Chapter 1

Introduction

1.1 Background

[t is a fundamental problem in quantum statistical physics to clarify how the dynamics
of quantum systems are affected by dissipation mechanisms from a microscopic point
of view [1]. This problem is important in the fields of quantum optics 2, 3,4, 5], spin
relaxation [6, 7, 8] , condensed matter [9, 10, 11] and chemical physics (12, 13]. Recent
developments in technology enable us to treat real quantum mechanical systems with
dissipation effects.

Dissipation effects are inevitable because these quantum systems are not closed, but
are in fact open systems. They are open to the surrounding environment which has an
infinitely large number of degrees of freedom. l'hus, energy transferred from the system
‘6 the environment can never be transferred back again, that is, energy is dissipated
from the quantum system. Dissipation also causes fluctuations n the system.

There have been a large number of theoretical approaches to this problem. One
phenomenological method introduces a fluctuating force which is described by classical
stochastic processes [14]. This formalism has had great success in the field of spin
relaxation and condensed matter, where fluctuations are considered to be rather strong.
However the classical stochastic method is not suitable for treating low temperatures

where the dissipative system must be treated fully quantum mechanically.



An approach dividing the whole system into the system and the reservoir 1s the most
successful method for describing the quantum dissipative system from the microscopic
point of view [1]. In this approach, the quantum dissipative system 1s considered to
be coupled weakly with a reservoir consisting of many degrees of freedom. Let us first
describe the whole system, the system plus reservoir, quantum mechanically. Then
we eliminate the reservoir variables from the equation of motion of the whole system
by tracing over the reservoir variables. We thus obtain equations of motion for the
variables of the quantum system under the effect of coupling with reservoir.

There are several ways to treat the dynamics of quantum dissipative systems. We
describe three of the main methods: the Langevin equation approach [3], the master
equation approach [15], and the path integral (functional integral) approach 11]. In
this thesis, we employ the master equation approach to formulate the theory. Before
concentrating on our theory, let us briefly consider these three approaches.

The formulation of dissipative quantum systems in quantum optics was imitiated
by Senitzky [16] using the Langevin equation approach, and was developed further 1n
connection with lasers in the 1960s. In the Langevin approach, the effect of the reser-
voir is introduced by noise operators which causes diffusion eftects 1n the Heisenberg
equations of motion for the operators of the quantum system. Recently, the Langevin
approach has been developed by Gardiner 3, 17] using the mathematics of quantum
tochastic calculus formulated by Hudson and Parthasarathy [18]. The advantage of
the Langevin equation approach for quantum systems 1s its resemblance to the cor-
responding classical equations. But the Langevin equation 1s nonlinear 1in most cases
and it is quite difficult to solve the operator equation.

The Schrédinger picture is an alternative to the Heisenberg description of quan-
tum mechanics. The Schrodinger equation is an equation of motion for state vectors
or wave functions. The corresponding equation for a quantum dissipative system 1S
the master equation, the equation of motion for the density operator of the quantum
system. Historically, the master equation approach originated in the field of the spin
relaxation theory in the 1950s (WBR theory [19, 20]), earlier than the Langevin equa-

tion approach. In the 1960s, the master equation approach developed rapidly in the



field of quantum optics, strongly connected with laser theory [15].

In many quantum optical phenomena, the time scale of the reservoir variables 1s
much shorter than that of the quantum system variables. In this situation, the Marko-
vian approximation is reasonable. The master equation in the Markovian approxi-
mation is much more tractable for real physical systems in quantum optics than the
corresponding Langevin equation. Although it is not easy to solve the master equation
directly, since the master equation is a differential equation of operators, it can be
cast into a c-number differential equation. The principal method which has been used
for decades is to map the master equation into a Fokker-Planck equation using the
coherent states proposed by Glauber [21] and Sudarshan [22]. However, in this thesis,
we do not use this mapping method with coherent states. We develop another method
to solve the master equation.

In 1963, a formalism of the dissipative quantum problem using path integrals 23]
was proposed by Feynman and Vernon [24]. They formally solved the equation of
motion for the density operator of the quantum system by the path integral method,
where the effects of the reservoir variables were introduced as influence functionals.
Since the 1980s, the path integral approach has further been developed in the field
of condensed matter physics to study macroscopic tunnelling problems, related to a
quantum mechanical device, the SQUID (superconducting quantum interference de-
vice) [25, 26]. One of the main interests is to derive a quantum friction term which
corresponds to classical friction. The advantage of this approach 1s that 1t 1s easy to
handle non-Markovian cases. But generally, it is difficult to solve the path integral
analytically beyond very simple systems with the (Gaussian property. Monte-Carlo
numerical simulations are usually necessary to evaluate the path integrals.

Simple quantum dissipative systems such as a damped harmonic oscillator or a cis-
sipative two level atom have been well invest gated by the approaches described above.
However, real physical systems often cannot be modelled as a single dissipative system.
Rather. they are considered to be coupled dissipative systems, composed of mutually
interacting subsystems. For instance, in quantum optics, atoms interacting with a light

field has been of central interest since the birth of the laser [15, 27]. If the interaction



between the two subsystems is weak, it may be a good approximation to treat the
composite quantum dissipative system as the combination of independently dissipative
systems. This approach for the coupled dissipative system has been successtully ap-
plied to conventional problems in quantum optics. When the constituent subsystems
interact with each other weakly, the above mentioned approach is qualitatively justified
28] and indeed, most of real existing systems were of this type.

In quantum optics, however, owing to recent developments in technological artifice,
it is becoming possible to prepare strongly coupled quantum systems like cavity QED
systems [29], micromasers [30], and laser cooling systems [31]. One of the aims of these
researches is to exploit the quantum nature of these systems as quantum devices. In
most cases, real physical systems are open systems, and thus, dissipation eflects are
inevitable. The central problem is to find how the dissipation destroys the quantum
nature and to control the dissipative effects. Therefore, the study of strongly coupled
quantum dissipative systems is now quite important.

The conventional treatment, which is appropriate for weakly coupled quantum dis-
sipative systems, fails for strongly coupled systems. [nsufficiency is revealed clearly
when we examine the equilibrium state of a strongly coupled system 1, 32|. With the
conventional treatment. the strongly coupled system relaxes independently to the prod-
wet states of each constituent subsystem at thermal equilibrium, instead of relaxing to
the correct canonical distribution of the coupled system. This kind of treatment cannot
give the correct equilibrium distribution of the coupled quantum system because the
troduced relaxation mechanisms have no information on the coupling between the
subsystems.

In this thesis. we formulate a new relaxation theory for strongly coupled quantum
systems which relax to the correct thermal equilibrium using the master equation
approach. We study strongly coupled quantum dissipative systems by examining their
relaxation dynamics toward the correct thermal equilibrium from off-equilibrium initial

conditions.
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1.2 Organization of the thesis

From chapter 2 to chapter 4, we formulate the relaxation theory for the dissipative
Jaynes-Cummings model. In chapter 2, we investigate the case with a special dissipa-
tion mechanism. With this dissipation mechanism, the system relaxes to the thermal
equilibrium of each subspace. In chapter 3, we generalize the relaxation model ob-
tained in chapter 2 and formulate a relaxation theory which describes the strongly
coupled systems evolving in time to the correct thermal equilibrium state. We 1nvesti-
sate the relaxation dynamics of the diagonal elements i the boson quantum numbers.

In chapter 4, we study another relaxation model, the strongly coupled spin -12- system.

In chapter 5, we give a short conclusion.
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