014
adLIGO U.S. 4km DRSE 2014

LIGO-Australia Australia 80m RSE 2017

3rd G
DECIGO Japan 1000km ∗1

LISA
Europe
U.S.

50Gm ∗2
E.T. Europe 10km ∗3

Table 3: Detectors list; ∗1: FP cavities with drag free system, ∗2: Spacecraft
Doppler tracking, ∗3:triangle of three L-shaped detectors

3.6 World activities

Laser interferometers for gravitational wave detector are spread in
the world. In Japan, TAMA300 is already working, KAGRA is the
under ground cryogenic detector, which it is soon to begin being
built. DECIGO (DECI-hertz Gravitational wave Observatory) is
the Japanese space craft detector. LIGO (Laser Interferometer of
Gravitational wave Observatory: Hanford site and Louisiana site)
are the United State detector, and also they have future developed
detector plan, advanced LIGO and space craft plan LISA (Laser In-
terferometer Space Antenna). GEO600 is the Germany and England
detector, VIRGO is the Italy and France one. In Europe, there is
union ground detector plan, E.T (Einstein Telescope). AIGO (Aus-
tralian International Gravitational Observatory) is the Australian
plan.
The coincidence analyze is necessary for gravitational source iden-

tification.
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