Chapter 2.

Classification of some rules of
cellular automata

1 Introduction

Cellular automata are a class of mathematical systems characterized by discrete-
ness ( 1n space, time and state values). determinism and local interaction.

Let Z and N be the set of integers and the set of natural numbers. A cellular
automata consists of d-dimensional lattice (Z%, d € N), and each site takes a
state. one of the values from the set Z, = {0....,k — 1} . where % 1s a natural
number. 2! € Z; denotes the state of a site i € Z* at time t € N. The state of a
site 7 at time t+1 1s determined from the states ot its neighborhood 1 —r.. .. i147.
at time t. 1.e.

A+ gyl Lt N
T, = (T s T 13Ty Tiuqaere s Liny)s

where f: (Z.)?""!" — Z,;. represents the “rule” defining the automata. (f is called
a rule function). and parameter r determines the “range” of the rule.

Based on investigation of a large sample of cellular automata, 1t suggests that
many (perhaps all) cellular automata fall into four basic behavior classes. In ref.

2], four classes were defined as follows.

Class 1 Evolution leads to a homogeneous state.

Class 2 Evolution leads to a set of separated simple stable or periodic structures.
Class 3 Evolution leads to a chaotic pattern.

Class 4 Evolution leads to complex localized structures, sometimes long-lived.

[n this paper we discuss classification of rules of the simplest cellular automata
without simulation. The simplest cellular automata are those with » = 1 and

2. there automata are defined on a one-dimensional spatial lattice, and

A.
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consist of binary-valued sites evolving in time according to a nearest-neighbor
interaction rule. Since the domain of f is the set of 2° possible 3-tuples, the
rule function f is completely defined by specitying the “rule table” of values

c; € 40,1} with i =0.1.....7 such that
000 = 5. 001 = .. ... 111 — c5.

where 7y — ¢; indicates that f(zryz) = ¢;. There is a total of 2° = 256 distinct

rules. The conventional labeling scheme [3] assigns the integer

R:Z(‘;Qi (11)
1=

to the rule defined by f. The rule number thus assumes an integer value between
0 and 255.

We redefine four classes mathematically and in Section 3 show another ex-
pression (3.1) of rules. This expression is useful to see the property of rules for
classification. Since some linear rules are studied in [1]. the other linear rules are
investigated in Section 4 and the nonlinear rules are ivestigated m Section 5

using the expression of Section 3. Finally we classify some rules of the simplest

cellular automata using the results of Section 4 and 5.

2 Injectivity and linearity

A rule R is said to be linear if the function f defining the rule R satishes

additivity condition. that is. for y and z € X = {0.1}*" ",

fly)+f(z) = fly+=).

where “+7 denotes binary addition. A rule R is said to be wnjective wn the

(i + m)th component (m € {—r.....—=1.0.1,....r}) if for every tuple

(Tj_p o X1 TiTi01 ... Tijyyp) € X,

the rule table for R represents a one-to-one mapping between r;,,, and

fle;_yp...0; 12741 ... Tir,) when the other components z;,;(j # m) are hixed.
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In this section, the relationship between injectivity and linearity is discussed.
It is easy to check injectivity of a rule, but difficult to check linearity of a rule
by definition of R (1.1). The following proposition asserts that a rule is linear 1

the function f defining the rule R is injective and satisfies a certain condition.

Notation 1. 1. For z € {0,1}, let Z := z+1.

2, borw= Li—grTijepsg1 -+ Tjooo Ligr—1Li4r; let

_..m o —
T = Ti—rTi—p+t1-+ -Tigm -+ Ligr—1Li4r.

3. For the function f defining the rule R, let
Xt :={zeX|f(z)=0}
and
XE.={zeX|f(x)=1}

where X = {0, 1}*"+1.

Proposition 2.1. If each site takes one of the values from Z, = {0,1}, the

following (1) and (1I) are equivalent.

(I) R is a linear automata rule.
(IT) Either (1) or (2) holds.

(1) A rule R is injective in at least one component and for any x, Yy € X5

there exists z € XE such that z+y = z.

(2) R=0.

Proof. (II) = (I). It is obvious that (2) implies (I). So we show that (1) implies

(D).
Let R is injective in the (7 + m)th component (m € {—r,...,7}) and x, ¥y
belong to Xf. Then ™, y™ belong to XF. So £"+y™ = x+y. Therefore

flz+y) =0= f(z)+f(y).
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[n other cases. we can prove 1n a similar way.

(I) = (II). Suppose a rule R is not injective in any component. Then 1t follows

that all y € X are mapped to 0 by the linearity of the rule R. [

3 Definition of class

[n this section. based on Wolfram's four classes. we redefine four classes mathe-

matically.

Notation 2. 1. An initial condition {z{ | —oc < ¢ < oc} is said to be a finite
initial condition I[AMy, Ms] on an infinite lattice if there exist finite numbers

M,. M, satisfying z¥ = 0 for i < M. i > M, and 2%, =z}, =1.

0,1....}] be

2. Let a member of the set {r! | —oc < i < oc} [resp. {z} | ¢

called a spatial sequence S’ [resp. a temporal sequence W;].

Definition 1. Let {z! | M, —t < i < My+t.t > 0} be generated by the rule for

initial condition I[M;, M,]. Consider the following three cases (a), (b) and (c).

Case (a) There exists a time t, such that {z! | My —t < i < My + t};>, 1S

homogeneous. that 1s.

ri=0 (forallt>tyand My —t <i< My+1)

{
Or

ri=1 (forallt>toand M, —t <i< My+1t).

Case (b) For each site i there exist a time #; and a natural number m such that
vl = 2™ for t > t;, and not case (a).
Case (¢) There exists at least one site ¢ such that a temporal sequence W; 1s

aperiodic.

Then one of the above cases occur and we define four classes as follows:
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Class I Case (a) holds for any initial condition I|M;, M.
Class II Case (b) holds for any initial condition I{Mj, M.

Class III Case (c) holds for any initial condition I[M;, Mj].

Class IV At least two of cases (a)~(c) occur depending on the initial condition.
To show which class a rule belongs to, we use the following theorem.

Notation 3. For a state zt € Zy, let zf - 2% =zt x

t-
7 J’

Theorem 3.1. Let By = {0}, B; = {1,2,4}, B, = {3,5,6} and Bz = {7}, and

define {a;}/_, by using {c;}_, in (1.1) as follows.
(1) For 1 € Bo, let a; — €.
(2) Fori € By, let a; = co+c;.

(3) For 1 € Bg,

c;+Co if dagy +2a9 + a1 =1 ordag +2a9+a; =7 — 1,
a; = O
7' ci+co+1 otherwise.

(4) For 1 € B3,

— l4+c7 if Z?:o a; =1 (mod 2),
7 Ct of Z?:o a; =0 (mod 2).

Then the rule function f can also be expressed as follows:

¢ t ¢ R ¢ t t
f(CC«::-—l t Ly 377:+1) =a0+a1T;, 1 TA2T;+A3T; * T;

- t t t ¢ t
+a43:i_1+a5:ci_l 'Ly +a’6xi—1 R (3-1)
' t t ¢
TA7T;_1 Ty Tyyq,s

where a; € {0,1} with j =0,1,...,7 and “” denotes addition modulo 2.

Proof. To show that the function (3.1) represents the rule R defined by (1.1),

it is enough to show that f(ze212¢) = ¢222,494, 42, Dolds for any zoz129 € X.
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For & = 000, f(000) = ag = ¢y by (1). For & € {001,010,100}, let & = xoz,x0,
7 = 1(k € {0,1,2}). Then 2* € B; and by (2),

f(IQIElIo) a4I2‘i‘&2$1+&1$0+a0

Aok ";‘ao — (CO‘E'CQk )"i‘a,o

— Cgk.

For z € {011, 101, 11()} let € = T971%9, Tk = Ty = 1(k # m,k,m € {0,1,2}).
Then 2% 4+ 2™ € B,;. We show f(z2217¢) = Cokgm. Now

f(222120) = Aok Tr+Aom Ty +Aok 19m Ty * T+

If either 4a4 + 2a9 + a; =2 or 4a4 + 2a9 + a; = 7 — 1, then aq = asm. By (3),

0,2;: 4.2m —HZO

flz)

Cgk 4om +Co-|-a0

Cok 4.om .
Otherwise, since asx # agm, agk+asm = 1. By (3),
f(x) = 1+agk om+ag
= 14+(cok yom+co+1)+ag
= Cokom.

Therefore f(zox129) = Cokiom.

For @ = 111, let © = z92129. Then 2° + 2! + 2% € B3 and by (4),

f(111) = ap+a;+ - - - +az

1'{'(14—67)

|

C7,
where Z?:O a; =1 (mod 2), and
f(ll].) — G0+a1+ s —}—CL7 — C7,

where Z?:o a; =0 (mod 2).

Therefore f(xo2120) = 224,492, +2, holds for all zoz 120 € X. ]
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4 Linear rule ‘

In this section, the properties of linear rules are investigated. A rule is linear if
and only if ag = a3 = a5 = ag = a7 = 0 in (3.1) holds, i.e. one of the following
rules

0,60, 90, 102, 150, 170, 204, 240.

Proposition 4.1. Suppose the rules evolve on lattice with arbitrary initial con-

d’&tZOTL ][Ml, Mg] .
(i) If R is a rule with ag = 1 in (3.1), then x}, ., = 1 holds for any t > 1.
(ii) If R is a rule with a; = 1 in (3.1), then z%, _, = 1 holds for any t > 1.

Proof. (i) Let R be a rule with a4 = 1 in (3.1). By induction, we can show

Ty, = 1 for any ¢ > 1.

(ii) It is obtained in the same way as in (i).

[

Proposition 4.2. Let R be a rule with a;+aqs+a4 = 1 and ag+az+as+ag+ar =
0 in (3.1).

(i) For an initial condition I[My, Ms| and any t € Z, there exists T(;) € N such
that zt = ' holds for t > 1y

(ii) For an initial condition I|M, M3] and any t > 0,
Zagers == LiZpp =1 or s, = 1 holds.
Proof. Let R be a rule with
t+1

L ) I t | L

where a; + ay + a4 = 1.
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(i) Let Rarule witha; =1. By z;7" =zf,,, 2%, ., , = 0 for any i,t € N. So
:z:?jgjjl = xﬁjff and zj, . =0 for j,t € N. Therefore there exists 7(;) € N
such that z¥ = :Ef;“ for ¢ > 1(¢;). For a rule R with ay = 1 or ap = 1, the

conclusion will be obtained similarly.

(ii) Let R be a rule with a; =1 [resp. a4 = 1]. By Proposition 4.1, zj, ., =1
holds for any ¢ € N [resp. z}, _, = 1].

Let R be a rule with ay = 1. By z!*' = z!, Ty, = 1 holds for any ¢t € N.

Remark 1. Rules 170, 204 and 240 satisty the condition of Proposition 4.2.

Proposition 4.3. Let R be a rule withay = 1, a1+aq4 = 1, ap+az+as+ag+ar =
0 in (3.1). Then every temporal sequence W; generated by the rule with an initial
condition I|Mi, My on an infinite lattice is either 1 periodic or 2m periodic (m

1s a natural number).
Proof. Let R a rule with a; = 1. Then z!™' = zt_, +at.

(1) For i < My, if t = 1, then z; = z}_,+z = 0+0 = 0. We assume z! = 0
for any ¢t < k with some k € N. Fort = k+ 1, z;t!' = 2% 428 = 040 = 0
by assumption. Since z! = 0 for any ¢t > 1, any temporal sequence W, is 1

periodic.

(2) For i = M; and t = 1, zy,, = x},,_1+2},, = 1 by assumption. We assume
that z; = 1 for any ¢t < k with Kk € N. Fort = k + 1, :cﬁ}'ll = T3 _1+Thy, =
0+1 = 1 by assumption. Since Ty, = 1 for any ¢ > 1, a temporal sequence

W, 1s 1 periodic.

(3) For ¢« > M;, we assume that a temporal sequence W; is either 1 periodic
or 2m periodic for any 7 < ¢g with 79 > M;. Let W;, be of p periodic with

p € {1,2m} and k > p. Then o} "4z *+zi >+ 2P = a witha € {0,1}

10
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holds for & > p. So

k-1 k—2 | K—p k—p
Sy :C’ZO +CE'LO + ' :C?'O +$10+1
— o LpkD
= A1TT;, 4]
. : : ‘ ‘ k—p -
Therefore if a = 1, a temporal sequence W, 4, 1s 2p periodic, since z; [ =
k+p _ _ ' . k=p _ .k
z; 4. If a =0, a temporal sequence Wi, 1s p periodic, since T; .} = Ty 1.

Therefore every temporal sequence W is either 1 periodic or 2m periodic (m is
a natural number ).

For as = 1, the conclusion will be obtained similarly. []

Proposition 4.4 ([1]). Let R be an injective rule in its (i+1)th component with
100 € X&( or injective in its (i — 1)th component with 001 € X{*). Then with
arbitrary finite initial conditions, there can exists at most one periodic temporal

sequence.

Remark 2. Rules 90 and 150 satisfy the condition of Proposition 4.4.

5 Nonlinear rule

In this section, the property of nonlinear rules are investigated by using Theorem

3.1.

Proposition 5.1. Consider the rule R with ag = 0 and a1 + a4 < 1 wn (3.1).
Suppose there exists M € N and iy € N such that z;, = 0 holds for t > M with

an initial condition I[M;, M>).

(i) Let R be a rule with ay = 0. If there exists k > M such that zi ., = 0,

then x; ., = 0 holds for any t > k.

l

(ii) Let R be a rule with ay = 0. If there exists k > M such that zi, _; = 0,
then x; _, = 0 holds for any t > k.
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Proof. (1) As R 1s a rule with ¢; = 0 and .rf-m = (0 fort > M. tor anv t > M

A+1 kot A
! w+1 f(-zj{]'l t’.ﬂ“‘]'? ";L’J"-*'Q)

1! ' 1! a ; [ | 11 | o "i{ > 1!
AT ; 1 TA3T; 1 T Lo A4T; +A5L; T, 4o

APt AN A Y A S
_l—([(i']fu A +(1‘ 'Ig:} A fﬂ_l-] Jf{]‘l"Q

f{j—t_l

o
—_ (1).] {U_i_l_"([jl 3LJ+] I?U‘f‘Z'

il

ke

Theretore there exists & > M such that r

= (0 and z{ ., = 0 for any

t > k.

(11) It 1s obtained in a similar way to (1).

Proposition 5.2. Let R a rule with either

as = l.ag = a; = ay = ag = () (5.1)
or

(L1 = 1,(1-(] = )y = U4 = Ug = 0 (52)

i (3.1). Then for an imatial condition I\My, M| and i € Z there exists Ti;) € N
such that i =0 holds for t > T(;.

Proof. In case of (5.1), by assumption and Theorem 3.1, we have
S N S IR Lo RSP S A -
v, =T +a3Ti_q T FHaex;_q c TiHarTi_q T Tiyg (5.3)

v -.' * f' r o ; 1] Saanaes 10 10. 10 A » ¥ r -‘ H W . ; t prs—
By using (5.3), we get x; = f(x] ,x;z;. ) = 0 for any ¢ < M; and z; = 0 for
] 7 J J L] L - L ! 1
any ¢ > 0. i < M;. As it is obvious that if z! , = 0, then 2:7" = 0. we have

{ PR

vy 4., = 0 for any i > M;. By Proposition 5.1 (i). z; = 0 for any i > M.

t > i—M,+1 and any i € Z, and so there exists T;;y € N such that 2! = z;7" =
for any ¢ > 7{;. In case of (5.2). it 1s obtained in a similar way to (a). []
Proposition 5.3. Let R be a rule with either

Gy = A3 =05 = 1.0 =01 = a5 = () (5.4)
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or

a1 =ay=0ag = 1l,60=064=0a5 =0 (5.5)

in (3.1). Then for an initial condition I|My, M| and i € Z there exists T(;y € N
such that i = 0 holds fort > Ty;.

Proof. In case of (5.4), by assumption,
t+1

B bt ot Nttt ot t - ¢t ot
T, = f(Z;_1ZiTirq) = Ti+T; - Tip1+Ti_1+a6Ti_1 * Ti+A7Ti_1 * T * Tiy,y.

By using Proposition 5.1 (i) and the relation above, we get the conclusion by

induction. In case of (5.5), by assumption,

41

ottt ottt - { bt
T, =T, TZ;TA3T; Ty 1TL;_ T, 1A7T_1 Ty * Tyy g

The conclusion will be obtained in the same way as the proof of the case (5.4). [0

Proposition 5.4. Let R be a rule with either
a3:a4:a5=1,a0:a1:agr—=0 (56)

or

ap =az=a¢ = l,a0 =ax =a4 =0,a5 + a7 =1 (5-7)

in (3.1). Then for an initial condition I\ My, Ms| and @ € Z there exists T; € N
such that x; = 0 holds for t > T(;.

Proof. In case of (5.6),

t4l _ b bt t b it t ot ot
T, =T, _1FT; Ty 11TAsT;_1 * Ti T T;TA7T;_1 T Ty,

where as + ay = 1. By using Proposition 5.1 (i) and the relation above, we get
the conclusion by induction. In case of (5.7), it is obtained in a similar way to

the proof of the case (5.6). O]

Proposition 5.5. Let R be a rule with ag = a; = ag = 0 in (3.1). Then for an
initial condition I\ My, M| and t > 0, i = 0 holds for 1 < M, and @ > M,.
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Proof. Now we have

t+1 o NN PR o L R AR RN A
Yoy = 151 f-+(13.1[- 3 l;Jr]—{fu_.,.z i1 1 f-H—l—(:ﬁ.z_{,-___] 1 _;—l—u,.z i—1 " L; T4,

Let t = 1. Since 2} = 0 for j < M; and j > M.

1 0 o 0o ;0 0 ;0 0 ;0 0 0 00
L; =Q3T; 1 T; *T; 1+Q3%; - X 1 TA5F;_ " T, 1 TAeT; 1 T, T+A7T;_1 * T; - Ty
= {)

for i < M, and i > M,. When t = k., we assume that zj‘ = () for any 7 < M; and

7 > M,. Then for any ¢ < M, and ¢ > M,

A

k] koo kK ko Lk ko k ko k
A9T; +A3T; ~ T FA3L;_ 1 - Xy TAgl;_ * X;TA70;_ 4 X

A1
o 2 ; -,)_?._*_]

!

().

Then x! = 0 holds for t > 0.7 < M, and ¢ > M,.

Proposition 5.6. Let R be a rule with ag = a; = as = a4y =0 and az + ag < 1
i (3.1). Then for an initial condition I|M,. Ms| and M, < @ < M, there exists

M € N such that ' = 0 holds for any t > M.
Proof. We have
S Y A A SNy A ST SRR S R S SR

where a3 4+ ag < 1. By using Proposition 5.1 (1) and Proposition 5.5, the conclu-

sion will be obtained by induction.

6 Classification of some rules

In the previous sections. some propositions have been established. Using them.

we classify some rules of the simplest cellular automata.

Theorem 6.1. Some rules of the simplest cellular automata are classified as

follows.



[ class rule
" class 1 |0, 8, 32, 40, 64, 96, 12R8, 136, 160, 168, 192, 224
2. 10, 16, 24, 34, 38, 42, 46, 48, 52, 56, 60, 66, 80, 98, 102,112,
116, 130, 138, 144, 162, 166, 170, 174, 176, 180, 204, 208, 240 |
class 111 | 18, 30, 86, 90, 150, 154, 210 - ' ]

Proof. Let

{ -

class 11

A, ={2,10,16, 34,42, 48,80, 112, 130, 138, 144, 162, 176, 208},

A, = {38,46,52,116, 166, 174, 180, 244 },

Az = {24, 56,66, 98},

A; = {8, 32,40, 64, 96,128,136, 160, 168, 192,224 },

As = {0,170, 204,240},

Ag = {30, 86,90, 150, 154, 2101},

A7 = {18},

Ag = {60,102}.

(i) For a rule R € A, there exists T(;) € N such that z; = 0 for any ¢ > 1,

and any 7 € Z with an initial condition I|M;, M| by Proposition 5.2. In
addition, either z%, , = 1 for any ¢t > 1 or 2., = 1 for any £ > 1 by

Proposition 4.1. Since every temporal sequence W, generated by the rule

R does not satisfy (a) Definition 1 but satisfy (b), it belongs to Class 1.

(ii) For a rule R € A,, by Proposition 4.1 and Proposition 5.3, every temporal
sequence W, generated by the rule R does not satisfy (a) of Definition 1
but satisfy (b). Therefore it belongs to Class II.

(iii) For a rule R € A, by Proposition 4.1 and Proposition 5.4, every temporal
sequence W; generated by the rule R does not satisfy (a) of Definition 1
but satisfy (b). Therefore it belongs to Class II.

(iv) For a rule R € Ay, there exists M € N such that z; = 0 for any t > M
and M, —t < i < M, +t for an initial condition I|M;, M,| by Proposition
5.5 and Proposition 5.6. Since the rule R satisfies (a) of Definition 1, it

belongs to Class 1.



(v) For a rule R € A5 with R # 0, either z, _; = 0 or zj, ., = 0 holds for
any t,7 € N. So the rule R belongs to Class II by Proposition 4.2. Rule 0

belongs to Class I obviously.

(vi) For a rule R € Ag, almost all temporal sequence W; generated by the rule
R is aperiodic for an initial condition /{M;, Ms| by Proposition 4.4. Since
the rule R satisfies (¢) of Definition 1, it belongs to Class III.

(vii) For a rule R € A;, we get the conclusion by the following proposition.

Proposition 6.2 ([1]). For arbitrary finite initial condition of even length
on an infinite lattice, every temporal sequence generated by rule 18 is ape-
riodic. For arbitrary finite initial condition of odd length on an infinite
lattice, every temporal sequence -with the exception of the trivial case-1s
aperiodic. The trivial case is the center temporal sequence of all 0’s gen-

erated by rule 18 from a finite spatial sequence that s spatially symmetric,

with all 0-blocks of odd length.

(vill) For a rule R € Ag, the conclusion will be obtained by Proposition 4.3.
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