Chapter 1.

Introduction

T'his thesis consists of the following five papers.

(1) “Classification of some rules of cellular automata” (with F. Takeo)

(2) “The limit set of cellular automata” (with F. Takeo)

(3) “Convergence to the limit set of linear cellular automata” (with F. Takeo)
(4) “A note on the property of linear cellular automata”
(5) “Convergence to the limit set of linear cellular automata, [I”

A cellular automaton consists of a finite-dimensional lattice of sites, each of
which takes an element of a finite set Zy; = {0,1,..., M — 1} (M € N) of integers
at each time step and the value of each site at any time step 1s determined as
a function L of the values of the neighboring sites at the previous time step.
Patterns of cellular automata are investigated in many ways.

From investigation of a large sample of cellular automata, S. Wolfram suggests
that many (perhaps all) cellular automata fall into four basic behavior classes.

For a linear rule L with M = 2. S. J. Willson considered the set of sites which

takes the value 1 when time increases from 0 to 2” in a product space Z¢ x Z.._ .

that 1s,

K(nw)={(2,t) €EZxZ,. |0 <t < 2" (L'w)(z) = 1}.

He showed the existence of a limit set of { K'(n,w)/2"} in the sense of Kuratowski

limit and that limit set does not depend on an initial condition.

In case of M = p"( p is prime and r € N), S. Takahashi considered the set

of sites which takes the positive integer with an initial configuration §, where §

N



takes 1 at the origin and 0 at other sites, when time increases from 0 to p™ — 1.

that 1s.

KNnd)={(x,t)EZ' xZ,.|0<t<p"—1, (L'§)(x) # 0}

. L K(n.w | | .
and showed the existence of the limit set { “(;; )}. Moreover Takahashi inves-
tigated the set of sites which takes the value j(; = 1.2,... .p" — 1) when time

increases from 0 to p" — 1, that 1s,

Ky(n.d)={(x,t) EZ'xZ, |0<t<p"—1, (L'8)(x)=0b (mod p")}

—

and showed the existence of a limit set of {\y(n.d)}.
Chapter 2 concerns with Wolfram's four classes. Four classes were defined as

follows.

(lass 1 Evolution leads to a homogeneous state.

Class 2 Evolution leads to a set of separated simple stable or periodic structures.
Class 3 Evolution leads to a chaotic pattern.

Class 4 Evolution leads to complex localized structures, sometimes long-lived.

We redefine four classes mathematically and discuss classification of rules of the
simplest cellular automata without simulation.

[n Chapter 3, we consider the case M = 2. Let P be the set of all configura-
tions : Z¢ — Z,. A map L: P — P is a transition rule if (1) L(0) = 0; and (2)

there exist vq.....v,, € Z* and a map f : (Z,)™ — Z, such that
(La)(x) = fla(z4+vy).,....a(x+v,)) forall z € Z%. a € P.

We consider the space USC of all upper semi continuous functions ¢ : R¢ x
0.1] — Z, and consider an operator on USC. We define the product space
[T E: and an operator F; on USC corresponding to L. We investigate whether
the limit set of F} as k — > belongs to a certain subspace E.. and the relation

between lim G%a and lim F7¢g [Theorem 1 in Chapter 3]. We consider a quotient
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space E = [] Ex/ ~ and the operator F; on it and investigate conditions that
the F;-invariant set belongs to a certain subspace. In Section 3, we consider the
case of linear rules. In Section 4, we consider the case that L 1s non-linear. We
show some conditions for L and initial configurations such that there exists a
F;-invariant set [Theorems 5, 6 and 7 in Chapter 3].

In Chapter 4, we investigate the case M = p, where p 1s prime. Let P be the
set. of all configurations a: 74 — Z, with compact support. We define 0 € P as

N 1 (:”1: — 0).,
o) = { 0 (z #0)

and a linear cellular automata rule L: P — P as follows:

(La){z) = Z a;a(xz + k;)  (mod p) for a € P, (1.1)
JeG
where G is a finite subset of Z with G > 2, k; € Z* (j € G) is a neighboring
site of origin, oy € Z,\{0}.
Let
z i

-Xn:{(})—";’;’:) ERd X [011] ] (S Zd,tE 2+, 0 St-<—pn}

for n € N. For y € N, put
Gj ={teZ"| (L'§)(¢) # 0}.

Define a map v, from P to the function space on RY x 0,1] fora € Pandn € N

by

r ot { (Lia)(z) if (5, -5) € X,

(y’;n(a.))(;;,;;;) = 0 if (5. -7) € (R x [0,1]) \ Xo.

s
ST

(@) represents the state L'(a)(z) for 0 < t < p™ and = € Z*. We shall define
an operator 71" as follows.

Define a map S, ;: R¢ x [0,1] = RY x [%, %1] by

_ £ 1
Sg‘j(.’lf.,t) - (_&_) y )
P P P P



By using maps S ; define an operator 17" on the space ot functions on R* x [0,1]

by

Tg(y.q) = Y (L6)(0)g(S;(y,q)) (mod p)

¢EG;

for % < g < D;T] with 0 < 7 < p -1 and

Tq(y,0) = g(py,0)

for a function ¢ on R* x [0,1]. Then T(¢,) = ¥»4+1 holds for all n € N.

We have the following theorem which concerns the limit function {¢,(a)} in

the pointwise topology.

Theorem I (Theorem 2.5 in Chapter 4). For a« € P with a(0) # 0, we

have the following assertions:

(1) ¥n(a) converges to a function on R® x [0,1] in the pointwise topology.

(2) The limat function g, of the sequence {1V, (a)} in the pointwise topology s

T_an?}af?ﬂ?:arn!t: th(}:t '2:5;. Tga _— .qu'

(3) As for the limit functions gs and g, of {¥,(8)} and {¥n(a)} respectively,

we have a(0)gs = ga.

[n order to investigate convergence of {¢,,(w)}, we shall introduce two metrics
ds, Dy in the space of Z,-valued upper semi-continuous tfunctions on a compact
subset of R® x [0,1]. Let USC be the space of Z,-valued upper semi-continuous
functions on R¢ x [0, 1], where Z,-valued upper semi-continuous functions mean
upper semi-continuous functions embedded in R-valued function spaces.

Let K be a compact subset of RY x [0,1] and (v, qo) be a point of (R¢ X
0,1]) \ I'. Let

USC|x ={g € USC | support of ¢ C K'}.

By using the Hausdorff distance D(A, B) of non-empty compact sets A and
B in R® x [0,1], we shall define the pseudodistance Dy(A, B) of A and B in



R4 % [0.1] by

Do(A.B) = D(AU {(yo-G0) - B U {(y0.9)})

and metrics dy, Dy in USC|k as tollows:

d(g1-g2) = maxi<j<,—1Do(9, (j)~.f}';z_] (J))-

Df(_f/hﬂ:z) — 111'(1?(15.«9—1Do(.(}f][sﬂa.f/; 5+]).

for g1.qy € USC|g. where g~ '[s+] = {(z.t) | g(z.t) > s} and g7 '(j) is the
closure of the set ¢;7'(j) = {(x.t) | g(x.t) = j}. Then the following theorem

holds.

Theorem II (Theorem 3.5 in Chapter 4). For {f,} C USC|k. suppose

di(frnfm) = 0asn.m—oc. Let g = Ni_ V, i fn Then we have
D¢(fn.g) = 0 as n— oc.

Using the above theorem. we have

Theorem III (Theorem 6.4 in Chapter 4). For a nonzero a € P. the fol-

lownng assertions hold:
(1) ds(v,(a), vpnla)) =0 as n.m — oc.
(2) Put fo = Nisi V, s tnla) € USC. Then we have

Di(vpla). fo) =0 as n — oc.

and

Theorem IV (Theorem 6.5 in Chapter 4). For a € P with a(0) # 0. let

Vo = (02, Upor 229 and g, be defined by ga(y.q) = limp e (Vn(a)) (g, q) in the

pointwise topology. Then the following assertions hold:



(1) The characteristic function ly, of the set Y, satisfies

Ja

and

.(}u — /\;1.2] \/I?Zk‘ L';’n(a)ﬁ
where g(x.t) = inf{o(x.t)|o € USC.o(x.t) > g(x.t)}.

(2) Though g, is not necessarily the same as gs for any a € P as shown n

Theorem 1. the upper envelope g, of g, 18 the same, that s,
Ja = 45 = fn = [s.

where ff'f — AFJE] \/nZk C:?”(a)*

Therefore in case of M = p. the upper envelope of a limit function. g,. takes
either 0 or p — 1 and does not depend on an 1nitial configuration.

In Chapter 5. we investigate the property of linear cellular automata in order
to extend the results in Chapter 4 to the case M = p” with r € N. We show the
following theorem for a linear cellular automata rule L satisfying some condition,

which we call it the condition (A) and it will be described 1n Chapter 5.

Theorem V (Theorem 2.7 in Chapter 5). For a prime number p and r €
N. let L be defined as the equation (1.1) and the summation ) 1s taken as the
summation with mod p" and satisfy the condition (A). Put t(r.)) = j(p" — p' )
and i(r.j) = —(t(r.j) — p" ")y — p" "'y, where ri.ry € G satusfy (1),(11).(111)
and (IN') of the condition (A).

Then the set {L'5,(i(r. 7)) |1 < j < p"} is ap'-set. where the set £, M=
I.... .k} is a k-set if the set has one-to-one, onto correspondence with the set

(0.1.... k—1}.

[n Chapter 6. we extend the result above to mod p". where p 1s prime and
r € N. that is. L is defined as the equation (1.1) and the summation ) is taken

as the summation with mod p”. We have a similar result to the case of M = p.



Theorem VI (Theorem 2.3 in Chapter 6). For a € P with a(0) # 0, we

have the following assertions:

(1) The sequence {v,(a)} converges to a function on RY x [0, 1] in the pointwise

topology.

(2) The limit function g, of the sequence {U,(a)} wn the pointwise topology s

T -invariant. that 1s, 1T g, = q,. where

Tg(y.q) = Z (L7 8)(0)g(S; H (y.q)

beG .
- ijr |

for -}’—) < g < ’—}t—‘- with 0 < 7 <p—1 and

T'g(y.0) = g(py.0)

and

(3) As for the limit functions gs and g, of {¢,(8)} and {¥y,(a)} respectively,

we have a(0)gs = ga.
S. Takahashi investigated the set of “b-state”
Ry(n.8)={(x.t) €EZ" xZ, |0<t<p" —1. (L'9)(x) =b (mod p")}
for b € {1..... p" — 1} and the set
Knd)y={(z.t)EZ' xZ, |0<t<p"—1. (L'4)(r) #0 (mod p)}

for f € {1.2.... .r} and for b € Z, satistying b/p/~!' € N and b/p/ ¢ N, he
showed a limit set of { A/ (n.68)/p"} is equal to a limit set of {}(n.d)/p"} in the
sense of Kuratowski limit.

We show the relationship between the limit function and the limit set of

f n..'|) Y ‘ ¥ ? : .
{2 ;n‘ '3 We define that an element j € G is prime if a;/p ¢ .




Theorem VII (Theorem 5.2 in Chapter 6). Suppose that the set @ in (1.1)

with mod p" has at least two prime elements. Let the function gs be defined by

I5(y.q) = limn_m(c.*n(d))(y. q) and Yy be the lLimit set of {Kf(n.d')/p”} in the

sense of Kuratowsks limat.

Then

(1) the relation between g5 and 1Yr b as as follows:

& r+1— J—1
Js = Z ([) Hi=§ — l)j)f 1},}\Uf—-i},ri-.

T— R
1< f<r

where g(r.t) = inf{o(x.t)|o € USC.o(x.t) > g(x,t))}.

—— [}

(2) The relation between g5 and {wa(0)} is as follows:

.(}(‘3 == /\ \/ JCJI‘n—I—r-1(5)'

k=1 n>k

Theorem VIII (Theorem 5.3 in Chapter 6). Suppose that the set G in (1.1)

unth mod p" has at least two prime elements. Put Jaly.q) = lim,_, (¢, (a))(y. q)

for a € P with a(0) = kp’ (k/p ¢ N and j € {0.1,....r — 1}). Then we have

the follounng assertions.

(1) the relation between §, and 1Y7} is as follows:

N — E gl o L et nd —1+3
Ja = (p — l)p 1}}'\\Uf:1l yo -
ISf<r—j

(2) The relation between g, and {un(a)} is as follows:

A \/ -(_*IIT"I?-}—?‘—-] (a) — v .a'r‘r(a)-
k=1 n>k

rels,

Though Takahashi showed the existence of the limit set of each value of Z,

separately, we can consider the convergence to the limit sets of some values

simultaneously by using the functions {v,}.





