Chapter 3.

The limit set of cellular automata

1 Introduction

A cellular automaton consists of d-dimensional lattice (Z% d € N), and each
site takes a state, one of a finite set of possible values. The value of each site

evolves in discrete time steps and it is determined by the previous values of a

neighborhood of sites around it.
Let P?% be the set of all configurations : Z¢ — Z/p. A map L: P4 — P? is a
transition rule if (1) L(0) = 0; and (2) there exist vy,..., v, € Z% and a map

f:(Z/p)™ — Z/p such that
(La) () = fla(z+v,),...,a(z+v,)) forall z € Z% a € P°. (1.1)

lo consider space-time patterns of cellular automata, we shall study the se-
quence a, La, L°a = L(La), La,.... If a is any finite nonzero configuration,
for any k, putting a, La, L%a, ..., L¥a on (d+1)-dimensional lattice in oder,
contracting by 1/2%, one obtains Gja as a subset of R? x [0,1]. S. Willson (3]
studied when L is linear modulo 2 and showed there exists a stable limit set of
Gia as k — oo and the limit set is independent of an initial configuration a, if
a is finite and nonzero .

When L is non-linear, their behavior becomes complicated. Based on a large
sample of cellular automata, it suggests that many cellular automata fall into four
basic behavior classes and S.Wolfram [4] classified cellular automata with levels
of prediction of the outcome of the evolution from particular initial states. If Lis

non-linear, the existence of the limit set may depend on the initial configuration
or there may exist no limit set for any initial configuration. We discussed the
behavior of cellular automata in the case of m = 3 in (1.1) [1]. In [3], it was

discussed when p is 2 and a transition rule L is linear. When p is 2, the state of
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each site 1s a zero or a one and the set theory plays an important role. When p
1s greater than 3, it is useful to consider a finite-valued function instead of the
set theory and it may be helpful to use the operator theory.

In this paper, we shall investigate the structure of cellular automata by using
the operator theory. We consider the space USC of all upper semi continuous
functions g : R*x [0, 1] — Z/p and consider an operator on USC. In section 2, we
define the product space [] Ex and the operator F, on it corresponding to L. We
investigate whether the limit set of F as k — oo belongs to a certain subspace
E. and the relation between lim G¥a and lim FFg [Theorem 1]. We consider a
quotient space E = || Ex/ ~ and the operator F; on it and Investigate conditions
that the F;-invariant set belongs to a certain subspace. In section 3, we consider
the case of linear rules. In section 4, we consider the case that L is non-linear.
We show some conditions for L and initial configurations such that there exists

a Fy-invariant set when the term of non-linear is only quadratic ‘Theorems 5

and 6] and when the rule L contains triadic non-linear terms [Theorem 7].

2 Operators on the space USC and their limit

We shall consider cellular automata taking the value Z/2. A configuration a
on Z% is a map a : Z¢ — Z/2 and P? is the set of all configurations on Z%. A
configuration a is finite provided a(v) = 1 for only finitely many v. We define two
kinds of addition: If a, b €P*we may define a+b € P% by (a+b)(v) = a(v)+b(v)
mod 2 for v € Z% If z,v € Z% we may define the translate of a € P? by v as
a+v where (a+v)(z) = a(z — v). For z € Z¢, we define 6, € P? as

6m(y)={(1) i;z

P4t is the set of all maps w : Z¢ x N — Z/2, and 'Piﬁcl is the set of w € P
such that w(z,t) =0 for t > k.
Gry: P — P> is defined by

+,2k +,2k+1
w(z,t) 0<t<2F—1,
Gprw(z,t) = (Lt“"kao)(a:,t) 28 <t <281 — 1 for wo(z) = w(z, 2F — 1),
0 oR+l < ¢t
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Let USC(R? x [0.1]) be the set of all upper semi continuous functions ¢ : R? x
0.1] = {0.1}. The map ¢ : Pi‘; 5 USC(R x [0.1]) is defined by

Op(w)(z.t) =inf {¢(x.t) | v € USC(R? x [0,1]), v (x,t) > w([2%z],[2%¢]))

for w € 73;?_7;1 where [2%2] = ([2%21].[2%25]. ..., [2F2,]) for 2 = (21, 29,....2,)
and [2r;] means the Gauss’s symbol.

G% P! — USC(R? x 0.1]) is defined by
k—1

G%a = oy ( GLJ(I) (2.1)
j=0

Remark 1. 1t Lis linear. then G”z 1s also linear.

for a« € P4,

We define f > ¢ for f.g € USC(R® x [0.1]), if f(z) > g(x) for all = €
R4 % [0,1]. Then USC(R? x [0.1]) is a complete lattice [2, chap. 2]. For any
{fn} C USC(R? x [0,1]). the relation A -, Visn ft 2 Voey Nisy fe holds. i

they are equal we denote them both by lim, . f, in USC(R® x [0.1]).

Remark 2. The existence of lim,,_,.. G7a depends on L and on the initial config-

uration a.

In order to investigate the existence of the limit set, we shall consider a product

space. Let Ei = ox(P{.). then Ey, C Ey C E; C --- C USC(R? x [0,1]).

Fii: B, — Ei.q 1s defined by
Frilg) = 011G kO (f/) for g € E}.
Let [[ Ex be the product space of {E.} and
F. ={{g:} € HEk | There exists klgzlc gr in USC (R4 x [0.1])}.

The following relation holds:




Fr: TTE. =[] E) is defined by

—

F1(9) = 1Ak jr=o for g =g« }.

L
/\/\f—{—]

The distance d(g., h) between g

where

g0

FL,A.‘(Q};) }1 > O

{gr} and h = {hit € 1] Ey is defined by

o0
— E [ grs D).

where

1 .= h.
d(gp. hy) = { 0 gi i }j::

For {g"}, C [[Er with §" = {g¢f }x. we shall define lim,_,~ " in ][ £} by

h €[] Ey if lim,~ d(g". 1) = 0. The following theorem holds.
Theorem 1. The following statements hold:

(a) F; 1s a contraction on the metric space Hy, =49 =49t € [1 Ex | g0 =

oola)} for any finite and nonzero a € P°.
(b) There exists lim,,_, F;'g in || Ex for any g € [] E}.
() him, o F7'g in || Ey 1s Fr- mnvariant.

(d) The follounng (d-1) and (d-2) are equivalent for finite and nonzero a €

7_){[.

(d-1) There exists lim,_,.. G7a in USC(R? x [0.1]).

(d-2) lim, o F7'g in ] B} belongs to Eo for g ={0¢(a).0,0....}.
Proof. Let g ={gi}. h ={hi} € H,. Then

FLf} — {00(“)- Frooola). Frig1.Fr20s. ... }

N
=1



and

FL]_I p— {(DQ((I).FLq()C")()((I).FL.’]}I]‘FL’Q}JQ. e & }

hold. If there exists & > 2 such that ¢, = hy. then F; 1. = Fr hi. Thus

S 1 .
d(Frg.Frh) < ;)—(1(.(}..%.).

which means (a). (b) follows from (a) and (c¢) is obvious.

We show (d-1) implies (d-2). For & < n,

/\f H,q:]FI“S.(/O - FIAFLJ:.—*] T FL]GO

(=1 —1 , 1 o~ -
Ok1G L0, OkGL k10, _10k—1GL k—20_o - O01G L1045 Go
J I 4 —1
OQf+1 (H,.;—_-1GL..-:C>0 (.(]0))

k41 —1
G Qg Yo

‘
GL+](1.

Then hm, . F/'g belongs to £,.. It can be proved in the same way as above

—I

that (d-2) implies (d-1).

Since there isn't a one-to-one correspondence between the set {lim,,_,.. G7a |
a € P?Y and the set {the E. | g=400(a).0,0....} such that h = lim,_, F]'g}.
we consider a quotient space. We define the following equivalence relation. The

equivalence relation “~" for g = {g,}. h = {h} € [[ E, is defined by

IND
IND
p R

j~h < limg, = limh, in USC(R?x[0,1]). 2.

k—rocC k— o0

Let F = ]| E./ ~ be a quotient space. 7 : || E. — E be the canonical quotient
map. Because g ~ h implies F; g ~ F;h, we can define a map F; : E — E by

HE;: - al > HEL
Fi(zg) =n(FLg). ”l Jf

b e

b — b




3 Linear rules

In this section we show that there exists lim,_. G7a in USC(R' x [0,1]) for

L and the limit set is independent of an initial configuration a.

Theorem 2. Let L be a linear modulo 2 and d = 1. Then for a finite nonzero
configuration a € P there exists a limit set lim,_. GTa 1 USC(R!' x [0,1]),

which 1s independent of a.

Theorem 2 follows from Lemma 1. At first, we shall state Proposition 1 in

order to prove Lemma 1.

Proposition 1 ( S. Willson (3] ). Let L be a linear transition rule. Then the

following are true:
(a) For any positive integer q, LY is linear.
(b) = € Ly if and only if 29z € L*6,.

(c) Ifa € P? then La=S__ L(fo+z) C Upea L(d0+2).

rea

Lemma 1. Suppose a map G5 : P — USC(R'x|0,1]) is defined by the equation

(2.1) and a € P* is finite and nonzero. Then the following are true:

(&) \VGE(&) =\ Gil(a);

n=1k>n n=1 k>n
(©) AV GL6) =\ A\ Gi (%)
n=l k>n n=1 k>n
Proof. We first show that if A~ Vs, GI (0o) (z,y) = 1, then
AV G (@) (z,y) = 1.
n=1k>n

Assume that for any n € N, € > 0, there is k, > n, (2/,¥') € R! x [0,1] such
that |2/ — z| + |y —y| < eand G} (&) (z,9y') = 1. We show that there is

(z",y") € R' x [0,1] such that |z —z|+ |y —y| < € and G} (a) (z",y") = 1.
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Let (z/,y) € [, 5] x [4&, =2L] then j, € L™d. Let |a| < 2°, where |q|
is the diameter of a. Since L is linear, 2°4, € Lzbi‘”cﬁo by Proposition 1 (b). We
obtaln Lgbinéo C Lzbi“a, that is , 27, € Lzbi”a, since L¥ng = L% 50—T—nj —
L¥n g, + Z?zz(Lzbi“cSo—Fnj) by Proposition 1(c) and n; < 2°. Thus there is
(2" ) € [;Fgr 2_2,%;_1] . [g%f_ %Eg#] and |2 — z| + |y" — y| < |2" — 2'| +
v =Y+ |2 - x|+ [y —y] < 2/2" + €. Let k, > n for sufficiently large n,
2" —z|+ [y —y| < €, then for any ¢ > 0,n €N, G (a) (2", y") = 1.

Conversely, assume that for n € N, € > 0, there is &k, > n, (2',vy’) such
that |2/ —z|+ [ —y| < € and G3* (a) (z',y') = 1. Let (z',y) € g ] i
[539;, Egﬂ;—l] Since j, € L™a C J(L™ép+n;) by Proposition 1 (c), there is n;
such that j, € L™8+n;. Let (z”,y") € [l”'z—'%l, J"—;E{il} X |2, L], Since
2" — 2|+ |y =y < 5= + 5=, |2 —z|+ |y — y| < €. Thus, we obtain
G (8) (z",4") = 1. So (a) holds.

(b) can be proved in a similar way to (a).

It is clear that if \/ -, /\an G% (80) (z,y) = 1, then

AV Gt @) (@) =1

n=1k>n

Assume that for n € N, ¢ > 0, there is k, > n, (z/,7/) € R! x [0, 1] such that
' — x|+ |y —y| < eand G}* (&) (2',y') = 1. We show that for any ¢ > 0,
there is m € N, (z”,y”) € R' x [0,1] such that [z” — z| + |y — y| < € and
G5 (60) (z",y") = 1 for all kK > m.

Let (2',y') € [%}}5, '%"",Z;—IJ X [53';?;, %73;_1]  then j, € L™d,. Since L is linear,
2jn € L5y for any b € Z. Let (¢”,y") € | ffer, St | x | B, Zintt |, then

" =z + |y -yl < [2" -2+ -+ 2 -2+ |y —y

2
V2kn

< -+ E .

Thus, for sufficiently large n, |2 — z| + |y — y| < 2. Let k, = m, then
G5 (60) (2",y") = 1 for all k > m. This implies that (c) holds. This completes

the proof. []

The next theorem follows from Theorem 1(c¢) and Theorem 2.
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Theorem 3. Let L be linear modulo 2 and d = 1 and § = {gx} € || Ex. 1
g € USC(R! x [0,1]) has a compact support and nonzero, then there emists

lim,, .o F7g in [[ Ex and it belongs to Ex.
The next theorem follows from Theorem 2 and Theorem 3.

Theorem 4. Let L be linear modulo 2 and d = 1.

(a) The Fp-invariant set in m(E) consists of one element h.

(b) For any § = {gx} € [l Ek, there exists the limit set limp_oo Fr(mg),
which s equal to h in (a), if go # 0 has a compact support.

4 Non-linear rules

Consider a transition rule L'Pl — P! mod 2 as follows:

1<)
T Z f)/’il,?lziiaa(x T Uil)a’(x T ’U?;?)CL(CE T U‘ia)

11<12<13
= Loa(z) + Lia(z) + Lea(z),
that is, Lo is linear and L; and L, are non-linear. Let A = {i|c; # 0}, B =
{(3,7) | Bi; # 0}, C = {(%1,%2,%3) | Vis insis 7 0}, then we can rewrite

La(z) = Z (T + v) + Z T + v;)a(z + ;)

T Z T + i, )a(T + Ui, )a(T + Vig). (4.1)

(i1,12,i3)€C
Let 89 = {¢0(6),0,0,...} € [] Ex. We shall investigate conditions of L and
an initial configuration go such that lim, .. F7'g in J] Ex belongs to E for

g — {CbO(QO)a 0) Oa .o }
We define



and

K
Wz{z(sjlkzl}.
j=1

Proposition 2. The following statements hold.

(1) If L s linear, forn € N,a € P’

L'a(z) =Y Y > a(z+uvs +-+0s,).

SIEA S2€A SnEA

(2) Suppose C =0 for C in (4.1). If there is ¢ > 2 such that

(1) ki, ko € A implies q|(vg, — Uk, ),

(i) (i,7) € B implies 0 < |v; — v;| < g,

then
L"go(x) = Ligo(x) holds for any z € Z,n € N, gy € V.

Proof. (1) It is clear that La(z) = » 4 ¢4 a(T + v, ) for n =
Suppose L"a(T) = ) . ca D soen” " 2usca AT + Vs, + -+ + v, ) holds. Then

[™l(z) = L(L"a)(z)

Z Z Z"'Za(fc+vsl+'--+vsn+l).

Sn+1€EA 81€EA S2€A SnEA
(2) For n = 1, we have

Li(g0)(z) = ) go(z+vi)go(z +v)

(1,7)€B
go(ﬂf T (%3 )90(37 . vjl) 1 go(SE -+ Uig)gO(I —+ ng) 4+ ..

|

Suppose L;(go)(z) = 1, then there is (i, js) € B such that go(z+v;, )go(x+v;,) =

1, and we have

golz +v;,) = 1,

go(CE —+- ’Ujs) — ].,
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so that,

L +Ui3 - kc]a

T + Ujs = }Clq

Thus v;, —v;, = q(k—k&’), which contradicts the assumption, Therefore L;go(z) =
0 which implies Lgo(z) = Logo(z).
Suppose Ligo(z) = 0. It is enough to show Li(Lggo)(z) = 0, since

L™ go(z) = L(L'go)(z)
= Lo(Lgygo)(z) + L1(Lggo)(z)

Lo go(z) + L1(Logo) (z).

Suppose

then there must exist (¢/,5’) € B such that Lygo(z + vir) = Lggo(z + vy) = 1.

Since Lggo(Z) = D gca DQossen " 2us.ca J0(T + Vs, + -+ + vs,) by Proposition
2(1), there exist {s;}i_,, {si}i_;, for k, k" € Z such that

|

T+ Vs, + *+* + Uy, + Uy kq

k'q.

T+ Vgt T+ Vg + Uy

We have vy — vy = q(k — k' — M) for some M € Z, which contradicts the
assumption, and Li(Lygo)(z) = 0 holds. ]

Theorem 5. Suppose a transition rule L is defined by (4.1) and satisfies the

following properties:

There 1s g > 2 such that
(1) k1, ko € A implies q|(vi, — Uk, );
(ii) (2,7) € B implies 0 < |v; — v;| < g;
(iii) C = 0.
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e

Then there exzists h € 7(Ey) such that lim,_.oo F*(7G) = h holds for any § =
{$0(90),0,0,...} with go € V.

Proof. This follows from Proposition 2 and [heorem 3. []
Lemma 2. Let L satisfy the following properties:

(a) There is ¢ > 2 such that

q|(vjyy —v5) AI<T<S M —-1),
where A = {j1,...,im} (U1 <+ <Jm);

(b) B=A{(i,7) |vi=v; —1 forj €{J2,-..,Im}};

(c) C=0.
Ifce W, then Lc = Lgd; + Z?_f___(g) 0_v; +t holds.

Proof. It is enough to show

Le(z) = {

1 forx = —v;;, +y with 2 <y <m(c),
L051($) otherwise,

since
ni(i)CS () = I forz=—v; +y with2 <y <me),
- ~tgy HE\*] = 0 otherwise,

and

Lody(z) =0 for z = —v;;, +y with 1 <y < m(c).

(1) Suppose z = —v;, +y with 2 <y < m(c).

Put e = the number of {k; € A | c¢(z + v,) = 1 }. Since

C(SC T Ujl) — C(_Ujl + YT+ Ujl) — C(y)
= ] for 2 <y < mf(e),
there is vj; < --» < vy_ such that ¢(z +vy) = 1for 1 <1 < e— 1.

c(z +vy)e(z +vy) = c(@+vy —1)e(z+wvy) =1forl <l <e—1by

assumption (b), since z +v; < z + vy and c(z + v;,) = 1. Therefore
e’ = the number of { (¢,j) € B | c(z 4+ v;)c(z +v;) =1} =e — 1,
and e + ¢ = 2e — 1. We obtain Lc = 1.
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(i) Suppose z # —v,; +y for 2 <y < m(c).

We can rewrite as follows:

LC-—-—ZCI—}—’UM ) + Z c(z + vi)e(x + v;)

ki€ A ?,j)EB
=) bi(z + k) +Z{Z5t +oe)}+ Y Sz +v)di(z + v;)
k€A kicA t=2 (1.7)€B
m(c) m(c)
+ Y Gzt {d dl@+v)+ Y dile+ o) 6z +u)}
(1,7)€B t=2 (i,j)€B t=2
m(c) m(c)
+ ) D @ +v)HD) bz +v;))
(1,j)EB t=2 f=s2

Put e = the number of {k; € A | §i(z+wv,) =1, 2 <t <m(c)}. Then by

assumption there is vy < --- < wj; such that

22z 4wy < <z+vp <m(c)and vy # vy, (4.2)

First, we calculate the term J; = 3, o5 d1(z + v ) {9 6, (z + v;)}. If
01(z+v;) = 1, then z+v; < 1since z+4v; < z+v;. Thus Zm( )5t(:z:+’vi) = 4,

that is, the term equals 0. If d;(z + v;) = 0, clearly the term equals 0.

Next, we calculate the term

Z 01(x +v;) Zét (x+v;)}+ Z Zét (T +; }{Zét (z+v;)}

(,7)€B (i,7)€B t=2
We rewrite
m(c) m(c)
= ) D &=+ }{Z&t (z + v;)}
(i,7)€EB t=1

If there is (%9, jo) € B such that z+wv;, = 1, then Vi, = Vi, +1 by assumption

. Thus vj, = vy and = + v;, = 2.

(4.2). Thus

m(c) m(c)
the number of { (¢,7) € B | Z&t(x + v;) Zét(:c +v;)=1}=e
=1 =2
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If z+wv; # 1 for any (z,7) € B, then z+ vy > 2 and x + vy > 2. Thus

m(c) m(c)
the number of { (4,7) € B | Zé}(:c + v;) Zét(:c +v;) =1} =e

by (4.2). Finally,

Lo == 251:1:—}—% ‘I— Zélﬂf‘f“’vzélﬂf“}"{b +Z{Z5t$+vkl
ki€ A (i.7)EB ki€A t=2
+ J1 + Jo
= Z 01(x + vy, ) + Z 01(T + v;)01(z + vj)c
k€A (i.7)€B
= Lod,

Dy Z(i.j)eB 01(z + v;)01(z +v;) = 0.

T'his completes the proof. ]

Proposition 3. Let L satisfy the same conditions as in Lemma 2. If go = b +

(c+m(b)) for ce W, b €V, then

Proof. We shall show (4.3) by induction. When n = 1, we have

Lgo = Lb + (c+m(b))

ffz {0+ (c+m(b))} ( +v;) {b+ (c+m(b)) } (z + v;)
= Z(zé)(ei o) + ) _(etm®)(@ +v) + D bz + v)b(z +v))

+ (Z);B c+m(b))(z +vi)(c+m(b))(z +(vj))

+(Z)::Bb +v;)(ct+m(b))(z +v;) + (Z):B c+m(b))(z + vs)b(z + v;)
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by Lemma 2.

First, we show that Z(iij)eB(c—’F—m(b))(as +v;)b(z +v;) = 0. Suppose that there
is (2,7) € B such that b(z + v;) = (c+m(b))(x +v;) = 1, then 0 < z + v; <
m(b),1 + m(b) < z + v; < m(b) + m(c). By assumption, there is some k; € A
such that

Uy
Uj

Uk, — 1,

Uk,

therefore, we must have
0<z+4+wvy, <m(b) and 2+ m(b) <z + v, < m(b) +m(c) + 1,

which is a contradiction. Thus E(ijj)eB(cim(b))(z + v;)b(x + v;) = 0.
Let Ji(z) = L(01+m(b))(x) + X ; yep b(T + vi)(c+m(b))(z + v;), then

m(c)
Lgo = Lob(z)+ Y (6, +v+m(b))(z) + L(6;Fm(b))(z)
+ Z b(z + v;)(c+m(b))(x + v;)
(7,7) EB
m(c)
= Lob(z) + ) (0_y, +v+m(b))(z) + Ji(z)

Furthermore, we have

{ 1 forz= m(b) ap L i ki € A\{Ujl}’

0 otherwise

Z b(z + v;)(c+m(b))(z + v;) =

(1,7)€B
(4.4)

by the assumption (b), since

N 1 I‘Jr‘Ui:m(b),
b(“”*)“‘{o z+ v > mb) + 1
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and

(c+m(b))(z + v;) = { (1) ggi: Imfl;;l ;é; v; < m(b) + 14 m(c),

m(c)

Since c+m(b) = D ;27 (0—v, +x+m(b)), it is enough to show

1 :z:-——m(b)—i—l-——vjl,
N(z) = { 0 z#mb)+1—uvs,.

Suppose = # m(b) + 1 — vy, for any k; € A\{v;, }, then

LG Fm(b))(z)
_251 (x — m(b) + vk,) + Z 01(z —m(b) + v;)o1(xz — m(b) + vj)
KI€EA (1,7)EB
= 251 r—m(b) +wv,) for (¢,7) €B
k€A

by v; # v;. Suppose £ — m(b) + v, = 1 for some k; € A, then x = m(b) + 1 — vy,.
This contradicts the assumption. Thus J;(z) = 0 by (4.4).
Suppose £ = m(b) + 1 — vy, for k; € A\{vj, }, then

L(élq—m(b))(x)

—_—_Z(Sl(x—l—vk— )+ z 01(z = m(b) + vi)o1(z — m(D) + v))
k€A (3,7)€EB

— Z 51($ —- Ve — m(b)) + Z 61(Uk£ 3 Uj)51(1 o Ukz _I_U])
kiEA (7,7)€EB

e 1)

thus Ji(z) = 0 by (4.4).

Suppose z = m(b) + 1 — v;,, then we have

L(81+m(b))(z) = Y  b61(z + vk — m(b))

k€A
+ Z 01(z — m(b) + v;)d01(x — m(b) + v;)
(i,7)€B
= ) &(z + v —m(b))
kKieA
T Z 01 Vjy T 03)51(1 — U5 +UJ)
(,7)EB
~1,
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thus J; () = 1. Finally we obtain (4.5) and Lgy = Lgb + Zm(c (5mvjl+1-1m(b)).
Assume L'gg = Lib + (c+(m(b) — tv;,)) for t < n. Then

L go(z) = L(L"go(z))
— Z Lngo(ﬁl} 2 Uk) T+ Z Lngo(fE + ’Uz)Lngo(I + ’Uj)

ke A (7,7)EB
_ L8+1b($) -+ LC(Q‘,’ - '+‘ nvh -+ Z T+V—m b) “+ nvjl)L'g'b(:z: . Uj)
(1,J)EB
+ ) Leb(z+u)e(z +v; —m(b) +nvy) + Y LEb(z + v;) Lob™(z + v;)
(i,j)€B (4.7)€B
m(c)
= LgT'b(z) + Lobi (z — m(b) + nvj,) + % 0oy, +n(z — m(b) + nov;,)
h=2
4 Z c(z + v; — m(b) + nv;, ) Lib(z + v;) + Z Lob(z + v;) Lyb(z + vj)
(1,7)€B (1,J)€B
+ Z Lob(z + v;)c(z + v; — m(b) + nv;,) (by Lemma 2)
(1,7)€B
m(c)

= Lg" b(z) + Lodi(z — m(b) + nv;,) + Y 6u(z — m(b) + (n + 1)vy,)

+ Z c(z + vy — m(b) + nv;, ) Lib(z + v;) + Z Lob(z + v;) Lib(z + v;)

(1,J)EB (2,J)€B

+ Z Lob(z + vi)c(z + v; — m(b) + nv;, ).

(,7)€EB

Since Lg is linear,

Lg'go Z Z Z go T+ Vg, + +'Usn)

S1EA sheA SnEA

by Proposition 3. Suppose ) _; .5 Lob(z+v;) Lgb(z+v;) = 1 holds, then {s;}7,,
{8}, for k, k' € Z such that

T+Usg +o*+U +0 = Kq

33+U33+"'+U3;1+Uj1 k,q

We get g(k — k' — M) = vy — vy = —1 for M € Z by assumption (b), but this
contradicts ¢ > 2and k — k' — M € Z.
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Thus it is enough to show

Ja(x) = Lod1(x — m(b) + n’Ujl) T Z c(z + v; — m(b) + nv;, ) Lob(z + Uj)
(1,7)€B
+ Z Lyb(z + v;)e(x + v; — m(b) + nvj, ) + Z Lgb(z + v;) Ly (z + v;)
(i,7)€B (,7)€eB
{ 1 forz=m(b)+1—(n+1)v,,
0 otherwise,

which will be proved in a similar way to the case n = 1.

So (4.3) holds for any n € N. This completes the prootf. ]

We define the set J by
J=1{g90| go=b+ (c+tm(b)) for ceW, beV,}.

Theorem 6. Suppose a transition rule L is defined by (4.1) and satisfies the

following properties:

(a) There is ¢ > 2 such that
q|(vj,,, —v5,) forl <1< M-—1,

where A = {j1,...,jm} (J1 < - < Jm);
(b) B = {(Z:j) |Ui — Uj — 1 fOTj & {.7-21"' }jﬂf}} ;
(c) C=0.

~

Then there ezists h € m(Es) such that lim,_ . F7'(7g) = h holds for any g =
{$0(g0),0,0,...} with go € J.

Proof. This follows from Proposition 3 and Theorem 3. (]

We investigate the most simplest non-linear rule which contains the triadic
term. We consider the conditions for ¢ and L such that lim, ﬁf(wg) exists

and it belongs to h € 7(EL), when the rule satisfies v; = —7, v, = =1 + 1, -+,

Uor41 = T.

40



Lemma 3. Let a € P! be finite and nonzero. Suppose a transition rule L is

defined by (4.1) and satisfies the following properties:
(a) A={1,2r +1};
(b) B={(1,r+ 1)} or B={(r+1,2r+1)};
(c) C={(1,r+1,2r+1)}.
LT'hen
(i) If a(z)a(x + 1+ 2rl) =0 for any l € NU {0} and any z € Z, then

L"a(z)L"a(z +7+2rl) =0 (ne N, e NU{0}).

(ii) If there is M € N such that
a(z)a(x +r+ 2rl) =0 (xeZ, 0<I< M),
then

L*a(z)L*a(z +7+2rl)=0 (k< M, 0<I<M-—k).

Proof. Suppose B = {1,r + 1}.

(i) Since a(z)a(z +r + 2rl) = 0 for n = 1,
Y alz+wvalz+v)+ Y alz+vy)a(z +v,)a(z +vi,) =0,
(1,7)eB (i1,22,13)€C

Therefore

La(x)La(z + r + 2ri)
= {a(z — 1)+ a(z + )} {a(z + 2r]) + a(z + 7 + 27l + 1)}
= a(z —r)a(z + 2rl) + a(z — r)a(z + 7+ 2rl +7)
+a(z +r1)a(z + 2rl) + a(z +r)a(z + 7+ 2rl + 1)

= ().
Proceeding inductively, we have L"a(z)L"a(x + 1 + 2rl) = 0.
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(ii) Let £ =1, then
La(z)La(z + r + 2rl)
={a(z—r)+a(z+7)}{alz+2r)) +a(z + 7+ 2rl + 1)}
=a(z —r)a(z + 2rl) + a(z — r)a(z +r + 2rl + 1)
+a(z +71)a(x +2rl) + alz + r)a(z +r + 2rl +7)
=a(z—r)alz —r+7r+2r(l+1)).

We have a(z —r)a(x +7+2rl+7r) =0 for 0 <! < M — 1 by assumption.
Then
La(z)La(z +r+2r]) =0for 0<{< M — 1.

Using an induction argument, we have L*a(z)L*a(z + 7+ 2rl) = 0 for k <

M, 0<I<M-—k

For B = {r +1,2r + 1}, we can prove (i) and (ii) in the same way as above. [

Proposition 4. Suppose a transition rule L is defined by (4.1) and satisfies the

same conditions as in Lemma 3. Let a € P' be finite and nonzero. The following

are equivalent:
(i) a(z)a(z +r+ 2rl) =0 holds for any | € NU {0}, any z € Z.
(ii) L"a = L{a holds for any n € N.

Proof. Suppose B = {(1,7+ 1)}.
First we show (i) implies (ii). L"a(z)L™a(z + r + 2rl) = 0 holds for n € N,
l € NU{0} by Lemma 3(i). Thus La = Loa for n = 1 by a(z)a(z +r + 2rl) = 0.

Assume L™ 'a = L},
L(z) = Y, cal"a(z+v)+ L a(z+v) L a(z + vyiq)
+ L ta(z + v1)L" a(z + v ) L Ya(z + Vori1)
Evke/& L" a(z + Uk)
Lja.
Thus L"a = Lja for any n € N.

|

Conversely, suppose L"a = Lga hold for any n € N, then a(z — r)a(z){1 +
a(z+r)} = 0by La = Loa, that is, either (I) a(z —r)a(z) =1 and a(z+7) = 1
or (II) a(z — r)a(z) = 0 holds for z € Z. Let (I) holds for some z € Z. Set
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' = max{z | = satisfies (I)}, then a(z’+r —7)a(z’+7) =1, but a(z’+r+7r) =
0. Thus z’ + r doesn’t satisfy (I) and (II). This contradicts the assumption.
Therefore if La = Lga, then a(z)a(z + 1) =0 for z € Z.
If L" 'a = L !a, then a(z)a(z+r+2r(n—1)) = 0forz € Z. Ly ‘a(z)Ly  a(z+
r) = 0 holds by L"a = Lja. Therefore
Ly ta(z) + LY ta(z + )

= (L %a(z — 1) + L2 %a(z + r) H{Ly a(z) + L§ “a(z + 2r)}

= L ?a(x — )L} *a(z + 2r)

= (L 3a(z — 2r) + L Pa(x) H{Ly Pa(z + 1) + Ly %a(z + 3r)}

= LY %a(z — 2r) Ly %a(x + 3r)

— Lg’_ka(ﬂ: — (k — 1)T)L3”ka(3: + kr)

by Lemma 3 (ii).
For B ={(r+1,2r +1)}, we may show the equivalence of (i) and (ii) in the

same way as above. []

Theorem 7. Suppose a transition rule L is defined by (4.1) and satisfies the

following properties:
(a) A={1,2r 4+ 1};
(b) B={(l,7r+ 1)} or B={(r+1,2r+1)};
(c) C={(1,r+1,2r+1)}.

Let go € P* be finite and nonzero. If go(x)go(z+1+2rl) = 0 for any | € NU{0}

and any z € Z, then there exists h € T(FEs) such that lim,_, F‘E(W@) =W

Proof. This tollows from Proposition 4 and Theorem 3. []
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