Chapter 6.

Convergence to the limit set of linear
cellular automata, 11

1 Introduction

A cellular automaton consists of a finite-dimensional lattice of sites, each of which
takes an element of a finite set Z,» = {0.1.....p" — 1} of integers at each time
step and the value of each site at any time step 1s determined as a function of
the values of the neighbouring sites at the previous time step.

We introduce the set P of all configurations a: Z* — Z,- with compact support
: p I Pl

(l.e.. #4{i | a(i) # 0} < oc) and define a linear rule L in P as
(La)(xr) = Z aja(r + k;) (mod p" ). (1.1)
j=1

The configuration of cellular automata at time step t 1s represented by operating
L on the initial configuration by ¢ times.
[n case of p =2 and r = 1, S. J. Willson [6] investigated the so-called limit set

of LCA. For n € Z,. and a € P. he considered the set
K(n.a)={(z.t) €Z'xZ, |0<t<2", (L'a)(x) =1}.

where L' is the t-th power of L. He showed that there exists the limit set of
K(n,a)/2™ for any nonzero a € P in the sense of Kuratowski limit [1, 4] and
that the limit set does not depend on an initial configuration. The limit set ot
LCA for a certain linear rule 1s a Sierpinski gasket-like pattern.

In case of mod p. the sets limsup K'(n.d)/p™ and limint A'(n.d)/p™ in the sense
/ ] _

7 o I P T | . n. X 1l K S n L
of Kuratowski limit are the same with {),Z, (U, 0)/p™ and | J,_, ﬂn>A 6)/p
respectively, since { K (n,d)/p"} is an increasing sequence. So in [3]. we consid-
ered the limit set in the sense of the set theory, which 1s defined if the set

(Nie1 Upsi 8 (n.a)/p™ coincides with the set [ J,Z, (), i (n.a)/p" without tak-

ing 1ts closure.
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As an extension of the result of Willson, S. Takahashi [5] investigated the case

of an arbitrary prime number p > 2 and r € N and he considered the set
Kné)={(z.) EZ'xZ, |0<t<p"—1. (L'§)(x) # 0}

for n € Z.. By using the set I\ (n.,0), he also defined the limit set as a subset

of RY x [0,1] in the same way as the case of p = 2, and showed the existence

of the limit set Yy of {\'(n.d)/p"}. Takahashi also investigated the limit set of
“b-state” Ky(n.d8) = {(x,t) € Z° x Z, | 0 < t < p" =1, (L'8)(x) = b} for

By defining the metric D;. we considered the convergence ot Z,-valued func-
tions ¢, () on R x 0. 1] which corresponds to the values of sites up to the p"-th
time step of LCA and expresses all the states simultaneously in [3].

[n this paper. we extend the result in [3] to the case of mod p", where p is
prime and r € N. We show that there exists the limit function in the pointwise
topology (Theorem 2.3). In Section 3. we define two metric dy. Dy 1n the space
USC of Z,--valued upper semi-continuous functions on R* x [0,1] and give the
result concerning dy and Dy (Theorem 3.1). In Section 4. we investigate the
convergence of {¢,(8)} in these two metrics in the space USC with R x [0.1].
We show that {v,(d)} is a Cauchy sequence in the metric d; and ¢,(0) converges
to the function f; in the metric Dy (Theorem 4.1) and that the similar results
hold for any nonzero initial configuration a« € P (Theorem 4.14). In Section 5.
we consider the relation between the limit function with respect to Dy and the
limit set in the sense of Kuratowski limit. We show that the upper envelope of g5,
which is the limit function of {¢,(d)} in the pointwise topology, corresponds to
the limit sets in the sense of Kuratowski limit and that f; is the upper envelope
of g5 (Theorem 5.2). For a nonzero configuration a € P. we show that the
upper envelope of ¢,. which is the limit function of {v,(a)} in the pointwise
topologv, corresponds to the limit sets in the sense of Kuratowski limit (T heorem
5.3) and this implies that the upper envelope of g, depends on only the value
a(0). We prove the relation between the upper envelope of g, and the limit

function of {¢',(a)} in the metric D and the limit function depends on all values
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a(x) (x € Z) (Theorem 5.4). This theorem implies that the upper envelope ot g,
is not always equal to the limit function though both are the same in the case ot
mod p. While the limit function always takes two values in the case of mod p. 1t

occurs the limit function takes more than three values in the case of mod p".

2 Convergence 1n the pointwise topology

We define a d-dimensional p"-state linear cellular automata (LCA) as follows:
Let p be a prime number and let P be the set of all configurations a : V Al Loy

with compact support. We define o € P as

. 1 2=1
) = { 0 = #0.

Let L:P — P mod p" be a linear transition rule as tfollows:

(La)(x) = Z aja(r + k;) for a € P. , (2.1)

where G is a finite subset of Z with 1G > 2. k; € 7% (7 € G) is a neighbouring
site of origin, ay € Z,-\{0} and the summation ) is taken as the summation

with mod p™ throughout this paper.

[et

. £z [ |
X,={(=,—)eR'x[0.1] |z €Z't€Z .0 <t <p"}
po p |

for n € Z, and put

N
IND
S ——

G; = {t € Z | (L78)(() # 0) 2.

f()].'j E Z+.

Define a map ¢+, from P to the function space on R* x [0,1] for @ € P and

n € Z. by
, r t (L'a)(z) if (&,5) € X,. |
(Lin((’))(J_,- _") — - pr ft__ d 4 (2'3)
pn pr 0 if (5. -7) € (R x 0.1]) \ X,
and a map Sy ;: RY x [0.1] — R x [}-’) -’—;’l] by
r t {9
Sejle.t)=(—.—)+ (=.=) (2.4)
p p p- P



50,0(Xo)

Ao S 14 (X
| 1 1 1,1(X0_)
Il 1 1 1 1
(a) n =1 (b) n =2

Figure 1: An exapmle of maps S, ; with La(z) = a(z — 2) +a(z — 1) + a(z + 1)
(mod 3).

For a function g on R? x [0, 1], by using maps S, ; define a function 7'g on
R* x [0, 1] by

Tg(y.q)= » (L 6)(0)g(S,} (y,q)) (2.5)

for%<q§j;1 with 0 < 7 < p—1 and

T'9(y,0) = g(py,0).

Lemma 2.1. [5] Let L be a linear cellular automata defined as (2.1) with

mod p". Then for 3,1l € Z., we have

[ () = { L7 §(y) if there exists y such that p'y = x,

0 otherw:ise.

We have Lemma 2.2 in a similar way to the case of mod p [3, Lemma 2.3]|.

Lemma 2.2. Fora € P and j,n,1 € Z., we have

(L7 ) (z) = Y (P 8)(0)(Lia)(z — Y (2.6)

Using the above lemmas, we can show the following theorem in a similar way

to the case of mod p |3, Theorem 2.5|.
Theorem 2.3. For a € P with a(0) # 0, we have the following assertions:

(1) The sequence {¢,(a)} converges to a function on R* x [0, 1] in the pointwise

topology.

96



(2) The limit function g, of the sequence {1, (a)} in the pointwise topology s

T -inwvariant. that 1s. 1g, = q,.

(3) As for the limit functions gs and g, of {v,(0)} and {v,(a)} respectively,

we have a(0)gs = ¢4.

Proof. (1) For n € Z, satisfying n > r — 1, let X| = {(=. i;l) |z € Z%, j =

prtop
0.1.....p" "'}, Then we have U X/, =U> X,. For (y,q) € R*x[0.1]\
() 4
UT?-:] _X ?'7"'—?‘—1 .

(.'L::",-,((I))(y. Q) = (

by the definition of v,.
For (y.q) € US>, X ., . we show there exists lim, (¢, (a))(y. ¢) in the same

way as the case of mod p. So the sequence {v,(a)} converges to a function on

x [0.1] in the pointwise topology.

(2) and (3) are proved in the same way as the case of mod p.

3 The space of Z,r-valued upper semi continu-
ous functions

In this section. we shall introduce two metrics ds, Dy in the space of Z,--valued
upper semi-continuous functions on a compact subset of R x [0,1]. Let USC be
the space of Z --valued upper semi-continuous functions on R x [0, 1], where Z,-
valued upper semi-continuous functions mean upper semi-continuous functions

embedded in R-valued function spaces. For functions f., g € USC. the order

f > ¢ is defined by f(y.q) > g(y.q) for any (y,q) € R x [0.1] by considering

e L |

Z.~ as a subset of R. For functions {f\}ea C USC having an upper bound, let
g1(y.q) = inf{g(y.q) | g € USC,g > fi for any A € A}
and

g2(y.q) = inf{fr(y.q) | A € A}



Then ¢; and ¢, belong to USC and g, is the least upper bound function \/ f\
and ¢, is the greatest lower bound function A fy in USC. So the space USC' 1s

an order complete lattice.

Let ' be a compact subset of R* x [0,1] and (yq.¢0) be a point of (RY x

0,1]) \ \'. Let

USC|x ={g € USC | support of g C I\'}.

By using the Hausdorff distance D(A, B) of non-empty compact sets A and

B in R? x [0.1]. we shall define the pseudodistance Dy(A.B) of A and B 1n
R% x [0., 1] by

Do(A.B)=D(AU {(!/0—(10)}— LU {(!/0- Qo)})

and metrics dg. Dy in USC |k as follows:

ds(g1.92) = max;<j<pr—1D0o( 9 (J) 9 ](j))-

Dy (91.92) = HIAX] <s<pr—1 Dg(gfl ['H_]" qu'] [S-i—])

k. where ¢ '[s+] = {(x.t) | g(x.t) > s} and _q]_l(J) 1s the

for 1. 02 € USC

closure of the set g7 '(j) = {(x.t) | g(x.t) = j}. It is easy to see that dy and Dy

. Then we can show the following theorem

satisfy the axioms of metric in USC

in a similar way to Theorem 3.5 in [3].

Theorem 3.1. For {f,} C USC|k. suppose ds(fn.fm) — 0 as n.m — oc. Let
9= N— V> fn- Then we have

Di(fn.g) = 0 as n— o

Using the metrics d; and D;. we consider the convergence to the limit set.

4 Convergence of v, (8) in case of R X [0, 1]

[n this section, we will consider Z,--valued upper semi continuous functions on

R x [0.1] and show ,(d) converges to the limit function with respect to the

metric D ;- We first introduce some notation.
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Let ap be defined in (2.1) and and suppose k; < k;(i < j) for /,j € (. which
1s defined 1n (2.1). Put
k- =min{j | a; # 0 for j € G}.

k. = max{j | a; # 0 for j € G}

and

ko = ky — k_.

For j € {0.1..... p}. put

For convenience. we define a map Sy: RY x [0.1] — R* x e — ], which has the

correspondence with some Sy ; of (2.4), by

% I ——jp"'“]k +:—1 9 N
Se(x,t) = (=, =) + L, £ (4.2)
p P p p
with ( =r; +i(j € {0.1...., phi€41.2.....5p" ko + 1}) and put

and

Then for (y.q) € R x [0, 1] satisfying i < g < -’—‘—;—l with 0 < 7 < p — 1. we have
)+ 1
(Car1 (O (Y 0) = Y ceWal@)(S (y:0)). (4.3)
f:?'j—i—]

Let X, be the smallest convex subset of R x [0. 1] containing the support of v;(0).

that 1s.

Xo={(y,q) eRx[0,1]]0<¢<1,—qky <y< —qgk_}. (4.4)

Then for any n € Z.. the support of ¢',(d) is contained in X, and for £ € A,
S/(X) is also contained in X. So we consider the space USC|x, and the metrics

d;, Dy in USC|x, as in Section 3.
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An element j € G. which is defined in (2.1), is prime if a;/p ¢ Z,. In this

section. we shall show the following theorem.

Theorem 4.1. Let the set G an (2.1) with mod p” have at least two prime ele-

ments. Then we have

(1) d(en(0).¥m(0)) = 0 as n.m — oc.

(2) Put fo = /\ \/*c’.*,?Jr,,_](d).. where \ and \/ are lattice operations in USC.
k>1 n>k
Then we have

D¢(v,(0). fo) = 0 s n — oc.

The way of the proof is a similar to that in the case of mod p [3. Theorem 4.1]

as shown 1n the following.

4.1 Idea of the proof of Theorem 4.1

[nn case of mod p. we proved the lemmas and propositions in [3] by using the

property that

() (2q) = (tni1(8))(y.q)  for (y.q) € X,

holds for any n € Z.. In case of mod p", the equation above does not hold.

Therefore we define a function H,, as follows. For n € {r.r +1.r +2,...} let

1

X = {(;’;— E_Vlz€Z,j=0,1,....p" "'} and

LN
)
F

Hn. == Ln ( (5) 1X’

n

(see Figure 2). (4.5)
By Lemma 2.1. we have
H.(y.q) = H,1(y.q)  for (y.q) € X,,.
[n Section 4.2, we shall show
di(vp(0). Hy) = 0 (4.6)
as n — oc. Then we shall only show the estimate

1 -
df(Hn—f—l-Hm—f—]) S ;(If(H71~Hr71)* (4‘)
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1
11 11
121242121
1334 6 4331
14688641 14688641
151636636212636636151
1668661 2337332 1668661
173636363 663636366 363636371
181181 363363 363363 181181
1 3 3 4 : 4 3 3 1
11 44 66 77 44 66 66 44 77 66 44 11
121515121484242484636363636484242484121515121
1337 3 2662 3 7331 1337 3 2662 3 7331
14622641 52311325 14622641 14622641 52311325 14622641
151 636 636 212 636 636 151
1662661 6 3 6 6 3 6 2334332 6 3 6 6 3 6 1662661
173 666 347 33 826 333 628 33 743 666 371
181454636181727 363363 818545363545818 363363  727181636454181
1 6 6 8 6 6 1 2 3 3 7 3 3 2 1 6 6 8 6 6 1
11 77 33 55 55 33 77 11 22 55 66 11 11 66 55 22 11 77 33 55 55 33 77 11
121878121878121878121878121242757242757242757242757242121878121878121878121878121

1331 2 3 3 3 1331
14655641 33 66 33 33 66 33 14655641
151363363151 363 363 363 363 151363363151
1665661 1665661 3 6 3 3 6 3 3 6 3 3 6 3 1665661 1665661
1733 6 338833 6 3371 33 66 33 33 66 33 1733 6 338833 6 3371
181727363818818363727181 363363 636636 363363 363363 636636 363363 181727363818818363727181
1 3 3 4 6 4 3 3
(a) v'3(0)
1
1334 6 4331
1668661 2337332 1668661
1 3 3 4 6 4 3 3 1
1337 3 2662 3 7331 1337 3 2662 3 7331
1662661 6 3 6 6 3 6 2334332 6 3 6 6 3 6 1662661
1 6 66 8 6 6 1 2 3 3 7 3 3 2 1 6 6 8 6 6 1
133 3 3 3 3 1331
1665661 1665661 3 6 3 3 6 3 3 6 3 3 6 3 1665661 1665661

(b) H

Figure 2: An example v'3(8) and Hy for (La)(z) = a(x —2) +a(z — 1) + alzr +

1) 4+ a(x +2) (mod 3%).
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The inequality (4.7) can easily be verihed if {(S¢(Xo))°}een 1s mutually disjoint,
where (S;(X;))° is the interior of S;(Xg). However. the equation (4.7) 1s not easily
obtained if {(S;/(Xo))° }rea are mutually overlapped. Just as in the case of mod

n.n’

. we introduce an auxiliary quantity Mgy"" and show the following estimates:

M-1) d¢(Hp1. Hprgr) < ;—},,U[;"”! (Proposition 4.11):

M-2) J-I(TH‘”I“H < ;];J[(T‘” (Proposition 4.12).

- . . / . . e ’ -
In order to define M™™. we use two divisions {E,} and {A4;;,} of X, and

functions {h” }.

4.2 Relation between H, and ,(9)

We shall prove the following proposition in this section.

Proposition 4.2. For the pseudodistance Dy on R X 0,1] and v, € USC|x,.

we have

Do(H '[s+]. (Un(8))  [s+]) = 0 as n = oc for s € {1...., p"— 1}

Tl

and

Dyl "1(j)!(¢".v,,(5))_1(j)) S 0asn—oc forjeql.....p" =1}

T

[n order to show Proposition 4.2, we need the following

Proposition 4.3. For a prime number p and r € N, let L be defined as (2.1)
and the set G has at least two prime elements. Put t(r.j) = j(p" — p" ') and
i(r.j) = —(t(r.j) — p" "k;, — p"'kj,. where jy s mazimum prime 1 G )2 15
the mazimum prime element next to j; i G and kj 15 defined 1 (2.1).

When j ranges from 1 to p", L") é(i(r. j)) ranges from O to p" — 1.

Proof. By using the following Lemma 4.4. we can prove 1n a similar way to that

of Theorem 2.7 in [2]. [
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Lemma 4.4. Suppose r > 2 and the set G has at least two prime elements.

Then
L.’(?'-.i)(j‘(;'(}*,j)) = L”"‘m)éﬁ(i(rq m)) + sL“"‘pr_l)5(17(7*.[)""] )} (mod p")

holds for j = sp" ' +m with s € {0.1.....p—1} and m € {1.2,....p" "' }.

We have already proved a similar result to Lemma 4.4 and Proposition 4.3
when we supposed condition (A) in [2]. In this paper, we suppose that the set
(i has at least two prime elements instead of condition (A).

[n order to verify Lemma 4.4. we need Lemma 4.5, 4.6 and 4.7.

Lemma 4.5 ([2], Lemma 2.2). Suppose ¢ € N with q/p ¢ N, t = jp"=" with
JENv=p'quwithle{01.....r—=2} and v < .
Then there exists ¢ € N with ¢'/p & N such that t — v = p'q.

Lemma 4.6. Put ,.,C, = (a+b)!/(albl). Then
pr~__])r*—lC‘:})f =0 (mod p")

forie{1.2.....p" —p" '}

Proof. Suppose i = gp’ with ¢ € {1.2.....p— 1} and £ € {0.1.2.....r — 1}.

._ . { r—T1—F¢ £
There exists b € N such that b/p ¢ N and -, C;p* = bp"™'~'p% by Lemma
4.5. Since r — 1 — ( 4+ qp" 2 r holds. we obtain the conclusion. [
Put my = G. In order to show the following lemmas. we first note that the

value (L'd)(x) 1s expressed by

. ! . " _
(L'6)(x) = E —at e Y (mod ph), (4.8)
(PRI VA S M0
where the summation is taken over (w;.....u,,, ) such that u; 4+ -+ 4+ u,,, =1
and —Fk; uy — -+ — Kipp Wmy = —T. We also recall the relation
t! C
— = ,C,,. X ,_ C X X -
*U]! e “‘”1[‘.:! - = o i_Z:H:Jl -

and an element j € G is prime if a;/p ¢ N.
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Figure 3: The values in the squared region is all 0.

Lemma 4.7. Let the set G in (2.1) have at least two prime elements. Suppose

that 7, 18 mazimum prime in G and that 7, 1s the mazimum prime element next

to 7, in G. Then

Ls(pr_p?j—l)é(—kjls(pr - p'r—l) 4 g) — () (mod p'r) (49)

forse{1,2,....p—1} and ¢ € {1,2,... k;, — k;, — 1} (see Figure 3).

Proof. We note kj, is not expressed as a convex linear combination of other k;,
where j € (& is prime. If there exists the path from —k; s(p” — p"') + £ to the
origin with s(p” — p" ") time steps, then there exist ny € Z_., {i; € N ?21 and

m; € G'}.°. such that
J 2=}

D> i =5 —p) (4.10)

n
J=1

and

—kjs(p" —p) == iikm,. (4.11)

Suppose m; is prime for all 7 € {1,...,n9}. From (4.10) and (4.11), ¢ =
> iy ij(kj, — ki) holds and there exists j* € {1,...,ny} such that km, < kj,.
By i; > 1, we obtain £ > k;, — k;,, which contradicts ¢ € {1,2,... k;, —k;, —1}.

T'herefore there exists j € {1,2,...,n0} such that m; is not prime. The

equation (4.9) holds by Lemma 4.6 and (4.8). []

104



wr,4)e(r,3)i(r,2)e(r, 1

Figure 4: The relation among t(r, j),i(r, j) and L*™)§(i(r, ).

When the set G in (2.1) has at least two prime elements, suppose that 71 1S

maximum prime in G and that j, is the maximum prime element next to 7; in

. USng k‘jl and kjgj pllt

t(r,j) =3(" —p"") (4.12)

and

uryg) = —(t(r,7) —p" k;, — p 'k, (4.13)

—_—

tor 7 € N( see Figure 4).

Proof of Lemma 4.4.

When we compute L""7§(i(r, 7)) from the values at time #(r, j — 1), we need the
values L"1V§(z) with z € {i(r,j) + k_(p" — p™Y), . .. (7)) + ko (ph—p )}
(see Figure 5). We note that the value L!™~1§(z) with z € {i(r,g) +k_(p" —
P )y o, —kjt(r,j — 1) — 1} is a multiple of p by (4.8) and that the path from
i(r,j —1)+ £ toi(r,j) for any £ € {1,..., k. (p" —p" 1)} with p" — p"! time
steps needs at least one k;, where j € G is not prime. Therefore by Lemma 4.6,
the values L'V §(z) with z € {i(r, j)+k_(p"—p™ 1), ..., —kit(r,7—1)—1}U
{ilr,g = 1) +1,...0i(r,5) + ki (pr —p" 1)} do not effect LY™)6(i(r, 7). So we
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_kjlt(rvj o 1)

3(7_';.]) + k- (Pr - p'r—-l) - i(rﬁj o 1) Z(T_:]) T k+(pr o pr—l)
t(r,7 — 1) JET‘ - 1 OJOL __*I ..........
=G -1E" —-p" 1) T
|
h p'r - pr—l
t(r, ) CETDS(i(r, §))
ag = LM D5(i(r, j — 1))

Y

Figure 5: A region which effects the value L{3)5(i(r, 7). However we can ignore
the squared regions by Lemma 4.6.

have

- _ ) . r—1 r—1
LY 5(i(r, 7)) = pr—pr-1Cpr10) P af

12
p"~H(kj; —kjp)—1

+ Z B(r,0)b(r,j — 1,¢)

¢=1
+of P LS (i(r, j — 1) (mod p), (4.14)
where b(r, j, 0) = L'"D§(—t(r, j)k;, +¢) and B(r,£) € N. B(r,{) is the number of
the path from —t(r, j)k;, + £ to i(r,j) with p” —p"~' time steps, and the number
of the path from —t(r, j)k;, + ¢ to i(r,7) with p" — p" ! time steps is the same
as that from —t(r, j')k;, + £ to i(r, j) with p" — p" ! time steps for any j,J’ € Z.
So B(r,?) does not depend on j.

Using (4.14) and Lemma 4.7, we can show the conclusion in the same way as

the case that L satisfies the condition (A). []

Proof of Proposition 4.2.
Suppose n € {r,r+ 1,7+ 2,...}. We have

Do(H=Y[s+], (0 (8)) Hs+]) < max Do(H,1(5), (¥a(6))” ()

s<j3<p"—1
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= = —

—— ——————
- N -

So we prove Do(H 7 '(J). (¢, (8))" (j)) = Oforall j € {1.2.....p"—1}as n — .
Put

sup{d(AU{(y0-q0)}-¥) | y € BU{(yo.q0) }

Do(A.B) = sup{d(x. BU{(y0.90)}) | + € AU{(y0-90) 7}

Dy, (A, B)

for compact sets A and B. Then we have

and

for all n by the definition of H,. So we will show for any € > 0 there exists

N € Z. such that

for n > V.
Put
to=p (p" —p" ") + 1,
(o =min{l{ € Z, | tolhky —k_) < pt — 1} (see Figure 6 (a))
and

K(i)={r€Z|L" "°8(x)#0} fori€Z,.

Then we have

(¢ (0))(x/p" . t/p")

B { D reK. L"'GPPHIHG6(.1")L’—""0Pr"l+{f’ (r —2') Kg #0. (4.15)
B ) K, =
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e r—14¢

1P L S
i
| s
Y

(a) {1 = p*o — 1, €y = |k_to| and ¢35 = |k, ty|. The regions A and B is disjoint
by the definition of ¢;.

sl
gpt it | eI g, Y
(7 + l)pr_l"reﬂl | 5 R by
66 ' €7
tY

(b) €5 = mgpto + 1, bg = |kyop"~1t¢o| and &y = |k_p"—110o|.

Figure 6: The sketch of space-time pattern of LCA.
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forn>r—1+1(,. Put
m, = max{:h, |x = (z/p".t/p") € X, N Xy} (4.16)

for n > r — 1+ {,. By the definition of A',, 1t 1s easy to show that there exists
mo € Z, such that m,, < mg torall n > r — 14 {,. Put

M = max{kop" 7O 4+ mgp"® + 1.

\/(lA l])?‘—1+&} + ”70]){"3 + 1)2 + ]_)'2(?.__]_*_{'(!)‘

(|k_|pr—1*+0 + meplo + 1)? + p?tr—1+l) } (see Figure 6 (b)).

where ky. k. and k_ are defined as (4.1). For any € > 0, we choose N > r—1+(,
satistying

€ > J-[/})‘:\;M'_].

Put U(xz) = {y € X, NXy | dlx,y) < €}. Suppose n > N and = =
(x/p".t/p") € X, N Xy, If t = 0. then H,(x) = (¢,(0))(x). So we consider
the case of £ > 0.

For i € Z., satisfying ip" ™' T <t < (i +1)p" ', suppose L"’ipr-lJr{r"é'(.z") = {)
for all (' /p™,ip"~ 1T /p™) € U (x). Then (v, (d))(x) = 0.

Suppose Lirg (20)/p ¢ N for some (xo/p",ip"~ T /p") € U x). Then we
have H-"(F)NU(x) # 0 for all k € {0.1,...,p" — 1} by Proposition 4.3.

Suppose L"Pr_woé'(.r’)/p c N for all (2'/p™.ipr— 17 /p) € Ulx). Put hy =

r‘—l—}-ffo -~

min{h | L"? S(') = kp for k € {1.2.....p" "} and k/p ¢ N}. We have

H ' kp"ynTU.(x) # 0 for all k € {0.1....,p" " —1} by Proposition 4.3. In the
other hand. there exists & € {0.1..... p" " — 1} such that (¢,(8))(x) = kp" by
(4.15).

So we obtain Dq . (H~'(j). _(_;,,;(5))_1 (J_)-) < eforn>N. [

4.3 The definitions of {E.} and {Ap s}

We shall divide X into subsets {E.} and {4, } as follows (see Figure 7 and

8). Let
D= {(1.j.s) [ 1< 5 < ko1 < j < sH{(2.)os) |2 < s <pho 1 < j<s—1}
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We define {E7}(v € I') as follows:
In case of v = (1.).5) € L. let

) s — 1 S 7 —1 G — 1
El={{yg| —— S¢S~ —Rafdir— L Y% =g 2}
. p? ]fﬂ pf ]“0 pr p;
in case of v = (2.5.s5) €l
? g = 1 S — )
El={(y.) | =7 <¢< - —k-q- <y< —kig+ =}
p? A‘O pr ]]..0 pl p?’

. s — 1 S 7 — 1 —
“_13 7.8 {(y q) | ] § q S "_] — —A+q —I— J_‘_] S y S -—-}1__(1 — .____]:j_,
| " kg pr kg P P’

and for2 < s<kpand 1 <) <s—1,

§—~1 S — 7
A . = ., —— < g < . —k_qg — <y < =Ky
25 =AW ) | S S 0 S o 1= SyS kgt p,__]}

Then we have the following properties.

Proposition 4.8. (1) The sets {E} have the follounng properties.

E-1) For~ = (b,j,s).y = (b.j'.s) € I'. E! 1s the shift of EZ, wn the the first

coordinate direction for any s and b € {1,2}.

E2) (EN°N(ED) =0 if 7 #7.

E-?)) [f (S((_Xro))o [ (S(-I(_ng))o # @ then S(f(_\r()) M Sp(Xg) 08 the union ()f
some E!s.

E"l‘) Xo = Uﬁ.gr Ei

(2) The sets { A} tb.j.s have the following properties.

A-1) For any Aj . there exist v € T and { € {1,....ry} such that Ay ;& =
1 o
‘ £ 2 lll.ﬁ S A
‘4_2) ‘XO - Ub:] Us:1 Uj:1 - E)Jq

A3) (A7, )P0 (AL )0 =0 i (bos) # (.58

Proof. By the definition, we can easily get the result.
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4.4 The definition of {h”"} and their fundamental prop-
erties

We shall define the function 2" as tollows. Put

V ={v = (%1,..., Ym) |mEZ vy € with #A, > 1,7 €0
with #A,, > 1 and S, (EIl ) C El  forany k € {2,...,m}}
For v = (%,..., vm) €V and n € Z. . define
ho (y,q) = Z Z Ce, oo Cp,
{;1 EAA 1 (o EA Yon (_1 _ 1 T)
—1 - _ _
X Hn(’s{m E S{l S(-ﬁ_l S, (Y Q))ls';_l (E_z;m)(!ﬁ 7)

for (y.q) € R x [0, 1].

When v = (7). h”" satisties

h?(U*Q) — Z (‘{Hn(sf_lsfn, (3/‘(1))15;1(151)(2/ Q)

(eEA,

and
}IT(S:](U*Q)) — H??(U‘Q)]'E.{(U‘q)

for n € Z.. Since the length of v 1s one, h” has the relation with H, ;.
If the length of v 1s m. then A" has the relation with H,,, and this is usetful

- ; ; ' £ . .
in estimating the metric d¢(h!'. h!" ) as shown in the following lemma.

Lemma 4.9. For v = (v1.%..... Ym) € V. ke {l.....m} and (y.q) € R x
0.1]. put

Then we have

(1) for (y,q) € Fpa_i(E” ).

¢ TTY é

h?(Fr;] (Y.9)) = Hpym (Y, q‘)]'Fm—-l(E:m (Y- 4)

and
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(h™)='(j) = 0} are the same. then

n n’ S
df(h-!, . h-,, ) — P ([j'(Hr?+r??1Fm_1(Ei_’m ) 3 HT?"-{-mlFm-i(E:m))

for any n, n' € Z..

Proof. The proof is a similar to that of Lemma 4.3 in [3]. ]

In a similar way to Proposition 4.4 in [3], we can show the following proposition,
which means that the sets {; € {1.....p =1} | (h?)7'(j) = B} and {j €
f1.....p—=1} [ (h™)""(j) = 0} are the same for sufficiently large n, n'.

)

Proposition 4.10. For sufficiently large n € Z. . the follounng assertions are

equivalent for any v = (y..... 7, ) €V, (€ Z,-\{0}.
(1) (Hn-—l—-rm)_]((:) [ (qu—1 (E-{” ))O ?é h.

(2) (H'n+nn—l—l )ﬁ](() A (Fmi.—] (Ei ))O # @

; TN 1)

4.5 The definition of {M_;"" } and their properties
By using h”. we shall define J[(fjﬂ! by

M = sup{ds(hl, h) v e VY.

0 L
Then we have the following
Proposition 4.11. (1) sup{._-\f(;?‘”f n,n' € Z,} < ox.

—_— |
M holds for sufficiently large n.n' € 7.

(2) (]f(H-;1_+] . Hn"-{-] ) S

1
P

Proof. By using Lemma 4.9 and Proposition 4.10, we get the conclusion 1n a

similar way to [3. Proposition 4.5]. o

Proposition 4.12. For sufficiently large n.n', we have

1 gn.n'

N X Ié ] " I+ 1 /

Proof. The proof is a similar to that of Proposition 4.6 in [3].
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4.6 Proof of Theorem 4.1

By using above propositions. we shall prove Theorem 4.1.

(1) By Propositions 4.11 (2) and 4.12. we have

lim M, =0.

n.mm—oc

By Proposition 4.11 (1) . we have
| 1 A A Tn
de(Hpi1, Hnt1) < =My,

Since we have d;(H,.v,(0)) = 0 as n — oc by Proposition 4.2, we obtain the

conclusion.

(2) Since {uv,(8)} C USC|x,. we get the result from (1) and Theorem 3.1.

4.7 Convergence of ¥,(a)(a € P) in case of R x [0, 1]

We consider convergence of ¢',(a)(a € P) in a similar way to v',(d). We define

a function H' as follows. For n € {r.r+1,r4+2,...} let X = {(p—‘*;;, ”’;ﬂ_l ) |z €

Then we can show the following theorem in a similar way to the prootf of Propo-

sition 4.2.
Proposition 4.13. For the pseudodistance Dy on R x [0.1]. we have

Do(H' " '[s+]. (Vn(a)) '[s+]) = 0 as n — o< for s € {1,.... pl— 1}

n .

and

Do(H, (J). (€ala)) ™" (j)) = 0 as n = oc for j € {1.....p" =1}

So we can show the following theorem in a similar way to Theorem 4.1.

Theorem 4.14. Let the set G in (2.1) with mod p" have at least two prime

elements. For a nonzero a € P. we have
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(1) de(vn(a),pmla)) = 0 as ny,m — oc.

(2) Put f, = /\ \/ Upsroq (@), where N\ and \/ are lattice operations in USC'.
k>1n>k
Then we have

De(Up(a). fo) = 0 as n — oC.

Proof. (1) For H'. we can show the following relation in a similar way to the

proof of v, (a) in case of mod p.

rn

(]f(H:?.H’ ) — U

as n.m — oc. So by Proposition 4.13, we have (1).

(2)We get the result from (1) and Theorem 3.1. [

5  The relation between the limit function and
the limit set

In this section. we investigate the relation between the limit function and the

limit set of {K/(n.d)/p"},. which Takahashi defined in [5]. Put

K né)={(z.t)eEZxZ, |0<t<p"—1. L'6(x)#0 (mod )}

Then the following lemma holds.

Lemma 5.1. [5] Let L be defined as (2.1) with mod p" and suppose that at least
two elements of G 1is prime and f € {1...., rt. Then for b € Z, satisfying
b/p’~' € N and b/p! ¢ N, we have
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We first show the relation between Y; = [),_. Un/, LI K/ / )/p™ (Theorem 5.2)
and lim,, ,~ v, (0).

Let ¢ be the upper envelope of g, that 1s.
g(x.t) = inf{o(z.t)|o € USC.o(x.t) > g(z.t)}.

Then the limit function ¢, in the pointwise topology (Theorem 2.3) has the

relation with a limit set in the sense of kuratowski limit.

Theorem 5.2. Suppose the set G an (2.1) has at least two prime elements. Let

the function gs be defined by gs(y.q) = im, oo (€n(0))(¥. q).

Then
gs= ) T =1pI T\ iy (5.1)
1<f<r
and
(](5 - /\ \/ L T?-r?'—1 5 (52)
k=1 n>k
Proof. For f € {1.2,....r}. let (y.q) € Y;\U/Z'Y;. Then there exists a sequence

{(g/m_q_nj) c I/ (n;.0)/p™ };’;1 such that lim; . n; = oc and lilnjﬁ&@c(yn}.qn‘j) —
(y.q). Since gs(Yn,,qn,) # 0. there exists a sequence W, 0n,) € K (n;,6)/p™}
such that gs(y, .q, ) = (prt1=F — 1)p/~! and imj o (Yy 2 Gn,) = (y..q). So
gs(y.q) = (P71 = 1)p/=' If (y.q) ¢ Yy for all f € {1,2....,7"}, then there
exists a neighborhood U of (y.q) and  such that U N K/ (n.d)/p" = 0 for any
n > k. So gs(y.q) = 0. Therefore we obtain the equation (5.1).

In order to verify (5.2), we will show

/\ \/ n—i—r——l U (1)

k=1 n>k (53)
{ (Pl = 1)p~t for (y.q) € Y7 \ Uf_] Y: with f e {1,....r}.

() otherwise.

|

The equation Ape, Vo, (Vner1(0))(y,q) = (p'77 —1)p/~" holds if and only it
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(i) for any k& € Z. and € > 0 there exist (y'.q") € R x [0.1] and n" > k such

that |(y.¢) — (y.q)| < € and (1 (0)) (Y q') > (T = 1)p! 71 — ¢

and

(ii) for any € > 0 there exists & € N and a neighborhood U of (y,q) such that

(Cr (VY q) < (prt1) = 1)p! =" +€eforall n > kand all (y.¢') € U.

For f € {1.2.....r} and b € N satistying b/p/~" € N and b/p! ¢ N, let

(y.q) € Yy, Then for any € > (0 there exists Hyn-qn) € Ky(n. o)/ p”}n 7.

r’

such that [(y,.g.) — (y.q)| < € by the definition of Y; and Lemma 5.1. [

L ' :
(y.q) ¢ U_'Y;, then for each i € {1..... f}. there does not exist a sequence

i

(Y. qn) € Ky(n,0)/p" },—, converging to (y.q). where b/pf_“"' c N and b/pf“f =

e ——

N. By using the fact above, we obtain (5.3).

Theorem 5.3. Suppose that the set G in (2.1) has at least two prime elements.

For a € P with a(0) = kp' for k/p ¢ Z, andl € {0.1,....r —1}. Put g.(y.q) =
i, o~ (0 (a) ) (Y, q).
Then
.(?(1 o Z (p-r o pf—]—{—{)l}'f\u{:ll}*}‘ (54)
1< f<r—I :

Proof. For (y,q) € }“}\U{______']]}}. there exists a sequence { (Y, - qn,) € K/ (nj.8)/p" =1

such that lim; . n; = oc, imj e (Yn, - qn,) = (¥.q) and

|

a(0)g5(Yn, - qn; )

A.bpl—f—f—]

ga(ynj~qnj)

for 1 < b<p~ /" —1and b/p ¢ Z, by Lemma 5.1 and Theorem 2.3 (3). We

have
{bk})[”” (mod p"') \ 1 < b < p'r [ f+1}
— {b})lﬂ_] (mod p") |1 <b<p’ I-f+1}
by A/}) = Z_|_. SO th(:‘I'(:‘ E‘XiStS b — {]_.. C e _‘pf"i'?'—-]} Sll(fh th&t

kbp“f =" —p/T=1 (mod p").
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Therefore there exists a sequence {(y,, .¢, ) € K/ (n;.8)/p™ }3<, such that

=1
lim n; = oc,
J—0C
lim (4, .l ) = (y.4)
J]—0OC

and

/ ! - f—1+
Ga(Yn,+@n,) =P — P

There exists a neichborhood U of (y.q) such that ¢,(y'.¢") < p" — p/ =1 for all

(/ ) cl l)\ U q Q Uz_] Y;. So qu(y q) P — pf_]“f.

If (y.q) ¢ Y7 for all f € {1.2.....r}. then there exists a neighborhood U of
(y.q) and k such that U N K/ (n,a)/p" = @ for any n > k. So g.(y.q) = 0.

Therefore we obtain the conclusion.

For a = a(r) € P, put
G,={r € Z|a(r ) £ 0}.
Let 7,.: P — P be a shift operator such that

r.a(y) = aly — x).

The following theorem shows the relation between A\ _, Vst Untr (a) and g,
in Theorem 2.3. While the upper envelope of g, depends on only the value a(0).

/\;’:] \/,n>A Upari (@) depends on all values a(x)(r & 7). So ¢, is not necessarily
equal to A\, Vs Untrai(a).

Theorem 5.4. Suppose that the set G in (2.1) has at least two prime elements.

Suppose that a € P 1s nonzero and put g.(y.q) = lim,, (U (a))(y.q). Then

/\ \/ v n—H——l ” \/ .(}ﬁ-.((f)'

k=1 n>k reC,

Proof. Let I, € Z.. satisfy 7,(a)(0) = kp'=(k/p ¢ Z+) and xy € Z satisty [, < [,

for all r € Z. Since we have



oA wl =1+l I . .
bY Jrrta) = 21<jrt, (P" — P )1}}\@:_11 .- . we shall show

-

O
/\ \/ Yot ](”) . Z (])) o pj ) MY}\U{-_?II Yi®
k=1 n>k

In order to verify 1t. we show

e A a1, y =1y
/\ \/ 'L'r?-l—r'—1((-"') = / \ : (O.D)

herwise.
k=1 n>k () otherwise

F(')l‘ a1y rnl - Z+ '(111(_'1 (.1/-.~ (I) = R X [O 1] th@ equation "Lf'-l‘-r?.-l—?‘—l (.T-I-‘(a'))(;’/ﬁQ) =

(a)(y —x/p"" ' q) holds. Using the relation above, we can show the

Up4p

equation (5.5) in a similar way to the proof of the equation (5.2) in Theorem

3.2.
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