Chapter 2

Dynamics of the Dissipative

Jaynes-Cummings Model

A new type of the dissipative Jaynes-Cummings model 1s presented. Inter-
action between a composite relevant system and a reservoir 1s introduced to
modulate the coupling constant in the relevant system. A quantal master
equation is obtained with use of the time convolutionless (TCL) projection
operator formalism and 1s expanded in terms of eigenstates of the com-
posite relevant system. The resulting basic equations become solvable and
can be used irrespective of the interaction strength between the relevant
subsystems. Moreover, these equations give the correct equilibrium values

in each subspace. Several explicit numerical calculations are done.
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2.1 Introduction

Studies on quantum dynamics of a spin 1/2 system coupled with bosons have been an
extensive subject for a long time. For instance, Jaynes and Cummings [1] introduced
a model composed of a spin 1/2 particle interacting with a single-mode boson. The
Jaynes-Cummings model 1s solvable within the so-called rotating wave approximation.
Recently, renewed attention i1s paid to the model in connection with the micromaser
2].

[n many physical systems, however, the relevant coupled system 1s surrounded by
environment (reservoir) which exerts certain eflects on 1t. 'T'hat 1s, the relevant coupled
system is perturbed by the environmental system which is the origin of fluctuation
and dissipation mechanism. In the conventional treatment [3], each subsystem of the

composite relevant system is assumed to be surrounded by their respective reservorr.

That is, our concern lies in the relevant system whose Hamiltonian 1s of the form
H = H;+ Hy+ Hy . (2.1.1)

In (2.1.1), H; (Hy) represents the Hamiltonian of subsystem | (1) whereas Hy yy 1s
the interaction Hamiltonian between the two. Then, the density matrix p(¢) of the

relevant system evolves in time according to
s, 1 . - - % 3
-a—t-p(i) =7 (Hy+ Hiy+ Hin,p () [+ (I + 1) p (1) (2.1.2)
The first term on the right hand side of (2.1.2) describes coherent motion of the coupled
system including the interaction between the subsystems I and II . On the other hand,
the relaxation operator [7 (/) is obtained for the subsystem I (I1) alone, that 1s, when
the interaction Hamiltonian ;1 = 0. In this framework, the subsystem [ (11) relaxes
to the equilibrium specified by the Hamiltonian Hy (/1). Each subsystem relaxes to its
respective equilibrium independently but not to the one for the whole relevant coupled
system.
Since we consider strongly coupled systems, effect of the interaction between the
subsystems on the relaxation operator can never be neglected. Thus, for the composite

relevant system of the Hamiltonian (2.1.1), the the relaxation operator /" should not
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be characterized by Hy (Hyy) but by (2.1.1) itself [4]. Generally speaking, it 1s quite
difficult to derive I' and solve the resulting equation. And thus, there have been only
a small amount of work on this problem. As a special case, detailed study was done
on the parametric amplifier [5]. In this chapter we introduce another solvable relax-
ation model other than the parametric amplifier, i.e., a dissipative Jaynes-Cummings
model, relaxation operator of which is determined by (2.1.1). This model enables us
to take into account a new type of dissipation mechanism which is out of a scope of

the conventional treatment.
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2.2 Quantal master equation

Our system is composed of a spin 1/2 particle strongly coupled with a single-mode

boson. The Hamiltonian of the system is given by

H=Hs+ Hy,+ H, (2.2.1)
where
Hs = hwyS,, (2.2.2)
Hy, = hwyb'b (2.2.3)
and
H; = thbTsz + hg, (b5'+ + bTS'_) . (2.2.4)
In these expressions, we introduced the spin 1/2 operator § = (5;, 5, 5.), 5S¢ =

S, 4 1S, the Larmor (angular) frequency wg, and the annihilation (creation) operator
b (b), the (angular) frequency wy for the boson. The first term on the right hand side
of (2.2.4) represents the adiabatic interaction which causes dephasing effect whereas
the second of (2.2.4) is the non-adiabatic term which gives rise to spin flip with energy
exchange. The system represented by (2.2.1)-(2.2.4) is a shightly extended version of

the Jaynes-Cummings model in the rotating wave approximation.

NS

In our model. the non-adiabatic coupling constant ¢g; in (2.2.4) is considered to be

modified due to an interaction with a reservoir:

gL — g1 + gB Z (B[T + Bg) ('2.2.5)
[

where B{T and B, represent the reservoir variables. Here we assume that the reservoir

is composed of harmonic oscillators and the Hamiltonian of the reservoir 1s given by
]{B — thzB,TBZ (226)
|

with w; > 0. Thus our system (characterized by Il = Hs + Hy + H;) 1s perturbed by

L

the reservoir (characterized by Hg) through the Hamiltonian of the torm

Hip = h (bSy +6'S_) gud_ (Bl + B1), (2.2.7)
[
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The reduced density matrix of the relevant system is given by

p(t)=trgW (1)

—~~
N
N
o

where W (t) is the density matrix of the whole system including the reservoir. The
symbol trg stands for the trace operation over the reservoir variables. With use of
the time convolutionless (TCL) formalism [6| (See Appendix A), the quantal master

equation of the relevant system is given by

0 l
o (1) = —[H ,p() ]+ T p(1) (22,

N\
N\
O
,

where

bS,, p(t) b'S- (——t’): + [bTS_? o(t) bS, (-z’)] )} (2.2.10)

[n (2.2.10), the operators By(t), B,T(t), bS.(t) and bS,(t) are respectively given by

B, (t) = etHBt/h B, e_th/h, (2.2.11)
Bl (t) = eHet/h plemtHutil (2.2.12)
bSy (1) = et/ pS el LS (2.2.13)
and
ptS_ (t) = eth pts_ e HUR (2.2.14)

It should be noted that time evolution of the system operators (2.2.13) and (2.2.14)

are determined by the total Hamiltonian H of the relevant system, (2.2.1).

15



2.3 Eigenstates and eigenvalues of the system

Following the method of Jaynes and Cummings |1, 7], eigenstates of the Hamiltonian

(2.2.1) are obtained as

o(n,1)) =cosb, |n+1,—1) +sinb, [n,+1), (2.3.1)
(o (n,2)) = —sinb, |n+1,—1) + cosb, |n,+1), (2.3.2)

for n =0,1,... and a state
0, —1) (2.3.3)

which is not written in the form of (2.3.1) and (2.3.2). In these expressions, |n,+1) rep-
resents the state with n bosons and spin-up whereas |n, —1) spin-down. The eigenstates

are orthogonal to one another and satisfy completeness relation ot the form

S {1 (s 1)) (o (m D) + Lo (0, 2)) {0 (2]} 410, 1) (0, =1 = 1. (2.3.4
n==0
We have
H g (n,1)) = E |o(n,1)) (2.3.5)
H o (n,2)) = B |¢(n,2))., (2.3.6)
and

[n these expressions we have put

| _ _
Fa =t {“’b <"‘ ! 5) L ('”)} (2.3.8)
and f
L |

0= 7 20 (2.3.9)

with [_ o

: 2n + | 2 2 _

M= (’"\w " 5 )) 91 (n+ 1), (2.3.10)

Aw being defined by Aw = wy — wo.
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The angle 6,, 1s determined to be

tan @, =

(2.3.11)

1
2

for g, # 0.
For g, = 0, we have to put tanf, = 0 irrespective of Aw > g, (2n+1)/2 or

Aw < g (2n + 1) /2.
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2.4 Derivation of basic equations

We denote components of the density matrix p(¢) in terms of the eigenstates (2.3.1)-

(2.3.3) as

Pag (1) = (@ (n,a)|p(t) @ (m, ), (2.4.1)
pog (1) = (0, =1]p (1) | (m,3)) . (2.4.2)
Pao (1) = (@ (n,a)[p(1)]0,—1), (2.4.3)

poo (1) = (0, =1|p(1)]0,—1) (2.4.4)

with a, 8 = 1,2. The diagonal components satisty the normalization condition:
> AP () + phs (D} + poo (1) = 1. (2.4.5)

We expand the quantal master equation (2.2.9) in terms of (2.3.1)-(2.3.3). The corre-

sponding equations of the components of the density matrix are given as

%PZZ" (t) = -L-lﬁ (@ (n,a)| [ H, p(8)] o (m, B)) + (¢ (n,a)[ L'p(t)|p(m,[))(2.4.6)
Cogp (1) = = (0,1 [H,p (O] lp (m,B) + 0. =1 Pp () o (m,B)),  (247)
O polt) = = (e (mall[Hp(0]0,-1) + o (n,a)| Tp(0)]0,-1),  (243)
%poo(t) - %<o,m1| o (1)]0, 1), (2.4.9)

Next we show manipulation of the second term on the right hand side of (2.4.6).

This may serve for illustration:




In (2.4.10), the relevant operators are written in terms of the eigenbras and kets:

— ZZIQ(n,a )) P25 (1) (¢ (n, B)] (2.4.11)
n=0 «,[
and
1S_ (1) = X I (n,)) Q5 (1) (i (n, B) (2.4.12)
n=0 o,
where
Plnln (t) pmoce —P;zn (t) e nn ( ) = —Q ( ) = VvV + | S1n 9?-1 COS 97“ (2413)
Pt (t) = {@5 (1 }T gt Mnligin2 g (2.4.14)
Pt (1) = 1Q59 (1) = —e 2 eos? 0, (2.4.15)

with (2.3.10).
We further assume that the correlation time of the reservoir i1s much shorter than

the relaxation time of the system. In this narrowing limit, we have

OPn = Zgé/ dt' (Bl (') Bi)ge™**"

_ ZJB/ dt' (Bl (—t') B))ge* MMt = };ﬁ. (n) (2.4.16)
br = Nab [ (B0 Blae 0
. ZQB/‘ (B (—1") B)pe®™ WY = k(i (n) +1)  (24.17)
where k i1s the damping constant and
i (n) = (2T )7 (2.4.18)

T being the temperature of the reservoir. All the other correlation functions of B; and

B;r vanish identically. For later convenience, we define the following vectors:

p (1) | 2.4.19)

=
C-u
~
_——
o
N—
11
* =
=
bt 3
o~
S~
N

) 2420



and

= (0 .
P30 (1)
for n,m > 0. After manipulating similarly, we can calculate (2.4.6)-(2.4.9) to give a

set of vector equations of the form:

-_(%p’m (1) = {—=iL"™ +x ['(n,m)} p"™ (1). (2.4.22)
%pom (1) = {—tL,"+~x ['(m)} p," (1), (2.4.23)
5P olt) = {=t L+ & ['(n)} p"y (1), (2.4.24)
0 o
apoo(t) = { (2.4.25)

with the coeflicient matrices L and " defined in Appendix B.
[t is a very characteristic of our basic equations (2.4.22)-(2.4.25) that they are
separable with respect to the index n. On the other hand, with the other type of

system-reservoir interaction represented by
Hog = h (b+bY) gs Y (Bl + B)) (2.4.26)
!

we obtain time evolution equations having tridiagonal recurrence terms with respect

to index (n,m) and their analytic solution in the form of continued fraction [8]. Indeed
we have treated relaxation effect due to the same reservoir, but the effect itseltf depends
on the details of the interaction mechanism represented by (2.2.7) and (2.4.26). That
is. the difference depends on a way of operation of the system operators coupling with

the reservoir on the eigenstates of the relevant system.



2.5 Quasi-probability density for the boson sys-

tem

The normally ordered quasi-probability density for the boson system is given by

F(z,t) = (z|trsp(t)|2) (2.5.1)
where |z) is the boson coherent state, namely.
blz) = z|z) (2.5.2)

and the symbol trg stands for the trace operation over the spin variable. 'T'he quasi-

probability density can be rewritten with use ol the eigenstates ot H:

3
.
N
T
N’
|

trs {ZZ 2| ¢ (n,a)) pog (1) (9 (m, )] z)

LTI a;}

1 ZZ (z] 0, —1) /o}? (1) (¢ (m, B)] 2)

i

+ ZZ |‘r9” Pao()<0 _1|3>

+ (z] 0,—=1) poo (0, —1| z)]. (2.5.3)

Owing to the relation

(n| z) = exp [—-|z|2/2] Yerk (2.5.4)

where |n) i1s the number state, we have

(p(n,1)| z) = e 2I°/2 \;_ (\/;—I——T cos ), (—1| 4+ sinb, (+1|) , (2.5.5)
n! n

Inserting (2.5.5) and (2.5.6) into (2.5.3) and performing the trace operation, we find

and

(p(n,2)| z) = o~ |2l /2 bln 0, (—1|+ cosb, (—H]) . (2.5.6)

y.

>
H

F Z-;t — e—-lzl?‘) M SiI] On SiI] Om _|' 7 COS 971 COS ()m p?{n ( )
( ) [% N/ ?1!?71! { ( \/(?1 -+ ]) (-‘I?l + 1)
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1 (Sin 9.,1 COS Om COS On S11 Om) P?;n (t)

2
-+ COS Hn 31N 0?}1 — ‘“‘_—‘L:L : — SIN 0':1 COS 9m p(T)L;n ( )
(n+1)(m+1)
2
+ COS 9,,1 COS 0?,.1 —1- _ ]HI _ SIM 9-n SIM Om /)gfzn (f)
\/(n + 1) (m + 1)
*71-{-1 |
+ ) ———(cosb,p7, (1) —sinb,p5 (1))
+1

+ (cos O, poi* (1) — sin b, py5 (1)) + poc (t)] | (2.5.7)

;\/ (m +1)!

Thus we can extract information on the boson system from the density matrix of the

coupled system.
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2.6 Calculations of the relaxation process

2.6.1 Initial condition and Expectation values

In order to solve the basic equations derived 1n the previous sections, we 1mpose the
following initial condition. At ¢t = 0, the relevant system 1s assumed to be in a state

represented by

p(0) = |41) (+1] - |n) (n], (2.6.1)

namely, the system is in the up-spin and n boson state. The initial density matrix p(0)

1s rewritten 1n terms of the eigenstates as

p(0) = sin®0,|¢(n,1)) (¢ (n,1)| 4 cos™ 0, | (n,2)) (¢ (n,2)
+ sinf, cos b, (|p(n,1)) (p(n,2)] + |p(n,2)) (p(n,1)]). (2.6.2)

We can calculate expectation value of an arbitrary operator:

Trip(t) Al _
(A)} = —FF—. (2.6.3)
= T ()
For instance, we have
7 1 . TLTl LT

(52)e = 5 Z {—cos20, (piy (1) — p3yz (1))

bosin20, (o2 () + o2 (D) — poo () ). (2.6.4)
(b'h), = > {(n + cos” On) piy (1)

— cosO,sin 0, (pi5 (1) + pyy (1))

+ (n+sin0,) p33 (1)} (2.6.5)

[n order to find such quantities like (S,);, (b'b),, (bS;):, (b1S_),, (b'0S.), from the
initial condition (2.6.2), it is sufficient to determine time evolution of the diagonal
components pij and poo. That is, we have the equations:

a e ; nn nn % .
5P (1) ={—1 L" 4+ x ['(n,n)} p"™" (1), (2.6.6)

with (2.4.25).



2.6.2 Numerical calculation

[t is interesting to examine relaxation process starting from the vacuum state of the
bosons. That is, p(0) is given by (2.6.2) with n = 0. We made numerical calculations
with this initial condition.

In Fig.2.1-a and Fig.2.1-b, we show time evolution of expectation values (5.), and
(b'h), as a function of 7 = xt. Time evolution of these two quantities are completely
correlated. This is the reflection of energy exchange between the relevant subsystems.
The damping rate is dependent on the temperature, but after a long time, all these

quantities approach to the correct equilibrium values in the subspace specified by n:

1 cos 20, (e"E—f/kBr — e“EE/kBT)

<53>€q‘n — —§ T ;Ez/FBT ;e_Eﬁ/k_BT . (267)
T (n + cos” 0,) i UL (n 1 sin? ()n) o~ EL/kBT
e R : -

Entire information on the time evolution of the boson subsystem 1s in the quasi-
probability density F(z,t), (2.5.7). In I'igs.2.1-c, we show time evolution of the quasi-
probability density for T = kgT/he = 1.0. At 7 = 0, the quasi-probability has
the Gaussian distribution centered at z = 0. The ring shape of a quasi-probability
density of Fig.2.1-c-(2) corresponds to the first peak of the dashed line n F1g.2.1-b
and the peaked quasi-probability density of IMig.2.1-c-(3) corresponds to the first valley
of Fig.2.1-b. Center of the quasi-probability density oscillates in time synchronizing

with the oscillation of (bfb), and at last, the quasi-probability density tends to be the

equilibrium function (Fig.2. 1-c-(4)).

low temperature. In Fig.2.3 we show time evolution of the system for off-resonant
condition Oy = wo/k > wp = wp/k. At the low temperature, the equilibrium values
are quite sensitively dependent on the values of the parameters. But at the high
temperature, the equilibrium value of (5:), tends to zero, reflecting equi-partition of
the two states (2.3.1) and (2.3.2).

In order to investigate characteristic properties of each constituent term of (2.2.7),

let us divide the interaction Hamiltonian between the relevant system and the reservoir
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into two parts:

Higy = hgp Y (b4 B] + b1S_B)) (2.6.9)
[

and

[

The physical meaning of the division is that (2.6.9) is compatible with the energy
conservation for the case w, > wy and (2.6.10) for the case w, < wq as illustrated in
Fig.2.4. The Hamiltonians (2.6.9) and (2.6.10) give the relaxation operators [’} and
I, respectively, where we put I' = 'y + I, with I" given by (2.2.10).

We show time evolution of (S.), by the relaxation operator /'y and /5 in kigs.2.5.
When the spin and the boson are in resonance (Iig.2.5-a), time evolution by the two
relaxation operators coincides (I} = [3). When we treat the system under near res-
onance condition, the relaxation operator (2.6.10) contributes equally well as (2.6.9)
and hence we should treat (2.2.7) as a whole. On the other hand, with non-resonant
condition (Fig.2.5-b), the damping by the relaxation operator I} is much slower than
that of . In this case, the damping is dominated by the process represented by /5

which is compatible with the energy conservation. This is clearly seen in Fig.2.3 where

the dumping due to [} 1s ineffective.



Fig.2.1-a Time evolution of (S5,), as a function of scaled time 7 = kt. System pa-

rameters are ¢, gL/K 5.0, 9 = gy/k = 0, wg = wo/k = 10.0,

wp = wp/k = 10.0. The temperature parameter is given by 7' = kgT'/hx = 1.0

e

(dashed line) and 7' = 100.0 (solid line).
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(1) 7 =0, (2) 7 =0.3.
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I1g.2.2  Time evolution of (S,), for parameters g, = 5.0, gy = 9.0, wg = 10.0,
wp = 10.0.
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F1g.2.3  Time evolution of (S.), for parameters ¢,

wp = 10.0.

5.0, gy = 0.0, & = 20.0,
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['1g.2.4  Illustration of the interaction between the relevant system and the reservoir.
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_ by damping operators [, and . Time evolution by

Fig.2.5-a Time evolution of (S,)
The system parameters are the same

the two damping operators coincides.
as in Figs.2.1 and T" = 1.0.
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['1g.2.5-b Time evolution of (S,), by damping operator [} (dashed line) and [ (solid
line). The system parameters are the same as 1n Fig.2.3 and T =1.0.
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2.7 Short summary and discussions

In the present chapter, we have introduced a solvable relaxation model which deter-
mines time evolution of the Jaynes-Cummings model. Interaction between the relevant
system and the reservoir has a form to modulate the coupling constant g, within the rel-
evant system. After obtaining a quantal master equation for the density matrix p(t) by
the method of TCL formalism, we expand the quantal master equation in terms of the
eigenstates of H to give a set of simple and tractable equations (2.4.22)-(2.4.25). Some
of the expectation values are simply written in terms of the components of the density
matrix. With the initial condition given in section 2.6, we studied quantum dynam-
ics of the coupled relaxation system including time evolution of the quasi-probability
density of the boson system.

[t should be stressed that our theory is valid irrespective of the strength of the
coupling constant ¢, between the relevant subsystems. That is, we can treat the case
of strong interaction between the subsystems S and b [See (2.2.4)]. This is beyond
applicability of the usual perturbation theory and the conventional master equation
approach.

In our model, the basic equations are closed in the same subspace specified by n
or (n,m) as is seen from (2.4.22)-(2.4.25). The relaxation mechanism works only in
the subspace. In other words, there is no "jump” or spontaneous emission between the
different subspaces. This is entirely due to the property of the interaction (2.2.7). The
initial condition can be realized when, for instance, the temperature is very low and/or
the relevant system is artificially pumped into a special set of states. Thus, there 1s
a possibility to control the spontaneous emission when our mechanism of relaxation
is realized. On the contrary, the coupling (2.4.26) gives an equation of motion in the
tridiagonal form with respect to the index (n,m) [8]. This coupling implies mixing

among the subspaces.
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Appendix

2.A Damping operator

In a framework of the damping theory [6], we can eliminate irrelevant variable B

systematically. Kspecially, for the interaction Hamiltonian

where A is the relevant variable, we have the equation of motion for the density matrix

of the relevant system

d . 2 L N2 Y, /]2 e
=p(t)=—gh [ ar([A@)-B@]" [AW)-B@)]") st 2.A2)

when the interaction is weak. We have introduced a symbol C*D = [C, D|. We have

also introduced the tollowing quantities:

5(1) = eHatlh,g)e=iHat/h (2.A.3)
A— (t) - eiffﬂt/hAe““i}[At/h, (Q.A:l)
B (Z) _ efiHBt/hBe—iHBt/ﬁ? (2A5)

where p(t) represents the reduced density matrix of the relevant system and H,4 and
Hpy are the Hamiltonians of the relevant system and the irrelevant system (reservoir),

respectively. The average symbol (- --) is defined by (---) = trg(---pg) where pp 1s

the reservoir density matrix. We have assumed (B) 5 = 0 and imposed initial condition

that W(0) = p(0) - pB.

The equation (2.A.2) leads to the following quantal master equation in the Schrodinger

picture: A

i ]

. . )

o)== [Ha p () ]+ p (0 (2.A.6)
where

t . )
[ p(t) = gb | d ;{(& () By, [A(—=1")p(1), A}]
-1- <B{ ("—t’) BJ>B -flj,p(l)/i[(“i’)}} ; (.2 A 7)




2.B Coeflicient Matrices

The coeflicient matrices of the coherent motion in (2.4.22)-(2.4.25) are given by

Et —~ £ 0 0 0
| 0 EY — E™ 0 0
L"™ = — " , (2.B.1)
h 0 0  E*—ET 0
0 0 0 " — BT
R B el ’ | (2.B.2)
h O Ei T [JO
and
1 [ Eyg— ET 0
Llm=o| T~ % (2.B.3)
f 0 Eo— E™
together with 2.3.8 and 2.3.9.
The coefficient matrices of the damping term in (2.4.22) are given by
n(n,m) y2(m,n) 72 (n,m) ~3(n,m
(M, n n,m n,m (n,m _
I'(n,m) = valm,n) s Toln,m) 77 (n,m) (2.B.4)
Y4 (n,m) e (m,n) 7s(m,n) ~7(m,n)
vg(n,m) 7o (n,m) 79 (m,n) ~yio(n,m)
where
vy (n,m) = —(n+1)(n(n)+1) (sin’f1 0, + cos Hn)
— (m+1)(n(m)+1) (silf1 0,, + cos’ Qm) , (2.B.5)
Yo (n,m) = —v/n + 1n(n) cos 20,,¢, (2.B.6)
vs(n,m) = Vn+1vVm+1(n(n)+n(m))
X {sin2 0, sin®0,, + cos* 0, cos” Om} , (2.B.7)
va(n,m) = Vn+1(n(n)+1)cos2b,n, (2.B.8)
vs(n,m) = —(n+1)n(n)+1) (sirf1 0, + cos” On)
— (m+ 1)n(m) (sin4 0, + cos” ()m) , (2.B.9)
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with

6 (n, TTL)

B4 (n'}m)

78 (nv ?71)

79 (TL, Tn)

110 (na ?7?,)

Iy
|

|

|

v+ 1vVm 4+ 1 (a(n) +n(m) + 1)
{Sin2 0. cos® 0, + sin“0, cos’ Hm} ,
vn + 1a(n) cos 20,1,

vn+ 1vm+ 1 (n(n) 4+ n(m) + 1)
{Sin2 0 sin®0, + cos* 0, cos” Om} .,
vn + 1 (7(n) + 1) cos 20,€,
—(n+ 1) a(n) (sin® 0, + cos*0,,)
(m + 1)n(m) (sin4 0,, + cos” Om)

vn + 1sin, cosf, —\/m + lsind,, cos0,,,

n = Vvn+1sin0,cost, + vVm + 1sinf, cosé,,.

Finally the coefficient matrices in (2.4.23) and (2.4.24) are given by

where

Qo () —_
N . e T
—
o~ o~
N S N "

d
o
o~

['(n)

1) ( n(n) 7a(n) ) .

va(n)  va(n)

—(n(n) + 1) (sin‘il 0, + cos’ Hn) ,
—n(n)cos 20, sin 0, cost,,

(n(n) + 1) cos 20, sin 8, cos b,
—n(n) (sirf1 0, + cos’ Hn) .

(2.B.10)
(2.B.11)

(2.B.12)
(2.B.13)

(2.B.14)

(2.B.17)

[\o
-
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NS
-
~— ~— ~— ~—

i N R o I ot
NO [N

o O O O
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O
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