
Doctoral Dissertation, 2017

Theoretical study on ordering of

polarity and oscillation

in cell populations

OCHANOMIZU UNIVERSITY

Advanced Science,

Graduate School of Humanities and Sciences

SUGIMURA Kaori

March, 2018



Contents

1 Introduction 3

1.1 Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Mathematical models of ordering . . . . . . . . . . . . . . . . . . 4

1.2.1 The XY model . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 The Winfree model and Kuramoto model . . . . . . . . . . 5

1.2.3 A reaction–diffusion system . . . . . . . . . . . . . . . . . 6

1.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . 7

2 Polarity ordering analysis of planar cell polarity (PCP) 9

2.1 Background and an aim . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Previous mathematical studies . . . . . . . . . . . . . . . . . . . . 13

2.2.1 The PCP model proposed by Aigouy et al. . . . . . . . . . 13

2.2.2 The PCP model proposed by Amonlirdviman et al. . . . . 14

2.2.3 The PCP model proposed by Akiyama et al. . . . . . . . . 16

3 The phase model of polarity ordering in spatially extended dy-

namical units 17

3.1 The reaction–diffusion model of polarity ordering . . . . . . . . . 17

3.1.1 Linear stability analysis of a reaction–diffusion model . . . 21

3.2 Phase reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Derivation of the PRC: a direct stimulation method . . . . 24

3.2.2 Derivation of the PRC: the adjoint method . . . . . . . . . 26

3.2.3 A phase reduction for the system with spatially transla-

tional symmetry . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 The phase model of a general reaction–diffusion model . . . . . . 29

4 The dynamical properties of the polar model 35

4.1 Oriented polarity of two cells . . . . . . . . . . . . . . . . . . . . . 35

4.2 Dependence on the shape of cells and the system boundary . . . . 38

4.3 Dependence on the change in coupling strength . . . . . . . . . . 43

4.4 Noise and global concentration gradient . . . . . . . . . . . . . . . 45

1



4.5 The effect of microtubules . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Cell polarity of the system with defective cells . . . . . . . . . . . 51

4.7 The robustness of cell polarity . . . . . . . . . . . . . . . . . . . . 53

4.8 The phase model for any cell shape . . . . . . . . . . . . . . . . . 54

4.9 Dependence on the shape of the system . . . . . . . . . . . . . . . 57

4.10 The relation between nematic order and elongation direction . . . 59

4.11 The relation between cell shape and cell alignment . . . . . . . . . 62

4.12 Orientation of polarity when the cell system is anisotropic . . . . 63

4.13 How to orient cell polarity globally . . . . . . . . . . . . . . . . . 65

4.14 Conclusions and discussion of polarity ordering . . . . . . . . . . . 68

5 Phase ordering analysis of spiral chaos 72

5.1 Background and an aim . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Spatiotemporal chaos . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.1 The pulse of the heart . . . . . . . . . . . . . . . . . . . . 74

5.2.2 BZ reaction . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.3 Dictyostelium . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Atrial fibrillation . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Analysis of transient spiral chaos 77

6.1 The model and numerical settings . . . . . . . . . . . . . . . . . . 77

6.2 The Lyapunov exponent . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 Time evolution and probability distribution of the number of defects 81

6.3.1 Defect counting . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3.2 A time series of defects . . . . . . . . . . . . . . . . . . . . 82

6.3.3 A distribution of the number of defects . . . . . . . . . . . 83

6.3.4 Correlation length of defects . . . . . . . . . . . . . . . . . 84

6.4 System size dependence of lifetime . . . . . . . . . . . . . . . . . 86

6.5 The dependence of lifetime on system shape . . . . . . . . . . . . 89

7 Statistical properties of spiral chaos in oscillating media 92

7.1 Model and numerical settings . . . . . . . . . . . . . . . . . . . . 92

7.2 Time evolution and probability distribution of the number of defects 93

7.2.1 Defect counting . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2.2 The distribution of the number of defects . . . . . . . . . . 93

7.3 System size dependence of lifetime . . . . . . . . . . . . . . . . . 94

7.4 Conclusions and discussion for phase ordering . . . . . . . . . . . 95

8 Summary 97

2



Appendices 100

Appendix A Linear stability method 100

3



Abstract

Polarity and phase ordering are greatly important in biology. The former is

essential, e.g., for alignment of hair follicles and oriented cell division. The latter

is known as synchronization, which is required, e.g., for normal operation of the

heart and circadian rhythms. In this thesis, the ordering dynamics of cellular

polarity and oscillation phase is elucidated.

In Chapter 1, polarity and phase ordering and some mathematical models of

ordering are introduced.

The first and second parts of this thesis deal with the polarity alignment

process (Chapters 2 – 4) and the phase ordering process (Chapters 5 – 7), re-

spectively.

In Chapter 2, first, the planar cell polarity (PCP) is explained. PCP refers

to the coordinated alignment of cell polarity across a planar tissue, and many

biological experiments have been performed on PCP in the wing epithelium of

Drosophila. The present study is based on those experimental results. The

previous mathematical models of PCP and general models describing ordering

of spins and oscillators are introduced.

In Chapter 3, a reaction–diffusion model of cellular polarity alignment is con-

structed. Nonetheless, this model is costly for numerical analysis when many

cells are considered. Therefore, in the second half of Chapter 3, a reduced model

using the phase reduction theory for systems with a spatially translational mode

is derived. The derived phase model is drastically simpler and easier to ana-

lyze than the reaction–diffusion model, yet it is a reasonable approximation. It

contains the terms representing geometric information, such as cell shape and

relative position of adjacent cells in addition to the terms similar to ferromag-

netic spin models. In contrast to previously proposed phenomenological models,

these terms are derived directly from the reaction–diffusion model.

In Chapter 4, the newly derived phase model is analyzed. As a result, it be-

comes clear that shapes of cells and anisotropy of a coupling strength distribution

affect the global orientation of polarity. In fact, when the distribution of coupling

strengths is uniform, the polarity is oriented perpendicular to the direction of
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cell elongation, and in the case where the distribution of coupling strengths is

heterogeneous, the polarity is ordered toward a strongly coupled adhesive side.

These dynamical properties are elucidated numerically and theoretically. More-

over, other properties including the effects of the form of the system boundary,

an external signal and noise, and defects of polarity are presented.

In Chapter 5 and the following chapters, the ordering dynamics of cellular

phases are focused upon, by considering spiral chaos in which spirals repeat to

generate and annihilate. This study is motivated by atrial fibrillation whose

dynamics resemble spiral chaos. The atrium is supposed to show spiral chaos of

electrical waves when the heart undergoes atrial fibrillation. Catheter ablation,

by which the atrium is subdivided into several parts, is known to be effective at

terminating chaotic dynamics. Hence, it is theoretically expected that there is

a relation between the stability of a chaotic state and its system size. Indeed,

it is known that the lifetime of transient spiral chaos grows exponentially as the

system size increases.

In Chapter 6, a theoretical formula for predicting the lifetime of spiral chaos in

excitable media is derived. The distribution of the number of defects approaches

the Gaussian distribution according to central limit theorem as the system size

increases. Using this fact, a general expression for the dependence of lifetime

on system size is provided; this relation is valid for large system sizes, and the

dependence is indeed exponential. It is confirmed that the expression of lifetime

is in good agreement with numerically obtained lifetime values with parameter

sets near the onset of transient chaos.

In Chapter 7, to verify generality of the argument in Chapter 6, a model of

oscillatory media manifesting transient spiral chaos is numerically analyzed and

consistency of the claims is confirmed.

In Chapter 8, after summarizing this research, possible applications are dis-

cussed.
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Chapter 1

Introduction

1.1 Ordering

Ordering refers to a phenomenon in which a system consisting of multiple units

forms an ordered structure via interactions among the units [1, 2, 3, 4]. Rep-

resentative examples include magnetization [5, 6] and synchronization [7, 8], in

which polarity orientations and oscillation phases form a coherent structure, re-

spectively. These phenomena are widespread in nature [9, 10, 11]. If a system

fails to order, various malfunctions may occur [12, 13].

The structure and dynamics of a population of cilia provides a striking ex-

ample of ordering. Motile cilia cover many organs, such as the respiratory tract

and semicircular canals. Beating of cilia mutually synchronizes through hydro-

dynamic interaction among the cilia, thus causing efficient directional fluid flow

for transport of materials [11]. Moreover, directions of cilia are aligned, and

this situation is supposed to support synchronized dynamics of cilia [11]. Heart

beat is a familiar example of synchronization. Heart beat is realized by synchro-

nized dynamics within a population of cardiac cells through electric interactions

between neighboring cells.

In many cases, a tissue level order is needed. How is such global ordering

implemented in biological systems? Although the importance of ordering has

been recognized, its mechanism has not yet been fully elucidated. Such a problem

has been dealt with in physical and chemical systems, and several mathematical

models have been proposed [5, 6, 14, 15]. Those models are expected to be useful

for the understanding of ordering in biological systems. In the following sections,

some important models describing an ordering process are introduced.
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1.2 Mathematical models of ordering

Various models have been proposed for dissecting the mechanism of ordering.

These mathematical models help us to understand the transition from a dis-

ordered phase to an ordered one and make it possible to describe concentric

traveling waves or spiral waves, which are seen in chemical reactions. Here, the

XY model, which describes a ferromagnetic interaction among spins, is intro-

duced; Winfree model and Kuramoto model, which describe synchronization of

oscillators; and reaction–diffusion models describing pattern ordering.

1.2.1 The XY model

The XY model is a well-known model describing ferromagnetic interaction among

spins, and is used frequently in statistical physics. For example, Kosterlitz

and Thouless predicted the existence of the order–disorder transition in a two-

dimensional system by means of this model and won the Nobel Prize in Physics

in 2016 [16, 17]. In the XY model, the spin state is described by a unit vector

si = (cos θi, sin θi) where θi is the orientation of spin. θi is called the phase of

unit i. A lattice system with nearest-neighbor coupling is considered, which is

schematically depicted in Fig. 1.1. The Hamiltonian of this system is given by

H = −J
∑

j∈A(i)

si · sj = −J
∑

j∈A(i)

cos(θj − θi). (1.1)

Here, A(i) is the group of cells adjacent to cell i. In the case of zero temperature

and overdamped limit, the dynamical equation for θi is given as

dθi
dt

= J
∑

j∈A(i)

sin(θj − θi). (1.2)

In this thesis, we refer to this dynamical equation as the XY model. In this

model, when all the spins have the same orientation, i.e., all the phases are in

phase, and the energy reaches the minimum. Nevertheless, in a large system,

such a globally ordered state is difficult to obtain from general initial conditions

because many topological defects may appear.

4



Figure 1.1: Illustration of the XY model on a two-dimensional plane. Each spin
interacts with its nearest neighbors and varies its spin orientation to align with
its neighbors.

1.2.2 The Winfree model and Kuramoto model

The Kuramoto model is similar to the XY model [7]. This model is based on

the Winfree model of coupled oscillators [18] and enables us to deal with syn-

chronization dynamics analytically. Winfree does not describe the mathematical

model in his paper [18], but in the context, the Winfree model is expressed as

dϕi

dt
= ωi +

K

N

N∑
k=1

Z(ϕi)P (ϕk). (1.3)

This model describes globally coupled oscillators with uniform coupling strength.

ϕi and ωi are the phase and the natural frequency of unit i (1 ≤ i ≤ N),

respectively. ωi is distributed randomly. K denotes the coupling strength, and

N is the number of oscillators. Z(ϕi) is the phase sensitivity of oscillator i,

and P (ϕk) represents the signal from oscillator k. The distribution of ωi and

the interaction promotes descynchronization and synchronization, respectively.

On the basis of numerical simulations of the Winfree model, Winfree predicted

the existence of a phase transition from desynchronized to synchronized states.

In other words, a critical value of K exists below and above which, oscillators

desynchronize and synchronize, respectively.

To confirm this Winfree’s prediction, Kuramoto proposed a model that can

be dealt with analytically [7]. This model, which is called the Kuramoto model

is given as

dϕi

dt
= ωi −

K

N

N∑
k=1

sin(ϕi − ϕk), (1.4)
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and enables us to clarify the details of the phase transition.

Both the Winfree model and Kuramoto model are usually referred to as phase

models or phase oscillator models, and phase models are known to be useful for

understanding synchronization [7, 19]. The analytical method for deriving phase

models, which was first proposed by Kuramoto, is used widely. This theory can

be used to derive a phase model from a complicated reaction–diffusion model.

1.2.3 A reaction–diffusion system

A reaction–diffusion system describes local chemical reactions and diffusion of

substances distributed in space. A reaction–diffusion system can generally be

modeled as

Ẋ = F (X) + D̂∇2X (1.5)

where vector X is a set of chemical concentrations, D̂ is a diagonal matrix of

diffusion coefficients, F (X) represents local reactions, and ∇2 is Laplacian. This

system is employed to describe various natural phenomena. In particular, the

Turing model, which describes a system consistenting of two chemical substances

called an activator and inhibitor, is expressed as [20]

∂U

∂t
= f(U, V ) +DU∇2U

∂V

∂t
= g(U, V ) +DV∇2V

(1.6)

where U and V are the activator and inhibitor, respectively; f and g are func-

tions describing local reactions; and DU and DV are diffusion coefficients. In this

model, a steady uniform state is assumed to be stable in the absence of diffu-

sion. Counterintuitively, Turing has demonstrated that this uniform state can be

destabilized when the diffusion coefficient of inhibitor, DV , is sufficiently greater

than that of the activator, DU . When the activator increases to some extent

locally, the inhibitor also increases to suppress the activator. Because of the as-

sumption DU ≪ DV , the inhibitor diffuses much more quickly than the activator.

Therefore, the inhibitor cannot suppress the activator completely. In contrast,

in the region where the amount of the activator is sufficiently low, the diffused

inhibitor suppresses the activator. In one-dimensional space, a stripe pattern

may appear (Fig. 1.2). In the case of a two-dimensional system, various ordered

patterns such as spiral waves, dots, and stripes can be seen. These patterns are

similar to the epidermis of various animals including the zebra and tropical fish.
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Figure 1.2: A one-dimensional periodic pattern derived from the Turing model
[21]. The solid and dashed lines are the concentrations of activator U and in-
hibitor V , respectively.

The Turing model is known to be helpful for understanding biological pattern

formation [21, 22].

1.3 Organization of the thesis

In this thesis, we focus on the ordering of polarity and of the oscillation phase of

cell populations in the first part (Chapters 2–4) and in the second part (Chapters

5–7), respectively.

In the first half of this thesis, we deal with the ordering dynamics of cel-

lular polarity and elucidate a mechanism underlying the formation of global

order. Based on experiments with polarity of epithelial cells of Drosophila, many

mathematical models are considered [5, 6, 14, 15]. One of the famous models

of ordering belongs to Amonlirdviman [5], which is described via the reaction–

diffusion model in Section 1.2.3. As other types of ordering model, the Akiyama

model represents the polar dynamics by means of the XY model (Section 1.2.1)

[14]. In these other studies, to understand the mechanism of the global polarity

ordering, a global concentration gradient is included in the model, or a detailed

model based on experiments is considered. Nonetheless, these models have mer-

its and demerits as shown in Chapter 2, and we analyze them as follows to more

easily investigate what realizes global polar ordering. We reduced the reaction–

diffusion model via variables describing the concentration of chemical substances

phenomenologically according to the phase reduction theory [7, 18, 23], which is

the method first devised by Winfree and Kuramoto (Section 1.2.2), for a system

with space translational symmetry, and we constructed a simple phase model.

As a result, it becomes clear that the shapes of cells and the boundary of the
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system affect the global orientation of polarity. These dynamical properties are

elucidated numerically and theoretically. Moreover, other properties including

the effects of coupling heterogeneity, an external signal and noise, and defects of

polarity are presented.

In the second half of this thesis, we focus on the ordering dynamics of cellular

oscillations by considering spiral chaos in which spirals repeat to generate and

annihilate [1, 7]. Our aim is to provide a theoretical description for understanding

the system size dependence of the lifetime of transient spiral chaos. This study

was motivated by the atrial fibrillation whose dynamics resemble spiral chaos

[12]. The atrium is supposed to exhibit spiral chaos of electrical waves when

the heart causes atrial fibrillation, and it is known that the lifetime of transient

spiral chaos grows exponentially as the system size increases [12]. To derive

the theoretical equation for predicting this lifetime, we analyzed the number of

defects corresponding to the number of waves with reaction–diffusion models.

By considering central limit theorem [24], theoretical formula for predicting the

lifetime of spiral chaos in excitable media is derived.
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Chapter 2

Polarity ordering analysis of

planar cell polarity (PCP)

In this chapter, we introduce planar cell polarity (PCP), which is one of the

examples of ordered polarity, and a previous study on cell polarity.

2.1 Background and an aim

Although ordering phenomena are important in nature as mentioned in the pre-

vious chapter, the ordering mechanisms have not been fully understood. One

of the phenomena, that has not been clarified in spite of many experiments is

global ordering of the polarity of hair in epithelial cells. In epithelial tissues of

multicellular organisms, i.e., the outer layer packed with many flattened cells, it

is known that hairs grow along a specific axis. At the stage of morphogenesis of

tissues and organs, PCP is one of the polarity-orientating phenomena whereby

each cell’s polarity is pointed in a specific direction at the cellular level. This

phenomenon refers to the coordinated alignment of the cell polarity across the

planar tissue, and detailed experiments on the molecular mechanism of their po-

larity formation have been performed on Drosophila wings and other tissues. In

Drosophila wings, it is known that one hair grows from the center of a cell to a

certain direction, which makes the cell polar. These hairs are in a part of epithe-

lial cells containing abundant actin fibers. The wing is subdivided into two parts:

a hinge and blade (Fig. 2.1). At pupal stages, almost until 20 h after puparium

formation (hAPF) the wing hinge contracts in the proximal direction. On the

other hand, the blade extends in the distal direction, which is the direction of

the tip of the wing.

During this period, epithelial cells of the wing proliferate actively, migrate

and divide, then the whole wing shape forms gradually. Regarding hair polarity
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Posterior

Anterior

HingeProximal Distal
Blade

Figure 2.1: Illustration of the wing. The base of the wing is called a “hinge,”
and the wide part of the wing is called a “blade.” The direction along the axis
connecting the base and the tip of the wing is the proximal–distal (PD) axis.
The axis in the direction perpendicular to the PD axis is the anterior–posterior
(AP) axis.

determination, localization of the proteins that are important for PCP occurs up

to 32 hAPF. These PCP proteins are called core PCP proteins, which include

the seven-pass transmembrane receptor Frizzled (Fz), seven-pass transmembrane

cadherin Flamingo (Fmi; aka Starry night), the four-pass transmembrane protein

Strabismus (Stbm; aka Van Gogh, Vang), Dishevelled (Dsh), Diego (Dgo), and

cytoplasmic component Prickle (Pk) [25, 26]. In the absence of any single PCP

protein, cell polarity is misoriented. The complexes of proteins come into contact

between proximal and distal cell boundaries, hence complexes of Fz, Dsh, and

Dgo accumulate in the distal direction, and complexes of Vang and Pk accumu-

late in opposite directions (Fig. 2.2). In addition, complexes of Fz and Vang

antagonize each other within the cell. Fmi can be localized on both sides of a

cell. This localizing direction of Fz complexes coincides with polarity direction

of epithelial cells’ hairs.

In the wing of Drosophila, more than 10, 000 cells are packed. It is surprising

and interesting that polarity is oriented globally in the same direction in the

system with a large number of cells. How would they implement the global

ordered polarity in such a huge system? XY model in Section 1.2.1, which

orients the alignment of spins via cell–cell interaction between adjacent cells, can

polarize locally but not globally as shown in Fig. 2.3.

Actually also in nature, it is still unclear how global ordering is realized. In

recent experiments, the presence of a global concentration gradient distributed

throughout the epithelial tissue, and the anisotropy of the system caused by a me-
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(a)

(b)

Figure 2.2: Illustration of interaction of PCP proteins. The red and blue points
indicate the complexes of Fz and Vang, respectively. (a) Intracellular interac-
tion. Uniformly distributed proteins antagonize each other and polarize. (b)
Intercellular interaction. Different types of proteins attract each other. Hairs
are oriented in the direction where Fz complexes localize.

chanical force is reported. These global concentration gradients and anisotropy

of the system are thought to cause global polarity ordering. We shall introduce

more details on these two factors. For the global concentration gradient in the

wing of Drosophila, it has been confirmed that atypical cadherin Dachsous (Ds)

has a distal–proximal gradient of the expression level from distal to proximal,

and Fz and Vang are localized in a low- and high-expression region, respectively

[27]. Hence, in that case, the global ordering scenario is as follows. Even if the

polarity is oriented locally only by cell–cell interactions, it is difficult to identify

the direction in which it is aligned. Then, via a global concentration gradient,

Ds plays a role of an inducer to determine the direction of ordering. Protein

conjugates of the PCP protein Fz, which senses Ds concentration, move in the

direction of the low concentration of Ds in the cell. Thus, cell polarity is ori-

ented globally along the Ds concentration gradient. In mathematical models, the

model of Akiyama et al. [14], which we introduce later, takes into account the

effect of a global concentration gradient added to the XY model. Nonetheless, it

is not yet clear whether this global gradient is essential for the proximal–distal

(PD) alignment during pupal stages because some experiments revealed that cell

polarity can be oriented to some extent globally even in the absence of a global

concentration gradient [28].

On the other hand, Aw and Devenport et al. proposed that the mechanical
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Figure 2.3: The XY model, which is a well-known spin model, can order cell
polarity locally but it is difficult to order cell polarity globally when there are
many cells in a system. In a 60 × 60 cells system, there are defects and we can
see that global ordering is failed.

force affecting a wide range of organization types influences the implementation

of global polarity formation [15, 27]. In the polarity experiments on the skin of

mice by Aw and colleagues, a mechanical force is first applied to the tissue at an

early stage of embryonic development, and the emergence of tissue anisotropy

is confirmed. In such an anisotropic tissue, cells tend to divide in the direction

perpendicular to the anterior–posterior (AP) axis. When the direction of cell

division is oriented along the AP axis, the new side of the cell increases in along

the AP axis accordingly. As a result, the generation and annihilation of sides of

cells on the AP axis occur frequently, and many PCP proteins diffusing inside

cells tend to accumulate near the side oriented in the direction of the PD axis,

which has existed for a long time. The protein to be accumulated is atypical

cadherin called Celsr 1, and hair grows in places where this protein accumulates

in the case of mice. Similarly, in the case of a wing of Drosophila, anisotropy of

cell division is generated by elongation of the tissue, thereby causing a bias in

the direction in which the PCP protein accumulates, and polarity is oriented in

the same direction across a long distance. The well-known mathematical model

that is intended to reproduce such anisotropy of tissues is the model of Aigouy

et al. [6]. Even though their model will be introduced in detail later, they made

it possible to consider cell deformation and elongation during polarity formation

using the cell vertex model, and global oriented polarity is also represented.
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These simple phenomenological models including Akiyama and Aigouy model

are similar to models of magnetization or synchronization, which are observed in

a population of spins or oscillatory units [7, 17, 18, 19, 29], though some of these

are somewhat artificial.

Therefore, our aim is to propose a theoretical framework to understand the

generic dynamical properties of polarity alignment and to reveal what drives

global polarity ordering. To clarify the ordering mechanism, we derive a phase

model by applying the phase reduction theory to a reaction–diffusion model that

describes PCP dynamics [30]. Using our model, essential dynamical properties

including the effects of cell shape, of coupling heterogeneity, and an external

signal and noise can be elucidated analytically. In Chapter 4, which is the last

chapter for polarity ordering, we show that axial asymmetry in the system, such

as oriented cell elongation and asymmetric distribution of coupling strength, can

be a global cue for the orientation of cell polarity across the entire tissue.

2.2 Previous mathematical studies

In this section, we introduce previous models of polarity ordering. These models

are based on experimental results from Drosophila wings and mouse embryos.

2.2.1 The PCP model proposed by Aigouy et al.

The mathematical model of cell polarity proposed by Aigouy et al. is based on

the vertex model [6]. This model includes terms that express cell–cell interaction,

intracellular interactions and cell extension. The mechanisms of intercellular and

intracellular interactions conform to the mechanisms described in Section 2.1.

The cell extension term is based on one study in [31]. In their experiments, they

found that microtubules in the cell align along the cell elongation direction when

cells are deformed. PCP protein Fz accumulates at the edge of the microtubules,

then the direction of cell polarity is determined. Therefore, from the results

of experiments, they assume that microtubules are aligned in the direction of

elongation of cells during cell deformation, and the cell extension term has an

effect that makes it easy for cell polarity to be ordered along the cell elongation

direction. However, a potential function is employed so that the cell polarity is

ordered in the direction of cell elongation, and this function is slightly artificial.

Although this mathematical model is easy to calculate, it is unclear whether such

potential function exists in nature.
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PkDsh VangFz
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(d)

(c)

(b)

Figure 2.4: (a,b) Intracellular (c,d) and intercellular interactions. (a,b) Fz and
Vang on the cell membrane attract Dsh and Pk, respectively. (c) Fz and Vang
attract each other and form a complex through the membrane. (d) Dsh and Pk
are attracted to the FzVang complex too.

2.2.2 The PCP model proposed by Amonlirdviman et al.

As a more phenomenological description for concentrations of proteins in each

cell, some models are described by a reaction–diffusion system in detail [5, 10].

Cells in these models are coupled with adjacent cells via contacting surfaces.

Amonlirdviman also describes cell polarity formation using a reaction–diffusion

model (Eq. (2.1)). This mathematical model of PCP includes four proteins:

Dsh, Fz, Pk, and Vang. The coupling scenario for each protein is as follows. Fz

interacts with Dsh to create the DshFz complex, and Vang interacts with Pk to

create VangPk (Fig. 2.4).

For the intercellular interaction, Fz interacts with Vang on an adjacent cell

membrane to form the FzVang complex. This complex is restricted in its local-

ization (and movements) to the adhesion surface where the complex was formed,

and becomes a larger complex by interacting with Dsh and Pk there. Via such

intracellular and intercellular interactions, complexes DshFz, VangPk, FzVang,

FzVangPk, and DshFzVangPk are formed. These complexes may also disssociate.

FzVang, FzVangPk, and DshFzVangPk can exist only at the adhesion junction,
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which is shared with adjacent cells. Therefore, Fz, Vang, and their complexes

only diffuse on cell membrane. In contrast, Dsh and Pk can diffuse freely within

the cell. In the Amonlirdviman model, this complicated molecular behaviour is

described in detail. Actually, their model is formulated as follows. Cell shapes

are set to a regular hexagon. Each variable in the model (2.1) represents the

concentration of the PCP protein complex at each time point.

∂[Dsh]

∂t
= −P1 − P †

5 − P †
8 + µDsh∇2[Dsh]

∂[Pk]

∂t
= −P3 − P7 − P10 + µPk∇2[Pk]

∂[Fz]

∂t
= −P1 − P †

2 − P †
6 + µFz∇2[Fz]D

∂[Vang]

∂t
= −P2 − P3 − P4 + µVang∇2[Vang]

∂[DshFz]

∂t
= P1 − P †

4 − P †
9 + µDshFz∇2[DshFz]D

∂[VangPk]

∂t
= P3 − P6 − P9 + µVangPk∇2[VangPk]

∂[FzVang]

∂t
= P2 − P5 − P7 + µFzVang∇2

s[FzVang]D

∂[DshFzVang]

∂t
= P4 + P5 − P10 + µDshFzVang∇2

s[DshFzVang]D

∂[FzVangPk]

∂t
= P6 + P7 − P8 + µFzVangPk∇2

s[FzVangPk]D

∂[DshFzVangPk]

∂t
= P8 + P9 + P10 + µDshFzVangPk∇2

s[DshFzVangPk]D

(2.1)

where µX is the diffusion rate of X, and functions P1 ∼ P10 represent complex

chemical reaction equations for PCP proteins. A global bias signal is applied

to the diffusion terms ∇2
s[∗]D so that substances are accumulate in a certain

direction. The global bias signal is set to be stronger in the direction toward the

proximal side of the wing. The variable labeled with † indicates that the reaction
can proceed only on the membrane, and is shared with an adjacent cell. The

subscript “s” under the Laplacian indicates that the diffusion term acts only on

the membrane.

Using this mathematical model, they analyzed the orientation of cell polarity

and compared the results with experimental data. They also investigated how

cell polarity changes when there is a region with defective cells in an epithelial

sheet. In the experiments, when there are Fz-deficient cells in the sheet, hairs

are oriented in the direction toward the defective-cell region. On the contrary,

when the protein that antagonizes Fz is lost in some region on the sheet, hairs
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align in the direction opposite to the location of defective cells. These experi-

mental results can be considered in detail in their model. Although the model

is unsuitable for numerical calculations that require a large number of cells, and

it is difficult to understand the mechanism of PCP because the model involves

many equations, it is one of the famous PCP models that can reproduce cell

polarity as seen in experiments.

2.2.3 The PCP model proposed by Akiyama et al.

Akiyama et al. proposed a model based on XY model, which is easier to deal

with than other phenomenological models [14]. In their model, they focus on the

dynamics of PCP proteins Fz and Vang. Because hairs grow in the direction of

Fz proteins’ localization, variable ϕi of cell i is set to the orientation angle of Fz

localization, and the model is described as follows:

ϕ̇i =
∑

j∈A(i)

sin(ϕj − ϕi). (2.2)

Here, A(i) is a set of adjacent cells j of cell i. In this case, cell polarity can

get oriented in a certain direction though it depends on initial conditions. The

model is very simple, but still there is a problem because as the number of cells

increases, defects tend to be generated in the system. Therefore, they added a

global gradient term of concentration to the model.

ϕ̇i = a
∑

j∈A(i)

sin(ϕj − ϕi) + b sin(Ψi − ϕi), (2.3)

where Ψi follows the von Mises distribution, and a and b are the parameters.

Because the model is equipped with the new gradient term, the direction of the

cell polarity is ordered naturally depending on distribution Ψi. Actually, PCP

proteins with such global concentration gradients have been found, and it is

known that the direction of cell polarity is aligned against the gradient of the

global concentration (i.e., in the direction of the decrease). Nevertheless, even

in the absence of a global concentration gradient, the polarity is aligned in the

correct direction [28], and the effect of global gradient on PCP is unclear.

16



Chapter 3

The phase model of polarity

ordering in spatially extended

dynamical units

In this chapter, we first construct a reaction–diffusion model of PCP similar to

the dynamical process of global cell alignment. Our newly constructed model

can show alignment of cell polarity, but its numerical simulation is difficult for a

large system with many cells, and it is not easy to understand polarity dynamics.

Therefore, we apply the phase reduction theory to our reaction–diffusion model.

With this theory, it is possible to approximate the multidimensional dynami-

cal system that has a limit cycle or a spatially translational solution involving

phase models with only one variable. In Section 3.2.3, we apply this method to

the reaction–diffusion model to derive the phase model describing the polarity

ordering.

3.1 The reaction–diffusion model of polarity or-

dering

In this section, we introduce a reaction–diffusion model with cell–cell interaction

for global alignments of cell polarity to make the model more suitable for ex-

perimental results by proposing a phenomenological model [30]. In actual cell

sheets, PCP proteins, which perform an important function in polarity ordering,

are present in the two-dimensional plane at the apical membrane of epithelial

cells and diffuse only in the epithelial tissue. Hence, we assume that planar cells

are spread in two-dimensional space in our model. As shown in Section 2.1, PCP

protein complexes accumulate on the cell membrane and interact with adjacent
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(b)b)(a)

Figure 3.1: A schematic of (a) cell shape and (b) cell alignment. We consider
regular or elongated hexagonal cells with perimeter 2π, thus 2δ + 4δ′ = 2π. ηij
and dij denote the midpoint and the length of the contacting surface between
cell i and j, respectively. θ∗j = θ∗j (θi) denotes a point of θj at which cell j faces
point θi of cell i. Note that ηij can be regarded as the cell-to-cell direction from
cell i to cell j.

cells via contacting surfaces. Therefore, we consider that reaction–diffusion dy-

namics of each cell take place on the one-dimensional surface on cell membrane

and assume that localization of PCP proteins within individual cells has already

finished. Although we will extend the model to arbitrary polygonal cells in the

following chapter, we assume that the shape of a cell is an axially symmetrical

hexagon with perimeter Li = 2π as shown in Fig. 3.1 for the sake of simplicity

here. The system is filled with cells of the same shape.

In the Drosophila wing, it is known that cells with an arbitrary shape at the

early pupal stage divide and are eliminated repeatedly, and the epithelial sheet

is eventually packed with regular hexagonal cells.

Now we consider a reaction–diffusion system with an interaction term imply-

ing that the cell interacts with adjacent cells only at an adhesion surface. Each

cell obeys the following equation

∂

∂t
Xi = F (Xi) + D̂

∂2Xi

∂θ2i
+ ε

∑
j∈A(i)

Hij, (3.1)

where Xi = Xi(θi, t) (i = 1, . . . , N) denotes the concentration of a chemical

species at time point t and at the position θi (0 ≤ θi < Li) on the surface of cell i.

F (Xi) describes the local reaction dynamics. D̂ is the diagonal matrix consisting

of diffusion coefficients. A(i) is the set of cells adjacent to cell i. Hij = Hij(θi, t)

describes intercellular interactions, and ε is the coupling strength. Note that F

and D̂ describe intracellular dynamics. An interaction occurs at every contact
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point and is dependent on the state at the contact point, i.e.,

Hij(θi, t) = Hij(Xi(θi, t),Xj(θ
∗
j , t)), (3.2)

where θ∗j = θ∗j (θi) is a point of θj at which cell j faces point θi of cell i, as

illustrated in Fig. 3.1(b), and Hij(θi, t) vanishes if cell i does not come into

contact with cell j at θi. In addition to this interaction term, we can consider and

add various effects such as an external signal and noise as shown in Section 4.4.

In each cell, Xi(θi, t) is assumed to be a unimodal distribution for ε = 0; i.e.,

polarity is spontaneously formed. This is because the concentration distribution

of a chemical substance, which is assumed as a variable of this model, has a

peak as a result of accumulation on the membrane. A hair in each cell grows

from the center in the direction where the concentration of the diffusing chemical

substance is maximal. Therefore, the position of the concentration peak of the

first component of Xi(θi, t) at time t of cell i determined by Ui(θi, t) can be

defined as the polarity direction of cell i. We analyzed two models: (a) the

real Ginzburg–Landau equation (GLE) [32] in Eq. (3.3) and (b) the activator–

inhibitor model [21] in Eq. (3.4). For the GLE model, we can get steady state

solutions and functions required for phase model derivation by hand with ease. In

general, however, for many other activator–inhibitor models such as the model of

[21], it is difficult to derive steady state solutions and other functions analytically.

Both models have two variables, denoted by Xi = (Ui, Vi), and F and D̂ read

F =

(
Ui − (Ui

2 + Vi
2)Ui

Vi − (Ui
2 + Vi

2)Vi

)
, D̂ =

(
D0 0

0 D0

)
, (3.3)

where D0 is set to 0.3 where a stable unimodal distribution is obtained, and

F =

(
ρUU2

i

(1+κU2
i )Vi

− µUUi + σU

ρVU
2
i − µV Vi,

)
, D̂ =

(
DU 0

0 DV

)
, (3.4)

where ρU = 0.01, ρV = 0.02, µU = 0.01, µV = 0.02, σU = 0.0, κ = 0.0, DU =

0.005, andDV = 0.2, respectively. For simplicity, these examples are two-variable

models, but any number of variables can be used. The former is a long-wave

amplitude equation, which is widely used to describe various systems near the

onset of instability. The parameter values for the latter model are taken from

Ref. [21], and these are set so that the steady state solution is time-independent.

The latter is a reaction–diffusion model describing biological pattern formation.

In these models, given appropriate initial conditions, Xi shows a stationary

unimodal distribution for ε = 0; thus, they are suitable as dynamical models
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(a) (b) (c) (d)

Figure 3.2: The polarity pattern of (a,b) a single cell and (c,d) two coupled cells.
In (a) and (b), a steady state profile of Ui and its color scale representation are
displayed, respectively. The arrow in panel (b) indicates polarity orientation.
In panels (c) and (d), typical examples of polarity patterns of two coupled cells
with different cell alignments are dipicted.

describing cell polarity. Fig. 3.2 (a,b) presents a steady state profile of Ui(θi, t)

for ε = 0 numerically obtained via the activator–inhibitor model formulated in

Eq. (3.4).

As a simple example of intercellular interaction, we consider linear coupling

given by

Hij(θi, t) = Sij(θi)

(
Ui(θi, t)− Uj(θ

∗
j , t)

0

)
, (3.5)

where Sij = 1 if cell i faces cell j at θi and Sij = 0 otherwise; i.e.,

Sij(θi) =

{
1 for |θi − ηij| < dij

2
,

0 otherwise.
(3.6)

This cell–cell interactions are set up taking into account that the PCP proteins

of adjacent cells move away from the adhesion surface if the same protein exists

at the contacting point. The coupling given by Eq. (3.5) acts as mutual inhibi-

tion between neighboring cells through the U -component for ε > 0, and thereby

polarity ordering takes place as shown in Fig. 3.2(c,d). It can be seen that the

direction of cell polarity is ordered toward the area where many cells adhere.

Later, another type of linear coupling −Uj(θ
∗
j , t) instead of Ui(θi, t) − Uj(θ

∗
j , t)

is considered to demonstrate the robustness of the present results. It can be

confirmed that the reaction–diffusion model with such an interaction term shows

a cell polarity. Nevertheless, to calculate numerically and analytically by us-

ing partial differential equation models of a system with many cells is difficult.

Therefore, we attempted to rederive a mathematical model as a simpler model
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by using the perturbation theory. The model reduced by that theory is called a

phase model. In the following chapter, we explain the way to derive of the phase

model.

3.1.1 Linear stability analysis of a reaction–diffusion model

As described in Section 3.1, the distribution of a chemical substance concentra-

tion has a peak on a cell membrane. Thus, we need to set the diffusion coefficient

so that the solution of the model forms a unimodal distribution at ε = 0. In

the text below, we derive the range of diffusion coefficients to form the unimodal

distribution by linear stability analysis for a reaction–diffusion model of the GLE.

For the GLE model (Eq. (3.3)), if the equation is set to:

F (XS) + D̂
∂2

∂θ2
XS = 0,

D̂ =

(
D0 0

0 D0

)
, (3.7)

where XS is a steady state solution of the model with ε = 0, the following

solution is obtained.

XS =

(
US

V S

)
=
√

1−D0

(
cos θ

sin θ

)
=
√
1−D0 exp(iθ). (3.8)

Suppose δw(θ, t) is a perturbation, and X(θ, t) = {
√
1−D0 + δw(θ, t)} exp(iθ).

If this is substituted into Eq. (3.3),

(L.H.S) =
∂δw(θ, t)

∂t
exp(iθ)

(R.H.S) ≃
{√

1−D0 + δw(θ, t)
}
exp(iθ)−D0

√
1−D0 exp(iθ)

+D0

{
∇2δw(θ, t) exp(iθ)− i∇δw(θ, t) exp(iθ)

−i∇δw(θ, t) exp(iθ)− δw(θ, t) exp(iθ)}

−
[
(1−D0)

{√
1−D0 + δw(θ, t)

}
+ 2 (1−D0) δw(θ, t)

]
exp(iθ),

(3.9)
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where δw denotes a complex conjugate of δw. Therefore,

∂δw(θ, t)

∂t
≃ − (1−D0) δw(θ, t)− 2D0i∇δw(θ, t) +D0∇2δw(θ, t)− (1−D0) δw(θ, t),

∂δw(θ, t)

∂t
≃ − (1−D0) δw(θ, t) + 2D0i∇δw(θ, t) +D0∇2δw(θ, t)− (1−D0) δw(θ, t).

(3.10)

Here, let k be the wave number, and let wk(t) be determined as

wk(t) =

∫ 2π

0

δw(θ, t)eikθdθ. (3.11)

Applying it to Eqs. (3.10), the following is obtained.(
∂wk

∂t
∂w−k

∂t

)
=

(
−D0k

2 + 2D0k − (1−D0) −(1−D0)

−(1−D0) −D0k
2 − 2D0k − (1−D0)

)(
wk

w−k

)
.

(3.12)

To obtain eigenvalues λ, the determinant is calculated∣∣∣∣∣A+ 2D0k − λ B

B A− 2D0k − λ

∣∣∣∣∣ = λ2 − 2Aλ+ A2 − 4D2
0k

2 −B2 = 0 (3.13)

where A = −D0k
2 − (1−D0), B = −(1−D0), then

λ = A±
√

4D2
0k

2 +B2

= −D0k
2 +D0 − 1±

√
4D2

0k
2 + (1−D0)2. (3.14)

If D0(> 0) is assumed to be small enough,√
4D2

0k
2 + (1−D0)2 =

√
1 + (4D2

0k
2 +D2

0 − 2D0) (3.15)

≈ 1 +
1

2
(4D2

0k
2 +D2

0 − 2D0), (3.16)

the eigenvalues are approximated as follows.

λ ≈ −D0k
2 +D0 − 1± {1 + 2D2

0k
2 +

1

2
D2

0 −D0}

= D0(2D0 − 1)k2 +
1

2
D2

0, −D0(2D0 + 1)k2 − 1

2
D2

0 + 2D0 − 2. (3.17)

Here, to stabilize only the solution with a unimodal distribution, the case where
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k = 1 is stable is considered.

λ = D0(
5

2
D0 − 1) < 0,

− 5

2
D2

0 +D0 − 2 < 0. (3.18)

Finally, the range of diffusion coefficient D0 is obtained as

D0 < 0.4. (3.19)

In this study, the diffusion coefficient is set so that it satisfies the diffusion range,

and we assume that the steady state solution forms a unimodal distribution.

3.2 Phase reduction

In the previous section, the reaction–diffusion model was considered. This model

given by Eq. (3.1) requires for N×M partial differential equations when there are

N cells in the tissue, andM variables are necessary to describe the interior of the

cell. It was clarified that polarity is oriented in a direction in which many cells

are aligned if inhibition of interaction of the same proteins between adjacent cells

is considered. Although it is not impossible to analyze the dynamics of polarity

using the reaction–diffusion model, both analytical and numerical procedures

are not easy when we try to investigate the polar dynamics of tissues containing

many cells.

Therefore, in this section, we introduce a method called perturbation theory,

which derives a very simple ordinary differential equation like Aigouy’s [6] or

Akiyama’s [14] from a phenomenological mathematical model (3.1) to facilitate

the analysis. Perturbation theory has a long history, and the fundamental part

was established in the 1970s by Winfree [18] and Kuramoto [7]. In general, this

theory is described as a method for analyzing the rhythmic systems with limit

cycle oscillators. In our reaction–diffusion model, the steady state solution is not

a limit cycle solution, hence perturbation theory is not applicable to our model.

Nonetheless, the method was extended, and this improvement enabled anal-

ysis of the systems with space translational symmetry by Kawamura and Nakao

(Refs. [23, 33]) in 2014. Hence, it became possible to reduce the mathematical

model even if the steady state solution does not oscillate. By this extended reduc-

tion method devised by Kawamura and Nakao, the phase model is expressed in

the spatial integration of the inner product of the phase sensitive function, which

is a normalized phase response curve (PRC), and the external perturbation such
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as noise and cell interaction. Here, the phase response function describes how

much the phase shifts in response to a perturbation when an external stimulus

is applied.

In the sections that follow, we consider two cases: the rare case where this

phase response function can be obtained analytically, and the case where it is

formulated by numerical calculation. By using a kind of perturbation theory

called phase reduction, our model of N ×M partial differential equations can be

redescribed as a simplified phase model with N ordinary differential equations

under the assumption of weak coupling and a unimodal distribution of chemi-

cal substances. The derived phase model is extremely easy to handle in both

analytical and numerical analysis.

3.2.1 Derivation of the PRC: a direct stimulation method

The PRC is the function that shows how much the phase shifts in response to a

weak perturbation. It is important to obtain the PRC when deriving the phase

model using perturbation theory; but, in general, analytical derivation of PRC

is difficult. PRC is given by the adjoint methods in Section 3.2.2 and by the

direct stimulation method measuring the phase shift when direct stimulation is

received. Here, the latter method, which is easy to understand intuitively, is

considered. Suppose weak stimulus ε is administered at a certain point, θ
′
, in

space at time T to a reaction–diffusion system as shown in Eq. (3.20). Note

that the steady state solution of the system does not oscillate when there is no

external perturbation.

∂X

∂t
= F (X) + D̂

∂2X

∂θ2
+ εq(θ, θ

′
, t, T ) (3.20)

Vector function q takes δ(t − T )δ(θ − θ
′
) as the first component of X and 0

for other components. The following figure is the result of numerical calculation

(Fig. 3.3). The dotted lines are steady state solutions at ε = 0. We choose the

solution where the maximum is taken at θ = 0. While the perturbation is not

applied, i.e., ε = 0, the steady state pattern continues to maximize at θ = 0, and

the pattern does not move slightly. The red dots represent U(θ
′
) and indicate

the position to which perturbation is applied. The solid lines are the steady state

solution shifted after the system receives the perturbation.

We can see that the phase shifts to the right or left when an element of the

system is stimulated.

As depicted in Fig. 3.3(a), the pattern shifts left because the right-hand side

of the distribution was stimulated. On the contrary, the pattern shifts right when
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(a)

(c)

(b)

Figure 3.3: The results of the shift when a certain point of the steady state
solution of the reaction–diffusion system is stimulated. Red dots indicate where
the stimulation was given. The direction and range of shift depend on which
element receives the perturbation.

the left-hand side of the distribution was stimulated as shown in Fig. 3.3(b). In

addition, we can see that the phase hardly shifts when the stimulation is applied

near the peak of the distribution (Fig. 3.3(c)). As described above, the direction

and range of the phase shift vary depending on where the external stimulus is

applied. In the case when the PRC is constructed by the direct stimulation

method, a stimulus of certain strength is applied to each point, and the shift of

the pattern is measured each time. Thus, the PRC is illustrated by plotting the

deviation of pattern as a function of perturbation strength ε corresponding to

each spatial x-coordinate. Nonetheless, the direct stimulation method needs to

administer a large perturbation to the model, and it should be noted that an

accurate result of the analysis may not be obtained in some cases. Therefore,

it is better to employ the mathematical derivation method as in the following
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section where a PRC is derived.

3.2.2 Derivation of the PRC: the adjoint method

Following the previous section, we introduce a method to derive a PRC more an-

alytically. This method is analogous to the Malkin theorem [34] using the adjoint

method proposed for a limit cycle oscillation system. Now, we consider based

on reaction–diffusion model because our aim in this chapter is to apply phase

reduction to the reaction–diffusion model with spatially translational symmetry.

We regard the right side of Eq. (3.1) with ε = 0 when the model is linearized as

operator L. This operator can be subdivided into two parts: the part of Jacobian

L1 and of diffusion L2. Adjoint operator L† is defined according to the follow-

ing equations with arbitrary functions f(θ) = (f1(θ), f2(θ), · · · , fn(θ))T, g(θ) =
(g1(θ), g2(θ), · · · , gn(θ))T.

⟨f ,Lg⟩ = ⟨L†f , g⟩. (3.21)

Here, f and g are assumed to be two-dimensional vectors for the sake of simplic-

ity, and the inner product of 2π-periodic functions f and g is considered. The

inner product of the 2π-periodic functions, A(θ) and B(θ), is defined by

⟨A,B⟩ =
∫ 2π

0

A ·Bdθ. (3.22)

Hence, the inner product of f and Lg is obtained as follows.
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⟨f ,Lg⟩ =
∫ 2π

0

f(θ) · Lg(θ)dθ

=

∫ 2π

0

f(θ) · L1g(θ)dθ +

∫ 2π

0

f(θ) · L2g(θ)dθ

=

∫ 2π

0

LT
1 f(θ) · g(θ)dθ +

∫ 2π

0

(
f1(θ)

f2(θ)

)
·

(
D1∇2 0

0 D2∇2

)
g(θ)dθ

=

∫ 2π

0

LT
1 f(θ) · g(θ)dθ +

∫ 2π

0

(f1(θ)D1∇2g1(θ) + f2(θ)D2∇2g2(θ))dθ

=

∫ 2π

0

LT
1 f(θ) · g(θ)dθ +

∑
i

Di

{[
fi
∂gi
∂θ

]2π
0

−
∫ 2π

0

∂fi
∂θ

∂gi
∂θ

dθ

}

=

∫ 2π

0

LT
1 f(θ) · g(θ)dθ −

∑
i

Di

{[
∂fi
∂θ

gi

]2π
0

−
∫ 2π

0

∂2fi
∂θ2

gidθ

}

=

∫ 2π

0

LT
1 f(θ) · g(θ)dθ +

∑
i

∫ 2π

0

(Di∇2fi) · gi(θ)dθ

=

∫ 2π

0

(
LT

1 f(θ) · g(θ) + L2f(θ) · g(θ)
)
dθ (3.23)

where LT is the transposed matrix of L. Thus,

L† = LT
1 + L2. (3.24)

From this result, the phase sensitivity function u∗ can be obtained.

∂u∗

∂t
= L†u∗

= (LT
1 + L2)u

∗ (3.25)

Phase sensitivity function u required for perturbation theory is a normalized the

PRC and is given by

u =

(
∂U0

∂θ
∂V0

∂θ

)
(3.26)

on the condition ∫ 2π

0

u∗ · u dθ = 1.
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3.2.3 A phase reduction for the system with spatially

translational symmetry

The PRC is given, and finally we can derive the phase equation according to

the phase reduction theory for the system with spatially translational symmetry

[30]. We assume that the perturbation is sufficiently small, and the solution of

the reaction–diffusion model spontaneously forms a single distribution. First,

the phase is defined. We define the steady state distribution XS(θ) that has a

peak at θ = 0 as the steady state solution when ε = 0 in the reaction–diffusion

system. Because of the translational symmetry, XS(θ − θ0) with any constant

θ0 is also a steady state solution. These steady state solutions do not depend

on time. When a small perturbation is added, Xi(θi, t) approaches a steady

state solution with infinite time, and this distribution of the solution is slightly

deviates from XS(θi). The deviation of this pattern from XS(θi) is regarded as

phase ϕi(t), and ϕi(t) is defined such that Xi(θi, t) converges to XS(θi − ϕi) as

t→ ∞. We define the deviation as y(θi, t),

Xi(θi, t) = XS(θi − ϕi) + yi(θi, t), (3.27)

with ϕi(t) being the phase of state Xi(θi, t). Hence, yi(θi, t) → 0 as t → ∞
for ε = 0. Without loss of generality, we assume that US(θ), which is the U

component of XS(θ), takes its maximum at θ = 0. Then, for sufficiently small

yi(θi, t), ϕi(t) of Xi(θi, t) is well approximated by the maximum of Ui(θi, t), i.e.,

ϕi(t) ≈ argmaxθiUi(θi, t). (3.28)

Thus, ϕi may be regarded as the polarity orientation of cell i. Now, the phase

equation is derived by calculating the phase sensitive function according to the

previous section. Linear operator L is defined by

L = J + D̂
∂2

∂θ2
(3.29)

with Jacobian J = ∂F (X)/∂X estimated at X = XS(θ). For Eq. (3.1), we can

show that

L† = JT + D̂
∂2

∂θ2
, (3.30)

where JT is the transpose of J . The eigenfunctions of L and L† are denoted by

Yℓ(θ) and Zℓ(θ) (ℓ = 0, 1, . . .), respectively. In particular, the zero-eigenfunctions
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are represented by Y0 and Z0, i.e., LY0 = L†Z0 = 0. Here, we choose

Y0 = −∂X
S

∂θ
. (3.31)

These eigenfunctions are assumed to form a complete orthonormal system and

are normalized as

⟨Zℓ,Ym⟩ = δℓm. (3.32)

Deviation yi can be expanded as

yi(θi, t) =
∞∑
ℓ=1

Cℓ(t)Yℓ(θi − ϕi), (3.33)

where ϕi is the phase of state Xi(θi, t). Note that Y0(θi − ϕi) is absent in this

expansion because yi(θi, t) → 0 as t→ ∞ for ε = 0.

Substituting Eq. (3.27) into Eq. (3.1), the following is obtained:

Y0(θi − ϕi)ϕ̇i + ẏi = Lyi + ε
∑

j∈A(i)

Hij +O(ε2). (3.34)

Taking the inner product with Z0(θi−ϕi) and dropping O(ε2), we finally obtain

the phase model given as

ϕ̇i = ε
∑

j∈A(i)

Γij(ϕi, ϕj), (3.35)

Γij = ⟨Z0(θi − ϕi),H
S
ij⟩, (3.36)

where HS
ij = Hij

{
XS(θi − ϕi),X

S(θj − ϕj)
}
. Given the functional forms of

XS(θ) and Z0(θ), Eq. (3.35) serves as a closed equation for phases ϕi (i =

1, . . . , N).

3.3 The phase model of a general reaction–diffusion

model

We introduced that a reaction–diffusion model with translational symmetry can

be reduced to a phase model by means of its steady state solution, phase sensi-

tivity function, and the function of a weak perturbation. Here, we expand these

variables and functions derived from the general form of the reaction–diffusion

system to a Fourier series and analyze the phase model.
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The phase equation is given by Eq. (3.36),

ϕ̇i = ε
∑

j∈A(i)

Γij(ϕi, ϕj) (3.37)

Γij =
⟨
Z0(θi − ϕi),H

S
ij

⟩
. (3.38)

where HS
ij = Hij{XS(θi − ϕi),X

S(θ∗j − ϕj)} and θ∗j is a contacting point with

θi.

The solution, phase sensitivity function, and cell–cell interaction function are

expanded to a Fourier series. Solution US(θ) is an even function because we

assume that the steady state solution conforms to a unimodal distribution and

the peak of the distribution corresponds to θ = 0. Therefore,

US(θ) =
∞∑

k=−∞

uk cos kθ. (3.39)

In the following calculations, U
(i)
0 (θi) as U

S(θ) of cell i are determined. Next, the

phase sensitivity is expanded. The Fourier series is given by

Z
(U)
0 (θ) =

∞∑
k=−∞

−zk sin kθ. (3.40)

At last, function Sij(θ + ηij) describing cell–cell interaction is symmetrical with

θ = 0, then

Sij(θ + ηij) =
∞∑

k=−∞

s
(ij)
k cos kθ. (3.41)

Substituting these series into the phase model,

ϕ̇i = ε
∑

j∈A(i)

⟨
Z

(U)
0 (θi − ϕi), S(θi − ηij) ·

(
U

(j)
0 (θ∗j − ϕj)− U

(i)
0 (θi − ϕi)

)⟩
= ε

∑
j∈A(i)

∫ 2π

0

∞∑
k=−∞

−zk sin k(θi − ϕi) ·
∞∑

l=−∞

s
(ij)
l cos lθi·(

∞∑
m=−∞

um cosm(π + 2ηij − θi − ϕj)−
∞∑

m=−∞

um cosm(θi − ϕi)

)
dθi. (3.42)
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From this equation, the following is obtained:

Γij = 2π
∑
k,l

zkul

[
(−1)ls

(ij)
l−k sin {(k + l)ηij − kϕi − lϕj} − s

(ij)
k+l sin {(k + l)(ηij − ϕi)}

]
.

(3.43)

For the regular and elongated hexagonal cell shapes, it can be seen

s
(ij)
k =

1

kπ
sin

kdij
2

(k ̸= 0), (3.44)

s
(ij)
0 =

dij
2π
. (3.45)

Coefficients uk and zk are obtained for a given model.

For the GLE, the phase reduction is performed analytically. In Section 3.1.1, the

solution of GLE is given by

XS = (US, V S) =
√

1−D0

(
cos θ

sin θ

)
(3.46)

and thus

Y0 =

(
−dU

S

dθ
,−dV

S

dθ

)
=
√

1−D0

(
sin θ

− cos θ

)
. (3.47)

Furthermore, by solving L†Z0 = 0 with normalization ⟨Z0,Y0⟩ = 1, where L† =

L in the GLE, the following is obtained:

Z0 =

(
Z

(U)
0

Z
(V )
0

)
=

1

2π
√
1−D0

(
sin θ

− cos θ

)
(3.48)

Functions XS and Z0 are displayed in Fig. 3.4. If the U variable is perturbed

upward at θ = π/2, ϕ will increase because Z
(U)
0 (π/2) > 0, i.e., the pattern will

eventually shift right.

Note that Z0 is proportional to Y0 in the GLE because the linear operator is

self-adjoint, i.e., L† = L, in this particular model. Note also that the expressions

for all the other eigenfunctions are known [35] although only the expressions for

Z0 and Y0 are required here.

Therefore, Eq. (3.35) with Eq. (3.43) is reduced to

ϕ̇i = ε
∑

j∈A(i)

{aij sin(ϕj − ϕi) + bij sin 2(ηij − ϕi) + cij sin(2ηij − ϕi − ϕj)} ,

(3.49)
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(a) (b)

Figure 3.4: The profile of steady state US(θ) (black lines) and phase sensitiv-

ity function Z
(U)
0 (θ) (red lines) for (a) the GLE and (b) the activator–inhibitor

model.

where

aij = bij =
sin dij
4π

, cij =
dij
4π
. (3.50)

Nevertheless, for most models, the phase reduction is performed numerically

by solving Eq. (3.1) for ε = 0 and its adjoint equation Ż0 = L†Z0 with ⟨Z0,Y0⟩ =
1 [23]. For the activator–inhibitor model, US and Z

(U)
0 are obtained, as presented

in Fig. 3.4(b).

If the solution of the model is assumed to have a simple unimodal distri-

bution, the Fourier series expansion of a steady state solution and the phase

sensitivity function only up to mode 1 satisfy the phase model. We also de-

rive the phase model via the general activator–inhibitor model. The model in

Eq. (3.4) serves as an example. Fourier coefficients are approximately formulated

as u0 = 0.925, u1 = 0.397, u2 = 0.065, z1 = −0.180, and z2 = −0.062, and the

rest of the coefficients are negligibly small if we expand the solution and phase

sensitivity function of the Meinhardt model to a Fourier series. We obtain Γij

by substituting these values into Eq. (3.43). If we replace each function with a

Fourier series and expand it, then this phase model becomes

ϕ̇i = −4πε{z1u1s(ij)2 sin(ϕj − ϕi) + z1u1s
(ij)
2 sin 2(ηij − ϕi) + z1u1s

(ij)
0 sin(2ηij − ϕi − ϕj)

+z2u1s
(ij)
1 sin(3ηij − 2ϕi − ϕj) + z2u1s

(ij)
1 sin(ηij − ϕi) + z2u1s

(ij)
3 sin(ηij − 2ϕi + ϕj)

+z2u1s
(ij)
3 sin 3(ηij − ϕi)− z1u2s

(ij)
1 sin(3ηij − ϕi − 2ϕj)− z1u2s

(ij)
1 sin(ηij − ϕi)

+z1u2s
(ij)
3 sin(ηij + ϕi − 2ϕj) + z1u2s

(ij)
3 sin 3(ηij − ϕi)

−z2u2s
(ij)
0 sin(4ηij − 2ϕi − 2ϕj)− z2u2s

(ij)
4 sin 2(ϕj − ϕi)− z2u2s

(ij)
4 sin 4(ηij − ϕi) · · · }.

(3.51)
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Next, the phase equation is obtained as follows when we calculate only the lower

order.

ϕ̇i ≃ ε { 0.124 sin(ϕj − ϕi) + 0.124 sin 2(ηij − ϕi) + 0.150 sin(2ηij − ϕi − ϕj)

+0.049 sin(3ηij − 2ϕi − ϕj) + 0.049 sin(ηij − ϕi) + 0.033 sin(ηij − 2ϕi + ϕj)

+0.033 sin 3(ηij − ϕi)− 0.0234 sin(3ηij − ϕi − 2ϕj)− 0.0234 sin(ηij − ϕi)

+0.0156 sin(ηij + ϕi − 2ϕj) + 0.0156 sin 3(ηij − ϕi)

−0.008 sin(4ηij − 2ϕi − 2ϕj)− 0.003 sin 2(ϕj − ϕi)− 0.003 sin 4(ηij − ϕi) } . (3.52)

As we can see in the above equation, the coefficients of up to mode 1 are greater

than the others. Therefore, if coefficients with small values are ignored, then

there is little or no effect on the behavior of the system.

In that case, the phase equation is given by

Γij = 2π
1∑

k,l=−1

zkul

[
(−1)ls

(ij)
l−k sin {(k + l)ηij − kϕi − lϕj} − s

(ij)
k+l sin {(k + l)(ηij − ϕi)}

]
= −4πz1u1

{
s
(ij)
2 sin(ϕj − ϕi) + s

(ij)
2 sin 2(ηij − ϕi) + s

(ij)
0 sin(2ηij − ϕi − ϕj)

}
. (3.53)

Fig. 3.5 shows the result of comparing the reaction–diffusion model and phase

model. Symbols were obtained from the reaction–diffusion models described by

Eqs. (3.1), (3.3), and (3.4). Solid lines were obtained from the phase models

given by Eqs. (3.35) with correspondence to Γij. We confirmed the accuracy of

the reduction theory for both the GLE and the activator–inhibitor models even

when we consider a phase model only by multiplying low-order terms. Here, for

the reaction–diffusion models, phase ϕi(t) was numerically determined as follows.

First, the first Fourier component of Ui(θ, t) was calculated as

Ûi(t) =
1

2π

∫ 2π

0

Ui(θ, t)e
−iθdθ. (3.54)

After that, phase ϕi(t) was expressed as the solution to

Ûi(t) = C(t)e−iϕi(t), (3.55)

where C(t) ≥ 0 and ϕi(t) are real. In this way, θi = ϕi(t) approximately coincides

with the maximum of Ui(θi) when Ui(θi) is nearly harmonic because

Ui(θi, t) ≈ C(t) cos(θi − ϕi(t)). (3.56)

At the end of this section, we interpret the characteristics of each term of
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(a) (b)

Figure 3.5: A comparison between the time series obtained from the reaction–
diffusion models (symbols) and the corresponding phase models (lines). (a) The
GLE. (b) An activator–inhibitor model. In this case, three regular hexagonal

cells are aligned in a row, i.e., η12 = η23 = 0, η21 = η32 = π, aij = bij =
sin dij
4π

=
√
3

8π
, cij =

dij
4π

= 1
12

and ε = 0.001 in Eq. (3.49).

Eq. (3.53). In our phase model, the first term resembles a spin model such as

the XY model, and other terms include the information on positional relation ηij

between cell i and adjacent cell j. In the first term, the model tends to simply

align the phase with that of adjacent cells. If it is assumed that the system is

in phase between adjacent cells, i.e., ϕi, ϕj = ϕ∗, then this ϕ∗ depends on the

initial condition, and ϕ∗ takes values from 0 to 2π. In the second term, the phase

is aligned to the direction of the adjacent cells. In the third term, there is an

attempt to align the phase to the average of own phase and phases of adjacent

cells to be oriented in cell-to-cell direction ηij. Therefore, in our model, the cell

phase not only can align to the adjacent cells’ phase simply but also determines

the direction of the alignment. Note that if either of bij or cij is nonvanishing,

then the in-phase state even with a particular ϕ∗ value does not exist except

for special networks such as a straight chain. Our phase model Eq. (3.49) can

surprisingly not only align to the adjacent cells’ phase just as the XY model

can but also determine the direction of the alignment. In another study, various

functions such as the global concentration gradient or artificial energy function

were added into the model so that polarity of all cells can be aligned in a certain

direction. Fortunately, we succeeded in deriving the phase model that includes

terms that determine the direction of the cell alignment naturally according to

the phase reduction theory applied to the reaction–diffusion model with a cell–

cell interaction term. In the text that follows, we investigate the dynamics of

polarity using the phase model that is calculated up to mode 1 of a Fourier series.
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Chapter 4

The dynamical properties of the

polar model

Although the phase model derived from the reaction–diffusion model with a

cell–cell interaction is much simpler than the original model, it well describes

the polarity dynamics. In this chapter, we use the phase model derived from

the GLE (Eq. (3.49)) and introduce the dynamical properties of cell polarity.

The reason this model was chosen is that it enables us to analytically obtain

the solution and phase sensitivity function of the reaction–diffusion model of the

GLE. Basically, the polarity dynamics introduced here do not depend on the

models under consideration.

While studying the phase model, we found that the direction of cell polarity

varies depending on the cell deformation, system shape of the boundary, and

interaction strength on each side shared by adjacent cells [30]. Additionally, more

noise and effects of a global concentration gradient can be added to the reaction–

diffusion model and can also suppose the case where there is a defective region in

the system. Even though our model is very simple, complicated phenomena that

are reproduced in the model of Amonlirdviman et al. can be easily reproduced

by the new phase model.

4.1 Oriented polarity of two cells

Now we analyze by using the newly derived phase model. First, as the simplest

system, we consider a system where two cells adhered to each other. The phase

model to be applied is Eq. (3.49) derived from the GLE, and cells are regular

hexagons with perimeter 2π. Please note that the results of the subsequent

analysis are consistent with any model. Please also keep in mind that the results
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of subsequent analyses are consistent with the models.

ϕ̇i = ε
∑

j∈A(i)

{aij sin(ϕj − ϕi) + bij sin 2(ηij − ϕi) + cij sin(2ηij − ϕi − ϕj)}

where

aij = bij =
sin dij
4π

, cij =
dij
4π
. (4.1)

The directions of polarity of two cells are shown in Fig. 3.2(c)(d). In that case,

cell arrangements of both Fig. 3.2(c) and (d) satisfy

η12 = η, η21 = η + π, a12 = a21 = a, b12 = b21 = b, c12 = c21 = c, (4.2)

hence, the phase equations obey

ϕ̇1 = ε {a sin(ϕ2 − ϕ1) + b sin 2(η − ϕ1) + c sin(2η − ϕ1 − ϕ2)} , (4.3)

ϕ̇2 = ε {a sin(ϕ1 − ϕ2) + b sin 2(η + π − ϕ2) + c sin(2η − ϕ2 − ϕ1)} . (4.4)

If the in-phase solution is set to (ϕ1, ϕ2) = (ϕ∗, ϕ∗),

ϕ̇∗ = ε(b+ c) sin 2(η − ϕ∗). (4.5)

Therefore, the steady state in-phase solution is given by

ϕ∗ = η + nπ, η +
nπ

2
(n ∈ Z). (4.6)

According to these results, the cell polarity is ordered in the direction parallel

or perpendicular to the direction in which the cells are arranged. To find out

whether it is a stable solution, we take ξ = ϕ1 + ϕ2 and ζ = ϕ1 − ϕ2 and apply

linear stability analysis. From Eqs. (4.3) and (4.4), we obtain

ξ̇ = −2ε(b cos ζ + c) sin ξ, (4.7)

ζ̇ = −2ε(a+ b cos ξ) sin ζ. (4.8)

Introducing ∆ξ = ξ − 2ϕ∗ and linearizing Eqs. (4.7) and (4.8) for small ∆ξ and

ζ, we obtain

∆̇ξ = −2ε(b+ c)(cos 2ϕ∗)∆ξ, (4.9)

ζ̇ = −2ε(a+ b cos 2ϕ∗)ζ. (4.10)
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Figure 4.1: A phase diagram of ϕ1 and ϕ2 of the case in Fig. 3.2(d). We can see
that the stable in-phase solutions are ϕ∗ = 0, π.

The solution

(ϕ1, ϕ2) = (η + nπ, η + nπ) (n ∈ Z) (4.11)

is thus linearly stable when

ε(a+ b) > 0 and ε(b+ c) > 0. (4.12)

The GLE also satisfies this condition. In this case, solution ϕ∗ = nπ
2

(n ∈ Z)
is unstable. Therefore, it was confirmed easily that the case where the polarity

oriented in the direction of cell alignment is stable. In addition, the following

diagram Fig. 4.1 helps us to understand the relation of solutions of ϕ1 and ϕ2.

Similarly, when N cells are aligned in a certain direction, it is possible to

analytically calculate the direction in which polarity is oriented. If it is assumed

that all cells are in phase in the system, that is to say, the system satisfies

ϕi = ϕ∗ (i = 1, · · · , N), we can confirm that the polarity is oriented toward

the direction of cell alignment by applying the Gershgorin circle theorem to the

corresponding stability matrix of the phase model.

In addition to the first term like the XY model in the phase model described

by Eq. (3.49), it is a characteristic feature of the proposed model that it includes

the second and third terms expressing the positional information for adjacent

cells. Due to these terms, the cell polarity can be aligned in a certain direction

without a global concentration gradient or any other conditions.
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4.2 Dependence on the shape of cells and the

system boundary

In the previous section, we found that the direction of cell polarity is aligned in

the direction of the cell adhesion surface when the cells are aligned in a line, ac-

cording to the numerical calculation and analysis. We next discuss the dynamics

of a two-dimensional system packed with cells. How is the polarity aligned when

cells are arranged as a two-dimensional sheet? Moreover, is there any effect on

the direction of polarity if the cells are elongated? As answers to these ques-

tions, it was found that the direction of polarity varies depending on the shape

of cells and the system boundary. The cell polarity is aligned in the direction

of the boundary of the system when cells interact isotropically, and it is aligned

vertically in the cell elongation direction when the length of the contact surface

with adjacent cells varies depending on the site.

At this point, a calculation is performed. We consider the case where the

polarity is ordered. The case is assumed where the phase of each cell takes close

values in the whole system, and the condition ϕi = ϕj (i.e., the in-phase state)

between adjacent cells is satisfied. In Eq. (3.49), the term corresponding to the

XY model (the term where aij is a coefficient) vanishes, and the model can be

reduced to only terms related to the positional information η when ϕi = ϕj.

Hence,

ϕ̇i = εRi sin 2(ηi − ϕi), (4.13)

where Ri > 0 and ηi ∈ R are determined by

Rie
i2ηi =

∑
j∈A(i)

(bij + cij)e
i2ηij . (4.14)

This measuring method is similar to Kuramoto’s order parameter. Ri and ηi

can be interpreted as effective strength and preferred direction of the net in-

teractions of cell i, respectively. The larger the value of Ri, the more readily

is the polarity aligned in the direction of ηi. For hexagonal lattices with each

cell shape being regular hexagonal, Ri vanishes for cell i not facing boundaries

of the lattice because bij and cij are not i, j-dependent and ηij takes the values

0, 2π/n, 4π/n, · · · , 2(n − 1)π/n at n = 6. As shown in the first row in Fig. 4.2,

cells inside the system are adhere to adjacent cells in all directions. In this situ-

ation, the phase equations for the interior of cells are ϕ̇i = 0 if the cell shape has

axial symmetry. Even if the shape is not a regular hexagon, the relation holds

for polygonal cells with a symmetrical shape. When the cell shape is a square,
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similar results can be obtained by putting in parameters ηij = 0, π/2, π, 3π/2

and dij = π/2. When such Ri = 0, the phase equation vanishes and the polarity

direction cannot be determined in a specific direction, which is similar to the case

of the XY model. In the case of open boundary, cells on the boundary define

the direction of polarity. They do not adhere to another cell on some side, and

Ri is nonvanishing; thus, ηi is approximately parallel to the boundary line as

depicted in Fig. 4.2. As an exception, in the case of a special cell arrangement,

Ri vanishes even if the cell is on the boundary. The phase equation when ηij = η

is identical to the equation when ηij = η + π. Then, the cell shape is a regular

hexagon, the sum of equations whose ηij is 0, π/3 and 2π/3 or π, 4π/3, 5π/3

becomes zero. Therefore, the various patterns of cell arrangement are replaced

with a simple cell arrangement.
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Figure 4.2: Illustration of the arrangement pattern of cell i and its adjacent cells.
The “Cell arrangement” column shows the pattern of the main cell arrangement.
The “Simplification” column represents a simple cell arrangement that shows the
same result as the steady state solution of the phase equation for cell i. The red
arrows indicate the direction in which the polarities are oriented.
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(a) (b)
t = 150t = 0

Figure 4.3: The polarity pattern for winding cell alignment with a regular hexag-
onal shape, obtained numerically with the phase model given by equation (3.49).
(a) Initial and (b) final patterns. Each arrow indicates the phase of each cell.

Therefore, the first polarity of cells on the boundary tends to be ordered in

the direction of the rows adhering to adjacent cells, and then the information

about the polar direction determined by the cells on the boundary is transmitted

sequentially to the cells inside the system. Fig. 4.3 shows how cell polarity is

aligned in a winding system. Initial conditions were taken randomly from uniform

distribution
(
−π

2
, π
2

)
so that no topological defects appeared. It can be seen that

the polarity is aligned along the boundary shape.

When the cell shape is elongated, Ri is nonvanishing even in the case of

cells inside the system. This is because the length of each side of the hexagon

changes with the deformation of cell shape, and the values of bij, cij and ηij vary

depending on the site. In this case, ηi tends to get oriented toward the direction

of a contact surface with greater width. When the number of bulk units is

much greater than that of boundary units, polarity orientation is predominantly

dependent on the cell shape. In particular, when the cell shape is uniformly

elongated as that depicted in Fig. 3.1(a), stability analysis is straightforward. In

this scenario, Eq. (4.13) is reduced to

ϕ̇i = −2ελ sin 2ϕi, (4.15)

where

λ =
sin δ

4π
+

δ

4π
− 2

(
sin(π−δ

2
)

4π
+
π − δ

8π

)
sin

δ

2
. (4.16)

Thus, the stability depends on the sign of λ. For λ > 0 (λ < 0), which is the

case for d > π
3
(d < π

3
), the states ϕi = 0 or ϕi = π (ϕi =

π
2
or ϕi = −π

2
) for all i

are stable. Hence, the polarities of vertically and horizontally elongated cells are

aligned in the lateral and longitudinal direction, respectively, because d = π
3
when

the cell is a regular hexagon. For λ = 0, which is true for d = π
3
, ϕi dynamics

becomes neutral, and the steady state is determined by initial conditions.
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(a) (b)

(c)
t = 1500t = 900t = 650t = 100

Figure 4.4: The polarity pattern for a planar alignment in a periodic system of
60× 20 cells, obtained numerically via the phase model described by Eq. (3.49).
In panel (a), the initial cell shape (regular hexagonal, δ(0) = π

3
) and initial

phases are displayed. In panel (b), the time series of the mean phase Φ(t) are
depicted. When cells are elongated at t = 500, the direction of cell polarity
changes immediately. After the polarity is oriented vertically in the direction of
cell elongation, Φ(t) does not change even if we reset the cell shape to a regular
hexagon. In panel (c), snapshots are presented. Initial conditions were taken
randomly from a uniform distribution (−0.5, 0.5) so that no topological defects
appear in the patterns.

To clearly demonstrate the effect of cell elongation, we consider a two-dimensional

periodic system shown in Fig. 4.4. Initially, we set the cell shapes to regular

hexagons. Because the boundary effects are negligibly small for the periodic

boundary condition under consideration, phases can be aligned with arbitrary

values determined by initial conditions. Here we employ a random initial con-

dition, where phases are chosen from a uniform distribution within the range

(−0.5, 0.5). Mean phase Φ(t) of N = 60 × 20 cells in the system and order

parameter Q(t) at time t are expressed as follows:

Q(t)eiΦ(t) =
1

N

∑
j

eiϕj(t) (4.17)

where Φ ∈ R. Here, Q ≥ 0 vanishes when the system is disordered, and

Q = 1 when the system is completely ordered. Cells are elongated only for
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500 ≤ t < 1000 when δ(t) = π
3
− π

10
; otherwise δ(t) = π

3
. At t = 100, phases

are almost perfectly aligned at ϕi ≈ 0, which is approximately the average of the

initial phases. At t = 500, the cell shape to be elongated is changed. Then, cell

polarity is aligned upward, pointing in the direction of a contact surface with

greater width, as predicted above. According to this result, the cells are aligned

towards a larger bonded surface with adjacent cells when the interaction inten-

sity is isotropic. This polarity pattern is maintained even when the cell shape is

returned to regular hexagonal (t > 1000). The reason why the direction of polar-

ity does not change when cell shape is returned to regular hexagonal is that Ri

approaches zero as the length of the adherent surface becomes isotropic, and the

polarity can be oriented in an arbitrary direction. This phenomenon, i.e., when

the polar direction changes due to cell elongation and keeps the direction even if

cell shape returns to regular hexagonal is actually obtained in the polarity exper-

iment on Drosophila wings. When actual cells are elongated, some cells divide,

and new bonded edges perpendicular to the direction of cell elongation are gen-

erated. While the cell division is repeated, the sides that have existed for a long

time become distributed more along the direction parallel to the cell elongation,

and the intercellular binding strengthens in this region as well. Therefore, a PCP

protein accumulates on this long-standing side with strong bond strength, and

it is expected that polarity forms along the strong bond direction. Actually, also

in our model, we can obtain the similar results in the case where we change the

intensity of cell–cell interaction on each side, and the anisotropy toward the cell

adhesion surface is given. We discuss this situation in detail in the subsequent

sections.

4.3 Dependence on the change in coupling strength

In the previous section, when the strength of a cell–cell interaction was isotropic,

the polarity was aligned toward the long side of the cell adhesion surface. How is

the polar direction oriented when the cell shape remains regular hexagonal and

the strength of cell–cell interaction is changed by each side? We consider the

situation in which coupling strength ε in our reaction–diffusion model described

by Eq. (3.1) is i, j-dependent by replacing ε with ε(1 + αij). The shapes of all

cells in the system are fixed: regular hexagonal. Then, the corresponding phase
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(c)

(a) (b)

t = 1000 t = 1000

t = 1000 t = 1000

(d)

XY

XY
t = 0

t = 0

Figure 4.5: The polarity pattern in the system with diverse coupling strengths.
The cell alignment is the same as that in Fig. 4.4 while cell shape is fixed: regular
hexagonal. Coupling strengths are initially the same, i.e., αij = 0 for 0 ≤ t < 200.
For t ≥ 200, we set αij = 0.1 and −0.1 for the surfaces with ηij = 0, π in panels
(a) and (b) and in panels (c) and (d), respectively; and αij = 0 otherwise. Thus,
the contacting surfaces depicted as thick lines have greater coupling strength. (a,
c) A time series of mean phase Φ(t) obtained with the phase model formulated as
Eqs. (3.49) (solid lines) and with its XY-model variant (dashed lines) in which bij
and cij values are set to zero while aij =

√
3

8π
is unchanged. (b, d) Snapshots are

displayed. The rightmost panels depict snapshots obtained with the XY-model
variant. The same initial conditions were employed in all the cases.

model reads

ϕ̇i = ε
∑

j∈A(i)

(1 + αij) {a sin(ϕj − ϕi) + b sin 2(ηij − ϕi) + c sin(2ηij − ϕi − ϕj)} ,

(4.18)

where a = b =
√
3

8π
and c = 1

12
. Under the assumption of an in-phase state, this

equation is reduced to

ϕ̇i = ε(b+ c)
∑

j∈A(i)

(1 + αij) sin 2(ηij − ϕi). (4.19)

Now we introduce axial asymmetry such that only the surfaces along the vertical

axis, which are depicted as thick lines in Fig. 4.5, have αij = α, and αij = 0 for

other surfaces. The coupling strength is greater in the lateral and zigzag vertical
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direction when α > 0 and α < 0, respectively, as shown in Fig. 4.5 (b) and (d).

In this case, we next obtain

ϕ̇i = −2εα(b+ c) sin 2ϕi. (4.20)

Accordingly, the sign of α plays exactly the same role as that of λ in Eq. (4.15);

the polarity pattern is aligned along the axis with stronger coupling. Numerical

results are obtained by means of the phase model (Eq. (4.18)) with coupling

diversity in Fig. 4.5. To highlight the effect of geometry-dependent terms, we

also show results obtained using Eq. (4.18) with b and c being set to zero, cor-

responding to the XY model. Although cell polarity is reoriented by changes in

the properties of individual cells in the phase model, the direction of polarity

once aligned does not change even if the interaction strength between cells varies

in the XY model. Therefore, the system’s axial asymmetry under consideration

affects dynamics only in the presence of geometry-dependent terms. Even when

the cell shape is isotropic, we can easily confirm that the polarity is aligned to-

ward the side with a strong interaction if the interaction strength with adjacent

cells is different.

4.4 Noise and global concentration gradient

One of the advantages of our model is that one can analyze the ordering phe-

nomena exemplified by actual Drosophila wings and mouse embryos by simply

changing the functional form of the model slightly. Next, we set various in-

teraction terms of the reaction–diffusion model and derive the phase model to

investigate the dynamics of polarity. We first consider the presence of a global

concentration gradient (as explained in another study [14]) and noise. The pres-

ence of a PCP protein distributed throughout the region where the concentration

increases in a specific direction is known. Besides, the system is affected by noise

such as cell division and generation and annihilation of cells. In our phase model,

how is polarity aligned when such noise and global concentration gradient are

added? If we take into account a global concentration gradient and noise, the

reaction–diffusion model can be described as

∂

∂t
Xi = F (Xi) + D̂

∂2

∂θ2i
Xi + ε

∑
j∈A(i)

Hij + εeGi + pi, (4.21)

where Gi = Gi(θi, t) is the external signal, εe is its strength, and

pi = (p
(1)
i (θ, t), p

(2)
i (θ, t), . . .) is white Gaussian noise that satisfies E[p

(m)
i (θ, t)] =
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0 and E[p
(m)
i (θ, t)p

(n)
j (θ′, t′)] = νmδijδmnδ(θ − θ′)δ(t − t′), with E[·] representing

the expected value, and νm is the noise intensity. For sufficiently small εe and

νm, we carry on the same procedure as that for Eq. (3.1) to obtain

ϕ̇i = ε
∑

j∈A(i)

Γij(ϕi, ϕj) + εeΠi(ϕi, t) + qi(t) (4.22)

where

Πi(ϕi) = ⟨Z0(θi − ϕi),Gi(θi, t)⟩, (4.23)

qi(t) = ⟨Z0(θi − ϕi),pi(θi, t)⟩. (4.24)

Note that qi(t) is Gaussian white noise that satisfies

E[qi(t)] = 0, E[qi(t)qj(t
′)] = νδijδ(t− t′), (4.25)

where ν =
∑

m νm
∫ 2π

0

{
Z

(m)
0 (θ)

}2

dθ. Because

E[qi(t)] = E

[∫ 2π

0

Z0(θ − ϕi) · pi(t)dθ

]
(4.26)

= E

[∫ 2π

0

∑
m

Z
(m)
0 (θ − ϕi)p

(m)
i dθ

]
(4.27)

=

∫ 2π

0

∑
m

Z
(m)
0 (θ − ϕi)E[p

(m)
i ]dθ (4.28)

= 0, (4.29)
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and

E[qi(t)qj(t
′)] = E

[∫∫ 2π

0
{Z0(θ − ϕi(t)) · pi(t)}{Z0(θ

′ − ϕj(t
′)) · pj(t

′)}dθdθ′
]

(4.30)

= E

[∫∫ 2π

0

{∑
m

Z
(m)
0 (θ − ϕi(t))p

(m)
i (t)

}{∑
m′

Z
(m′)
0 (θ′ − ϕj(t

′))p
(m′)
j (t′)

}
dθdθ′

]
(4.31)

= E

∫∫ 2π

0

∑
m,m′

Z
(m)
0 (θ − ϕi(t))p

(m)
i Z

(m′)
0 (θ′ − ϕj(t

′))p
(m′)
j (t′)dθdθ′

 (4.32)

=

∫∫ 2π

0

∑
m,m′

Z
(m)
0 (θ − ϕi(t))Z

(m′)
0 (θ′ − ϕj(t

′))E
[
p
(m)
i (t)p

(m′)
j (t′)

]
dθdθ′ (4.33)

=

∫∫ 2π

0

∑
m,m′

Z
(m)
0 (θ − ϕi(t))Z

(m′)
0 (θ′ − ϕj(t

′))νmδijδmm′δ(θ − θ′)δ(t− t′)dθdθ′

(4.34)

=

∫ 2π

0

∑
m

νm

{
Z

(m)
0 (θ − ϕi(t))

}2
dθ (4.35)

=
∑
m

νm

∫ 2π

0

{
Z

(m)
0 (θ)

}2
dθ. (4.36)

In the case of the GLE, any generic choice of external signal Gi(θi, t) yields

Πi = ci(t) sin(ψi(t)− θi) (4.37)

because Z0(θ) contains only the first harmonics. As a simple example, we con-

sider a unimodal distribution where the peak is at θi = ψ(t). Thus,

Gi(θi) = (cos(ψ(t)− θi), 0), (4.38)

the following is obtained:

Πi =
1

2
√
1−D0

sin(ψ − θi). (4.39)

The phase model in question is actually a gradient system, i.e.,

ϕ̇i = − ∂

∂ϕi

H + qi (4.40)

with potential function H = H({ϕi}) given by
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(a) (b)

Figure 4.6: Polarity orientation for two coupled cells in the presence of an ex-
ternal signal and noise. (a) A time series. (b) The probability density function
obtained numerically and theoretically.

H = −ε
2

∑
i

∑
j∈A(i)

{aij cos(ϕj − ϕi) + bij cos 2(ηij − ϕi) + cij cos(2ηij − ϕi − ϕj)}

−εe
∑
i

1

2
√
1−D0

cos(ψ − θi). (4.41)

A probability distribution is obtained by solving the Fokker–Planck equation

corresponding to the phase equation:

P ({ϕi}) = C exp

[
−2H({ϕi})

ν

]
, (4.42)

where C is the normalization constant. The dynamics of ordering when two

cells are lined up are shown in Fig. 4.6. From analysis results so far, the polar

direction is oriented at 0 or π when the cells line up, but when noise is applied,

cell polarity is distributed in other directions too as depicted in Fig. 4.6(a). The

red dots in Fig. 4.6(b) denote the probability distribution obtained numerically

from the GLE, given by Eqs. (4.21) and (3.3). The solid line in Fig. 4.6(b)

corresponds to the distribution function (Eq. (4.42)) obtained theoretically. We

can see that this phase model can reproduce the dynamics of polarity well.

4.5 The effect of microtubules

Although the mechanism of global cell polarity formation has not been under-

stood yet, some previous studies claim that the existence of microtubules is
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related to polarity formation. In the study by Shimada et al. [31], they suggest

that microtubules in cells are aligned in a certain direction, and PCP protein Fz

is transported along them. Experiments have revealed that these microtubules

align along the axis of cell elongation [36, 37, 38, 39]. Thus, the polar direction

changes during deformation and elongation of the cell shape. In fact, cells in

an epithelial sheet of Drosophila elongate along the PD axis, and it has been

confirmed that microtubules are aligned toward that direction [31]. PCP pro-

teins that are transported along the microtubules accumulate at the end of the

microtubules. As a result, the polarity is aligned in the direction of microtubule

alignment. Although few studies on the relation between microtubules and de-

termination of polarity have been conducted since 2007, we analyzed how the

polarity changes when the presence of microtubules in our model is assumed.

Assuming that microtubules are present in the cell, it is expected that the

velocity of protein diffusion on a cell membrane varies depending on the site. In

accordance with this consideration, we add to this model a perturbation term,

G, which is described by spatially dependent diffusion function D(θ). We use

the Meinhardt model [21]. In Eq. (3.4), we set X = (U, V ).

F =

(
ρUU2

(1+κU2)Vi
− µUU + σU

ρVU
2 − µV V,

)
, D̂ =

(
DU 0

0 DV

)
, G =

(
εS

∂
∂θ

(
D(θ)∂U

∂θ

)
0

)
.

(4.43)

where ρU = 0.01, ρV = 0.02, µU = 0.01, µV = 0.02, σU = 0.0, κ = 0.0, DU =

0.005, and DV = 0.2, respectively. We determine the diffusion function so that

it has a fast and slow diffusion site with π symmetry,

D(θ) = sin2(θ −Ψ) + C

where C > 0 is constant. The phase equation is given by

ϕ̇ = εS

⟨
Z

(U)
0 (θ;ϕ),

∂

∂θ

(
D(θ)

∂U

∂θ

)⟩
. (4.44)
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Next, we expand this equation into a Fourier series as follows.

Z
(U)
0 (θ) =

∞∑
n=−∞

−zn sinnθ, (4.45)

US(θ) =
∞∑

n=−∞

un cosnθ, (4.46)

D(θ; Ψ) =
1

2
− 1

2
cos 2(θ −Ψ) + C, (4.47)

∂US

∂θ
=

∞∑
n=−∞

−nun sinnθ. (4.48)

Hence,

ϕ̇i = −εSπ
∞∑

n=−∞

n(n+ 2)znun+2 sin 2(ϕi −Ψ). (4.49)

Consequently, the steady state solution of ϕ is

ϕ∗ = Ψ± π

2
(4.50)

when εS > 0, uk > 0, zk < 0. After this analysis, we found that the direction of

the cell polarity gets aligned in the direction where the diffusion is fast because

D(θ) takes its maximum at Ψ± π
2
.

It is not clear how the speed of diffusion changes due to the presence of

microtubules in actual cells. If it is assumed that flow is generated to absorb

floating proteins at the tip of microtubules, the direction of cell polarity is aligned

parallel to the microtubule alignment.

In addition to the above effect of the diffusion function, we insert a cell–cell

interaction term into the model. The interaction function

Hij(θi, t) = Sij(θi)

(
Ui(θi, t)− Uj(θ

∗
j , t)

0

)
(4.51)

is added, then the phase model with variables expanded in the Fourier series is
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expressed as follows.

ϕ̇i = −εSπ
∞∑

n=−∞

n(n+ 2)znun+2 sin 2(ϕi −Ψ)

+2πε
∑

j∈A(i)

∞∑
n=−∞

∞∑
l=−∞

znul

[
cos(lπ)sl−n sin{(n+ l)ηij − nϕi − lϕj}

−sn+l sin{(n+ l)(ηij − ϕi)}
]

(4.52)

≃ −εSπz1(u1 + 3u3) sin 2(ϕi −Ψ)

−4πεz1u1
∑

j∈A(i)

{s0 sin(2ηij − ϕi − ϕj) + s2 sin 2(ηij − ϕi) + s2 sin(ϕj − ϕi)}

(4.53)

where uk > 0, zk < 0, sk > 0, εS > 0, ε > 0. Therefore, we found that

the polarity is aligned in the direction where diffusion within the cell adhesion

surface is fast.

4.6 Cell polarity of the system with defective

cells

In epithelial tissue where cell polarity is formed, defective cells are sometimes

detected. Amonlirdviman et al. analyzed cell polarity when some cells have

a knockout of a certain PCP protein (Fz, Vang, or Dsh) in experimental and

numerical analyses [5]. Fz localizes in the final hair growth direction, and Vang

antagonizes Fz within the cell. Dsh is a transmembrane protein that binds to

both Fz and Vang. When there are some Fz knockout cells in an epithelial sheet,

it is reported that the final direction of cell alignment is the region of defective

cells. In contrast, polarity is aligned away from defective cells when some region

of the wing contains Vang knockout cells.

In their experiment on the Drosophila wing [5], they reported that when there

are some Fz knockout cells in an epithelial sheet, the final direction of alignment

of wild-type cells is the region of defective cells. On the other hand, the wild-

type cells align away from the region where defective cells are present when

Vang knockout cells are there. They not only conducted an experiment but also

were able to reproduce those results by means of more than 10 reaction–diffusion

equations that explain the behavior of each PCP protein in detail.

To reproduce the behavior of the system with defective cells as well as their

model can, we add to a cell–cell interaction a term for the interaction between a
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wild-type cell and a PCP protein knockout cell into the phase model. The deriva-

tion method is as follows. In the reaction–diffusion model (Eq. (3.1)) before ap-

plication of the phase reduction method, variable U is the protein corresponding

to Fz that localizes in the direction of hair growth. Because the variables U

and V represent the concentration of a PCP protein, U = 0 in all the regions

on cell membrane when Fz is knocked out. If Vang is knocked out in the cell,

Fz is not inhibited by Vang hence the concentration of U on cell membrane in-

creases. If Dsh is knocked out, Fz does not localize and instead is distributed

uniformly; therefore, the concentration of U takes an average value everywhere.

Here, we set C to the concentration of Fz in a defective cell in which a certain

PCP protein was knocked out. The phase model is composed of two kinds of

cell–cell interaction. One is cell–cell interaction of wild-type cells and the other

is the interaction between wild-type and defective cells. Therefore, the equation

becomes

ϕ̇i = ε

⟨
Z

(U)
0 (θi − ϕi),

∑
j∈A(i)

Sij

(
US
i (θi − ϕi)− US

j (θ
∗
j − ϕj)

)⟩

+ ε

⟨
Z

(U)
0 (θi − ϕi),

∑
j∈K(i)

Sij

(
US
i (θi − ϕi)− C

)⟩
. (4.54)

The first term of Eq. (4.54) represents the dynamics of interaction between

two wild-type cells, and the second term represents the dynamics of interaction

between a wild-type cell and defective cell. Suppose A(i) and K(i) denote the

sets of wild-type and defective cells, respectively. As in Section 4.5, the model is

expanded with a Fourier series.

ϕ̇i = 2πε
∑

j∈A(i)

∑
k,l

zkul

[
(−1)ls

(ij)
l−k sin{(k + l)ηij − kϕi − lϕj} − s

(ij)
−k−l sin{(k + l)(ηij − ϕi)}

]

+ ε
∑

j∈K(i)

∫ 2π

0

∞∑
k=−∞

zke
ik(θi−ϕi)

∞∑
n=−∞

sne
in(θi−ηij)

(
∞∑

l=−∞

ule
il(θi−ϕi) − C

)
dθi (4.55)

≃ −4πε
∑

j∈A(i)

[
z1u1s

(ij)
2 sin(ϕj − ϕi) + 2z1u1s

(ij)
2 sin 2(ηij − ϕi) + z1u1s

(ij)
0 sin(2ηij − ϕi − ϕj)

]
−4πε

∑
j∈K(i)

z1s
(ij)
1 (u0 − C) sin(ηij − ϕi). (4.56)

Therefore, the stable solution ϕ∗
i is given as

ϕ∗
i = ηij ( u0 > C ) (4.57)

ϕ∗
i = ηij + π ( u0 < C ) (4.58)
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(a) (b)

Fz

Figure 4.7: The results on cell polarity of a system with defective cells; the system
is derived from Eq. (4.54). The original reaction–diffusion model involved the
GLE. The phase was given randomly for the initial condition. The system is
packed with 60 × 20 cells. In the area colored white, there are (a) Fz knockout
cells and (b) Vang knockout cells.

because −4πεz1s
(ij)
1 > 0. The above result and Fig. 4.7 indicate that when the

concentration of Fz in a defective cell is lower than that in a wild-type cell, the

direction of alignment of wild-type cells is the region of defective cells; otherwise,

the wild-type cells align away from the region containing defective cells. This

conclusion is consistent with the experimental results, and the phase model makes

it possible to reproduce the cell polarity as in the previous study even though a

surprisingly simple model is compared with the previous one.

4.7 The robustness of cell polarity

We discuss the robustness of the results described above, i.e., their stability

after changes in the model equations. The numerical simulations for regular

hexagonal cell shapes were performed using Eq. (3.49) with aij = bij =
sin dij
4π

and

cij =
dij
4π

where dij = π
3
. We have checked and confirmed that these results do

not change qualitatively for small changes in aij, bij, cij values. A qualitative

change is certainly expected when the stability condition described by Eq. (4.12)

is violated.

We also noticed that there is no qualitative difference between the phase mod-

els reduced from the GLE and the activator–inhibitor model, as shown in Fig. 3.5.

This observation suggests that higher harmonics in Γij do not considerably affect

the dynamics at least when they are small.

The types of coupling can also be considered in the reaction–diffusion model
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that are different from those in Eq. (3.5). For example, we consider

Hij(θi, t) = Sij(θi)

(
−Uj(θ

∗
j , t)

0

)
, (4.59)

which describes mutual inhibition as well as Eq. (3.5) does. By assuming that

US(θ) and Z
(U)
0 (θ) are nearly harmonic, we approximately obtain

ϕ̇i = ε
∑

j∈A(i)

{
aij sin(ϕj − ϕi) + b′ij sin(ηij − ϕi) + cij sin(2ηij − ϕi − ϕj)

}
,

(4.60)

where aij = −4πz1u1s
(ij)
2 , b′ij = 4πz1u0s

(ij)
1 , cij = −4πz1u1s

(ij)
0 . The phase model

given by Eq. (4.60) is again a gradient system with the potential function given

by

H = −ε
2

∑
i

∑
j∈A(i)

{
aij cos(ϕj − ϕi) + 2b′ij(ηij − ϕi) + cij cos(2ηij − ϕi − ϕj)

}
.

(4.61)

In the case of the GLE expressed as Eq. (3.3), we obtain aij =
sin dij
4π

, b′ij =

0, cij =
dij
4π
. Therefore, the only difference from the previous phase model given

by Eq. (3.49) is the absence of the second term. It is straightforward to confirm

that the absence of the second term in Eq. (3.49) does not change the presence

and stability analysis performed above.

4.8 The phase model for any cell shape

Cell polarity dynamics was discussed under the assumption that the shape of

cells is regular hexagonal or axially symmetrical. In the text below, we extend

the model so that it is applicable to arbitrarily polygonal cells. From experi-

ments, it is known that polygonal cells are distributed widely in the epithelial

tissue space at an early stage of development, whereas hexagonal cells increase

in number gradually by repeating cell division, disappearance, and migration;

thus, eventually the epithelial sheet is packed with regular hexagonal cells [40].

Now we consider cell i with perimeter Li and adjacent cell j with perimeter

Lj (Fig. 4.8). The one-dimensional space coordinate along the circumference of

cell i is set to li (0 ≤ li < Li). Cell i, j interacts with cell j, i at li ∈ (a, b) and

lj ∈ (c, d), respectively, as shown in Fig. 4.8. We determine the point that cell j
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Figure 4.8: A schematic of various polygonal cell shapes.

contacts at li of cell i as l
∗
j given by

l∗j = b+ c− li. (4.62)

Here, we set the new phase for cell i to φi (0 ≤ φi < Li). Hence, the peak of Ui

is present at li = φi.

If we define the phase sensitivity function as Z
(U)
0 (li;φi), then the phase model

is formulated as follows.

φ̇i = ε

∫ Li

0

Z
(U)
0 (li − φi)

∑
j∈A(i)

S

(
li −

a+ b

2

)(
US
j (lj − φj)− US

i (li − φi)
)
dli.

(4.63)

For simplicity, we normalize these cells so that perimeter length is 2π.

θi = 2π
li
Li

, θj = 2π
lj
Lj

(4.64)

ϕi = 2π
φi

Li

, ϕj = 2π
φj

Lj

. (4.65)

The normalized position corresponding to positions a, b, c, d are given by

θa =
2π

Li

a, θb =
2π

Li

b, θc =
2π

Lj

c, θd =
2π

Lj

d. (4.66)

From these equations, Eq. (4.62) follows

θ∗j = 2π
l∗j
Lj

=
2π

Lj

(b+ c− li) = g − Li

Lj

θi, (4.67)

where

g =
2π

Lj

(b+ c). (4.68)
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If the equations with a Fourier series is expanded as follows,

Z
(U)
0 (θi) =

∑
n=1

−zn sinnθi, (4.69)

US
i (θi) =

∑
n=0

un cosnθi, (4.70)

then the previous phase model becomes

φ̇i = ε

∫ b

a

Z
(U)
0 (li − φi)

(
US
j (l

∗
j − φj)− US

i (li − φi)
)
dli (4.71)

=
Li

2π
ε

∫ θb

θa

Z
(U)
0 (θi − ϕi)

(
US
j (θ

∗
j − ϕj)− US

i (θi − ϕi)
)
dθi, (4.72)

thus

ϕ̇i = ε

∫ θb

θa

Z
(U)
0 (θi − ϕi)

(
US
j (θ

∗
j − ϕj)− US

i (θi − ϕi)
)
dθi (4.73)

= ε

∫ θb

θa

Z
(U)
0 (θi − ϕi)

(
US
j

(
g − Li

Lj

θi − ϕj

)
− US

i (θi − ϕi)

)
dθi (4.74)

= −ε
2

∑
n,k

znuk

[
cos((n− k Li

Lj
)θi − nϕi + kg − kϕj)

(n− k Li

Lj
)

]θb
θa

− ε

2

∑
n,k

znuk

[
cos((n+ k Li

Lj
)θi − nϕi − kg + kϕj)

(n+ k Li

Lj
)

]θb
θa

+
ε

2

∑
n,mn ̸=m

znum

[
cos(n+m)θi

n+m

]θb
θa

+

[
cos(n−m)θi

n−m

]θb
θa

. (4.75)

Provided that we should calculate n = k exceptionally in the case of Li = Lj.

Here, if we use only first Fourier mode of the function of U and Z, the case

analysis is needed only when n = k = 1. The new phase model is similar to the

dynamics of cell polarity when cell shape is regular hexagonal.

For a simple example, we derive the phase model with the GLE (Eq. (3.3))

for arbitrary polygonal cells.

The normalized functions US
i and Z

(U)
0 are given as

US
i (θi) =

√
1−D cos θi, (4.76)

Z
(U)
0 (θi) =

1

2π
√
1−D

sin θi, (4.77)
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when Li ̸= Lj.

ϕ̇i= ε
∑

j∈A(i)

∫ θb

θa

1

2π
√
1−D

sin(θi − ϕi)
(√

1−D cos(θi − ϕi)−
√
1−D cos(θ∗j − ϕj)

)
dθi

(4.78)

=
∑

j∈A(i)

[
ε

4π
sin(θb − θa) sin(θa + θb − 2ϕi)

− ε

2π
(
1− Li

Lj

) sin

{
1

2

(
1− Li

Lj

)
(θb − θa)

}
sin

{
1

2

(
1− Li

Lj

)
(θa + θb) +

2π

Lj

(b+ c)− ϕi − ϕj

}

− ε

2π
(
1 + Li

Lj

) sin

{
1

2

(
1 +

Li

Lj

)
(θb − θa)

}
sin

{
1

2

(
1 +

Li

Lj

)
(θa + θb)−

2π

Lj

(b+ c)− ϕi + ϕj

}
(4.79)

where θb − θa describes cell adhesion length corresponding to dij in the case the

cell shape is regular hexagonal. Consequently, cell polarity is susceptible to a

cell–cell interaction in a wide area of adhesion. Rewriting the parameters of the

equation to those before normalization, the equation becomes

ϕ̇i =
∑

j∈A(i)

[
ε

4π
sin

2π

Li

dij · sin
{
2π

Li

(a+ b)− 2ϕi

}

− ε

2π
(
1− Li

Lj

) sin

(
2π

Li

− 2π

Lj

)
dij
2

· sin
{
2π

Li

(
a+

dij
2

)
− ϕi +

2π

Lj

(
c+

dij
2

)
− ϕj

}

− ε

2π
(
1 + Li

Lj

) sin

(
2π

Li

+
2π

Lj

)
dij
2

· sin
{
2π

Li

(
a+

dij
2

)
− ϕi −

2π

Lj

(
c+

dij
2

)
+ ϕj

} .
(4.80)

Therefore, it is expected that cell polarity tends to be oriented toward the direc-

tion of the midpoint of the adhesion surface of the cell similarly to the previous

phase model. Using this phase model derived from the GLE for any cell shape,

various dynamics of cell polarity are investigated in the following sections.

4.9 Dependence on the shape of the system

In Section 4.2, the direction of the cell polarity varies depending on the boundary

shape of the system in the case where cell shape is regular hexagonal. This is

because the direction of polarity is aligned in any direction when a cell interacts

isotropically, and when the cell–cell interaction is biased, the direction is aligned

toward the wide cell adhesion area or the interface of a large cell–cell interaction.
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Figure 4.9: Numerical calculation with the system of (a) 10× 45 and (b) 30× 15
cells. The radius r = 0.2. The boundary condition is an open boundary. The
direction of cell polarity is aligned along the boundary of the system.

In order to investigate the behaviour of cell polar dynamics for polygonal

cells, we analyze numerically by using new phase model, which is similar to that

in Section 4.2. In the numerical calculation, we first set six vertices of a regular

hexagonal cell as(
Cx + cos

(2n+ 1)π

6
, Cy + sin

(2n+ 1)π

6

)
(n = 0, 1, · · · , 5) (4.81)

where (Cx, Cy) is a center point of a cell. Then we move each vertex within a

radius r randomly. When r = 0, the cell shape is regular hexagonal, and the

larger the radius r, the higher the degree of deformation of the cell. The shapes

of cells are varied every 10 simulations. The simulation results are as follows.

As shown in the Fig. 4.9, it is confirmed that the phase polarity direction is

aligned along the direction of the longest side of the system boundary. Therefore,

we found that the same results are obtained with regular hexagonal cells.
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4.10 The relation between nematic order and

elongation direction

In the previous section, we found that the direction of cell polarity is aligned

along the boundary of the system as in the results for cells that are hexagonal or

axially symmetric. As another result, we also found that the cell polarity points

to the direction of a contact surface with greater width, in other words, vertical

direction corresponding to the cell elongation direction. To investigate whether

the behaviour of the polar dynamics is the same as in the situation with any

hexagonal cells, we studied the relation between the degree of cell shape change

and the direction of cells.

In the numerical simulation, each vertex of regular hexagonal cells is set as(
Cx + cos

(2n+ 1)π

6
· ex, Cy + sin

(2n+ 1)π

6
· ey
)

(n = 0, 1, · · · , 5) (4.82)

where ex and ey are elongation rates in the direction of the x- and y-axis, re-

spectively. Other parameters are treated in the same way as in Eq. (4.81). The

elongation rates ex and ey take values from 1 to 2 at r < 0.2. In order to lessen the

effect of the boundary shape of the system, the boundary condition for the cell

arrangement is set to a periodic boundary as depicted in Fig. 4.12. We adopted

the method from Ref. [6] and the Kuramoto order parameter to quantify nematic

and polar order.

Components Q
(x)
i and Q

(y)
i which denote the degree of elongation along the

x-axis and y-axis of cell i are determined as integrals of a cell boundary. They

are given by

Q
(x)
i =

∫ Li

0

w(li) cos(2χ(li))dli, (4.83)

Q
(y)
i =

∫ Li

0

w(li) sin(2χ(li))dli (4.84)

where Li is the perimeter of cell i. χ(li) is the angle from the horizontal axis to

li, and w(li) is the distance from the geometric center of cell i to li on the cell

boundary. These variables are explained in Fig. 4.10.

Qi, the magnitude of nematic order for each cell i is given as

Qi =

√{
Q

(x)
i

}2

+
{
Q

(y)
i

}2

. (4.85)
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Figure 4.10: Illustration of the calculation of nematic order. 0 ≤ li ≤ Li.

The direction of nematic Φi is thus

Φi =
1

2
arctan

Q
(y)
i

Q
(x)
i

(4.86)

if the following equations are derived

cos 2Φi =
Q

(x)
i

Qi

, (4.87)

sin 2Φi =
Q

(y)
i

Qi

. (4.88)

Here, the average nematic order for all N cells in system Q and the magnitude

of deformation of the system are measured with the above-mentioned nematic

orders. The average nematic order on each axis is

⟨Qx⟩ =
1

N

N∑
i=0

Q
(x)
i , (4.89)

⟨Qy⟩ =
1

N

N∑
i=0

Q
(y)
i , (4.90)

hence the magnitude of nematic Q is determined as

Q =

√
⟨Qx⟩2 + ⟨Qy⟩2 (4.91)

and the direction of average nematic order Ψ is given by

cos 2Ψ =
⟨Qx⟩
Q

, (4.92)

sin 2Ψ =
⟨Qy⟩
Q

. (4.93)
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Figure 4.11: The relation between a change in cell shape and the direction of cell
polar alignment. The larger the value of Q, the more drastic the deformation
becomes. In the vicinity of Q = 0, the nematic direction is distributed randomly
and aligns vertically, in the cell elongation direction, as the value of Q becomes
large.

Figure 4.12: Cell shape examples for different degrees of Q. The red line repre-
sents the nematic direction, and the length of the line represents nematic order.

When Q = 0, the cell shape is regular hexagonal, and the degree of deformation

is higher as the value of Q becomes large.

Now we show the results of the numerical simulation. We changed the cell

shape from regular hexagonal to a deformed asymmetrical hexagon and analyzed

the relation between cell deformation and the direction of the nematic (Fig. 4.11).

In the following figure, the horizontal axis represents the degree of deformation

of cells Q, whereas the vertical axis represents the difference in angle between the

average elongation direction of all cells in the system and the nematic direction.

The system is composed of 6 × 6 cells. In Fig. 4.12, we provide some examples

of cell shape corresponding to each Q.

When cell shape is isotropic, in other words, the value of Q is nearly zero,

the nematic direction tends to align the direction vertically, in the cell extension

direction, because the deformation of the cell is drastic.
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Figure 4.13: The relation between Kuramoto order parameter R and strength of
deformation Q. Cell polarity shows good alignment when cell shape is regular
hexagonal. As Q increases, R decreases monotonically.

4.11 The relation between cell shape and cell

alignment

In the analysis of the dynamics of cell polarity, it is obvious that changes in the

shape of the system boundary or individual cells affect cell polarity determina-

tion. In this section, we examine the relation between cell shape and the ease of

aligning cell polarity.

To check this relation, we fixed cell perimeter at 2π and set the shape to ax-

ially symmetric. For quantification of the ease of cell alignment, the Kuramoto

order parameter was chosen. We consider the system with 30× 30 cells, and we

set the boundary condition for the cell arrangement to a periodic boundary to

lessen the effect of the boundary shape of the system. The phases are distributed

randomly ϕi ∈ [0, 2π) under initial conditions. Fig. 4.13 is the result of this nu-

merical analysis. The Kuramoto order parameter was obtained from the system

at time t = 10000 when the system falls into the steady state. 100 sample data

points were calculated at each value of Q.

As a result, it was found that polarity of the cell is most likely to be aligned

when cell shape is regular hexagonal and the variance of the Kuramoto order pa-

rameter gradually increases as the shape is elongated, thereby making it difficult

to align. These dynamics of polarity are also reported in Ref. [40] in experiments;

the actual epithelial cell sheet prefers regular hexagonal cells for aligning the cell

polarity.
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Figure 4.14: (a,b) Numerical simulation with the system of 20 × 60 cells. The
polarity of each cell is represented by color. (a) An isotropic system. Parameters
are ex = ey = 1, r = 0.22 in Eq. (4.81). (b) An anisotropic system. Parameters
are ex = 2, ey = 1, r = 0.22. (c) Time series of the Kuramoto order parameter
from panels (a) and (b). It is easier to orient the polarity more globally in the
anisotropic system than in an isotropic system.

4.12 Orientation of polarity when the cell sys-

tem is anisotropic

In the case where the shape of the cell is axially symmetric, the polarity is

oriented in the direction in which the adhesive surface became longer during

cell elongation. We analyze numerically whether similar results can be obtained

when the cell shapes are extended to arbitrarily polygonal cells. The boundary

condition of the system is the periodic boundary condition. That is, as shown

in Figs. 4.14(a,b), the shapes of cells are set to be the same in two rows at both

ends; please note that the actual system is inside the boundary.

The text below shows results of numerical calculation when arbitrary hexag-

onal cells are elongated in the x-axis direction.

Fig. 4.14 (a) is a system packed with isotropically deformed cells and Fig. 4.14

(b) represents a system containing cells strongly elongated in the direction along

the x-axis. In other words, in the model shown in Fig. 4.14 (a), the system is

isotropic even though the shape of the cells is not an regular hexagonal, and in the

system presented in Fig. 4.14 (b), the system is anisotropic. In such a system,

apparently, it is easier to orient the polarity more globally in the anisotropic

system than in the isotropic system. As in the case of a regular hexagon, it is

assumed that the cell strengthens a cell–cell interaction at a long attachment

surface so that the polarity is oriented in that direction. Moreover, when the

above numerical analysis was carried out in the XY model, the cell polarity is
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oriented in the same direction under the same initial conditions regardless of the

system anisotropy.

Then, if we set the shape of the cell to arbitrary hexagonal and set the

distortion of the system to isotropic, how will the polarity change when we change

the bond strength at the cell adhesion surface? We changed the bond strength

in Eq. (4.80) from ε to ε(1 + αij) as in Eq. (4.18) and calculated the change

numerically. In Fig. 4.15, the coupling strength of the adhesive surface is stronger

along AP and PD axes in panels (a,b) and (c,d), respectively. We can see that

the polarity of cells is oriented globally in a direction in which the coupling

strength is strong. According to these findings, when the cell shape is arbitrary,

the anisotropy of the system makes it easy to align the polarity globally and

tends to orient the polarity in the direction where the strong adhesion surfaces

are present. During actual polarity formation in live organisms, anisotropy in a

tissue occurs at the beginning of development, and polarity for the most part is

aligned during this period. Therefore, it is likely that anisotropy of the tissue is

deeply involved in global ordering.
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Figure 4.15: Numerical simulation with a system of 20 × 60 cells. The polarity
of each cell is represented by color. The system shape is deformed isotropically.
Coupling strength is αij = 0.1 and −0.1 for the surfaces along the direction
perpendicular to the PD axis in panels (a,b) and (c,d), respectively; and αij =
0 otherwise. The coupling strength is high along the bold line. (a,c) Initial
conditions. (b,d) The cell polarity of the system at time t = 5000.

4.13 How to orient cell polarity globally

In Section 4.12, if the cell shapes are arbitrary hexagons, it was confirmed that the

cell polarity becomes easier to be oriented globally when the system is anisotropic

than isotropic. However, in Section 4.11, we confirmed that when the cell shapes

keep symmetry, the cell polarity is most easily oriented if the cell shape is regular

hexagonal. Hence, we can assume that the influence of anisotropy of a tissue on
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Figure 4.16: The time series of Kuramoto order parameter R under different
initial conditions (a–d). The system consists of 80 × 80 cells. The boundary
condition is periodic. The red line represents our phase model, and the black
line represents of the XY model.

cell polarity changes depending on whether the cell shape is symmetrical or not.

Indeed, in the epithelial tissues of Drosophila, it is reported that the tissues

filled with regular hexagonal cells are more likely to orient polarity globally. In

addition, it is known that polarity is oriented by imparting anisotropy to the

isotropic tissues in the process of polarity formation. According to this finding,

temporary tissue anisotropy has a positive effect on polarity. At the end of this

chapter, we investigated the best timing to impart anisotropy to the system.

It is known that the number of Drosophila wing cells is ∼ 1 million, and the

system was filled with 80 × 80 cells for numerical calculations. For the initial

conditions, the cell phase is randomly assigned to 0–2π, and the case where

defects could be made in the system is also considered. The boundary condition

is periodic, and cell shape is an arbitrary hexagon. Tissue anisotropy is taken

into account by changes in the coupling strength of each cell. For comparison

with our phase model, the same numerical calculation was carried out in the

XY model. First, we deformed the cell shape isotropically while maintaining

isotropic coupling strength, and calculated cell polarity numerically in the phase

model and XY model. Although each case is different, we found that the XY
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Figure 4.17: (a) Illustration of the adhesion side (bold line) that changes coupling
strength. If α(t) = 0, coupling strength has the same intensity on all six sides.
If α(t) > 0, then coupling strength of the black bold line is stronger. (b) Time
series of the Kuramoto order parameter. The system consists of 80 × 80 cells.
The boundary condition is periodic. From line 1 to 5 in that order, the results
in the case of tstart = 10, 100, 1000, 5000, 10000. Line 6 shows the case of an
isotropic system.

model tends to be more polarized than the phase model (Fig. 4.16). This means

that in the XY model, polarity can be oriented isotropically with adjacent cells

irrespective of the adhesion surface of the cell, and it is easy to change the cell

polarity. Nonetheless, in our phase model, cells interact strongly with adjacent

cells whose adhesion surface is wide, and once the polar direction is determined

in the direction of that surface, it is difficult to redirect the polarity again in

another direction. Next, we changed the coupling strength in the phase model

for a short period and investigated the influence on global polarity formation.

We defined α(t) as the coupling strength on the cell adhesion side oriented in

the direction parallel to the AP axis at time t (Fig. 4.17 (a)). The function of

α(t) is given by

α(t) =

{
0 (t < tstart, tend < t)

0.2 (tstart ≤ t ≤ tend).
(4.94)

In Fig. 4.17 (b), we compared the case of tstart = 10, 100, 1000, 5000, 10000,

where tend = tstart+10. It was found that the anisotropy given at the initial stage

of the polar formation influences polar orientation and accelerates its formation.

By contrast, the anisotropy given later does not significantly affect the formation

or even has a negative influence. In addition, because in the case of tstart = 100,

the time to order polarity globally shortens relative to the case of tstart = 10, it

is expected that proper timing (at which we operate coupling strength) exists.
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Figure 4.18: A comparison of a phase model whose coupling strength is time-
dependent and a general isotropic phase model. The red line represents of the
phase model with time-dependent cell coupling. The black line represents the
general phase model. The differences among panels (a–c) are initial conditions.

Furthermore, when anisotropy is applied to the system continuously from the

beginning (t = 0), the polarity is aligned earlier than the polarity formation in

the isotropic system, but after a long period, the coupling anisotropy exerts a

negative effect on polarity flow (Fig. 4.17).

Therefore, to facilitate realization of global polarity, the coupling anisotropy

at the initial stage of polarity formation is given, and then the coupling strength

is returned isotropically until a small cell polarity cluster is generated. Actually,

by operating the coupling strength and applying the anisotropy to the tissue,

we found that the polarity is oriented globally with a higher probability than

usual (Fig. 4.18). Here, the time-dependent coupling strength function is given

as follows.

α(t) =


0, (2000 < t)

0.2
(
1− 1

1+t−2000

)
, (2000 ≤ t < 3500)

0.2
1+t−3500

. (otherwise)

(4.95)

Although the relevance of these numerical calculations to experimental results is

not clear, it would be an interesting to study the proper timing for getting rid

of the defects and aligning cell polarity quickly and globally.

4.14 Conclusions and discussion of polarity or-

dering

Polarity formation is an important topic in biology, and many mathematical

models describing polarity have been considered. For well-known spin models
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such as the XY model, a globally ordered state is difficult because many topo-

logical defects may appear in a large system, though polarity can be oriented

locally. However, defects do not appear in a biological tissue composed of more

than 10, 000 cells, and polarity is oriented globally. Although several mechanisms

underlying global ordering have been proposed, the factors leading to the global

ordering have not been well understood yet. Experiments have shown that such

global polarity formation is caused by a global concentration gradient of proteins

under the cell sheet and by the mechanical anisotropy of the system owing to cell

elongation. Akiyama et al. proposed a model of cell polarity taking into account

the global concentration gradient and a cell–cell interaction, but it is reported

that cell polarity can be formed without the global concentration gradient in a

biological tissue. Aigouy et al. proposed a model in which the polarity is ori-

ented by the anisotropy of a system, but this is an artificial model in a sense

that the energy function was set in advance so that the polarity is oriented in

the direction of cell elongation. The model proposed by Amonlirdviman et al. is

a phenomenological model describing PCP protein distributions in detail; how-

ever, it is difficult to obtain a general understanding from this model because of

its complexity.

Therefore, using the phase reduction theory for a system with space trans-

lational symmetry, we derived a simple phase model from the reaction–diffusion

model that phenomenologically describes the dynamics of concentrations of chem-

ical substances. In this phase model, three terms appear when only the lower

modes of the Fourier series expansion of US(θ), Z
(U)
0 (θ), Sij(θ+ηij) in Section 3.3

are considered. The first term describes an effect of phase ordering among the

adjacent cells and is similar to the coupling term in the XY model. The second

term plays a role in ordering the polarity in the direction of a surface adhered to

an adjacent cell. As for the third term, the phase is oriented along the average of

own phases of a cell and the phase of a neighboring cell. These latter two terms,

which include the geometric information on cells, play a role similar to that of

the coupling term describing the response to the global concentration gradient

in Akiyama’s model. Via these two terms, polarity orientations among adjacent

cells are mutually aligned, and moreover, a preferred orientation emerges in re-

sponse to geometric factors. That is, for the system where cells are aligned in

a row and in a longitudinal direction, the polarity is ordered in the lateral and

longitudinal direction, respectively. For a system composed of cells spreading

on a two-dimensional plane under the open boundary condition, the direction

of cell polarity is determined in the cells on the boundary at first, and then the

direction of polarity determined by the cells on the boundary is transmitted to

inner cells.
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The phase model, which became very simple by adopting perturbation method,

is easy to analyze, and it is possible to investigate dynamics in the system with

many cells. The phase model enabled us to address the following issues: the

effect of noise due to cell division and loss of cells, the effect of a global concen-

tration gradient, the change of cell polarity when a hole is made in some part

of the system, the role of microtubules, the case of changing cell shape and cou-

pling strength depending on the adhesion surface, and how to set anisotropy in

a system for global ordering.

Our phase model is a gradient system, and if we add Gaussian noise to the

original reaction–diffusion model, we can obtain the distribution function of po-

larity by solving the corresponding to Fokker–Planck equation. In numerical

calculations for the system with defective cells, even though our phase model is

a simple ordinary differential equation, we were able to obtain results similar to

those of Amonlirdviman’s model, which requires more than 10 partial differential

equations for each cell. It is the advantage of our model that it is possible to de-

scribe polarity formation without difficulty by means of as many simple ordinary

differential equations as there are cells.

What is more, it is understood by experiments that not only the polarity

but also the diffusion rate differs depending on the location of the cell adhesion

surface owing to cell deformation [41]. As a research topic about a physical model

showing polarity, it is interesting to examine the change in polar direction in a

model with spatially dependent diffusion coefficients. In our phase model, the

findings seem different from the intuitively expected result, i.e., that polarity is

easy to align in the direction where PCP proteins diffuse quickly. It would be

interesting to investigate whether such a phenomenon can be seen in experiments.

Moreover, it was found that the cell polarity is oriented toward the long side of the

adhesion surface when cell shapes are deformed. This is because cells interacts

wider and stronger where the adhesive surface is relatively longer.

It was also found that even when the strength of the cell–cell interaction

changes depending on the direction of the adhesion surface, the polarity is ori-

ented in the direction of the surface where the coupling strength is high. Further-

more, it was clarified that polarity is more easily aligned when the anisotropy

of the system is strong in the case where cell shape is arbitrary. This result is

consistent with the results of polarity experiments on Drosophila wings and on

mouse embryos. In actual experiments, a PCP protein tends to accumulate in

the direction of the adhesion surface attached to the cell, when this surface is

longer than the new adhesion surface generated by cell division. In our model,

polarity can be oriented toward a contacting surface with strong coupling nat-

urally. In the study on the implementation of global polarity formation, if the
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system is isotropic, polarity can be aligned without generating the most defects

when cell shape is regular hexagonal. In contrast, when cell shape is not ax-

ially symmetrical, polarity is aligned globally better when the system is more

anisotropic.

On the basis of our study on polarity ordering in an anisotropic system so

far, in order to orient cell polarity globally, we propose to manipulate the sys-

tem anisotropy at the initial stage of polarity formation and make the system

isotropic after that. In Drosophila wing, cells whose shapes are initially regular

hexagonal are stretched by a mechanical force, and have anisotropy, but at the

latter stage of polarity formation, they become regular hexagonal again and the

system becomes isotropic. After that, global polar alignment without defects

is realized. For our phase model, it is numerically confirmed that making the

system anisotropic in a way similar to experiments also enables global polarity

ordering without generating defects. Further studies are needed to investigate

these relation between our numerical and experimental results.

In addition, polar alignment can be observed not only in nature but also in an

artificial system in which a population of magnetic compasses is placed on a plane

[42, 43]. It is only natural that an N -pole of a compass points toward the north,

but when the number of compasses is sufficiently large, the direction in which

N -poles are oriented depends on the arrangement of compasses. In experiments,

it was observed that in the system composed of multiple compasses, N -poles

of the compasses at the boundary are aligned along the system boundary, and

for compasses inside the system boundary, the polarity of N -poles was ordered

continuously. Such experimental results are very similar to those of our phase

model when the boundary condition is set as the open boundary. It would be

interesting to derive a governing equation of this compass system and compare

it with our phase model.
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Chapter 5

Phase ordering analysis of spiral

chaos

In the previous chapter, we investigated the mechanism of phase ordering. In this

chapter, we examine the phase ordering mechanism of focusing of spiral chaos.

Such situations can be seen in atrial fibrillation.

5.1 Background and an aim

Excitable media play vital roles in various systems [1, 2, 44]. Excitable media in

biological tissues support the propagation of signals, such as concentration waves

in the heart and electrical impulses in nerve axons. Such waves are also em-

ployed for communication among cells of certain microorganisms (Dictyostelium

discoideum).

Moreover, excitable media exhibit a particular type of spatiotemporal chaotic

dynamics, in which spiral waves are spontaneously generated or annihilated (spi-

ral chaos) [1, 7]. Spiral chaos is commonly observed in surface reaction systems

[8, 45]. Similar chaotic dynamics are observed in the heart, causing fibrillation

[12]. To date, several mathematical models of excitable media that show spiral

chaos have been proposed [12, 45, 46]. Besides, it is known that spiral chaos may

develop in oscillatory media, e.g., those obeying the complex Ginzburg–Landau

equation (CGLE) [7, 46, 47, 48]. In such mathematical models, depending on the

parameter values, spiral chaos persists permanently or terminates spontaneously

(Fig. 5.1). In the latter case, the system eventually arrives at a steady state

after a transient period, which we refer to as a lifetime. The dependence of the

lifetime of spiral chaos on system size has received much attention in the context

of treatment of cardiac fibrillation ([12] and the references therein). In Ref. [12],

it is numerically demonstrated using both a variant of the FitzHugh–Nagumo
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Figure 5.1: Snapshots of u(x, y, t) in the Bär model. (a) The initial condition
(t = 0) is set up as follows. First, we create a flat excitation wave, run a
simulation for a while, and cut the wave in half. We then add random noise with
a uniform probability distribution across [−0.25, 0.25]. (b) Transient spiral chaos
(t = 1000). (c) The uniform steady state (t = 15000). The parameter values are
a = 0.84, b = 0.07, ε = 0.08, and N = 302.

model (referred to as the Bär model [45]) and a more realistic model of car-

diac electrical dynamics where lifetime increases exponentially with the system

size. Such an exponential dependence as well as hyperexponential dependences

in other types of transient chaos have already been reported [49, 50, 51, 52].

In the latter half of this thesis, the main focus of our study is to theoretically

derive an expression for the dependence of the lifetime of spiral chaos in excitable

media on the system size [53]. For this purpose, we first investigate statistical

properties regarding the number of spiral cores (namely, defects). There is a large

body of studies on such statistical properties [54, 55, 56, 57, 58]. In particular, it

is known that as system size increases, the probability distribution of the num-

ber of defects during transient spiral chaos approaches a Gaussian distribution

[24], as is naturally expected from the central limit theorem. Using this fact, we

derive an expression for the system size dependence of lifetime on system size,

and this relation is indeed exponential. We extensively investigate the system

size dependence of lifetime using two models: the Bär model and the CGLE,

with several parameter sets and different boundary conditions. We found that

although lifetime increases exponentially with system size in all cases, our ex-

pression well fits the parameter sets near the onset of transient chaos, suggesting

that some assumptions may be violated depending on parameter values.

5.2 Spatiotemporal chaos

Spatiotemporal chaos is known as mathematical dynamics similar to atrial fibril-

lation. Spatiotemporal chaos is a state whose behavior is chaotic both spatially

and temporally. Because it is sensitive to the initial condition, a slight difference

in initial states yields a large difference in the results. Therefore, the state of the
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Figure 5.2: An electrocardiogram. The potential rises when the myocardium is
excited.

system in the future cannot be predicted and is difficult to handle.

An excitable medium, that is a medium showing excitement when there is

an input exceeding a certain threshold value, and an oscillating medium, which

periodically shows excitement, are some of the known media that show such spa-

tiotemporal chaos [1, 2, 44]．In this chaos, a pattern of excitable waves emerges

by transmitting the excitation of a firing element to the surroundings, and this

wave pattern can be seen in the human body, e.g., neuronal firing, the heart, or

chemical systems such as the Belousov–Zhabotinsky (BZ) reaction and a starving

Dictyostelium discoideum population as explained below.

5.2.1 The pulse of the heart

The electrical signal of the heart is also an exciting wave. The heart is composed

of vertically elongated cardiomyocytes which propagate electrical signals trans-

mitted from the sinoatrial node to the surrounding cells. The myocardium is

excited when the electric signal is received, and after being excited, it falls into

the state where it does not react for some time even if it receives any stimulus;

this period is called a refractory period. After the refractory period, the cell

is excited again by propagating electrical signals. The excitement of the my-

ocardium is represented by the following electrocardiogram (Fig. 5.2). The place

and time of excitation can be read in this cardiogram.

5.2.2 BZ reaction

The BZ reaction is the famous example of Turing instability. The mechanism

of this reaction is the oxidation–reduction reaction involving malonic acid and

a cerium ion as catalyst. The reaction substrate is oxidized, then spatial varia-

tion of ion concentration creates patterns of concentric circular waves and spiral
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waves. In the experiments on the BZ reaction, it was found that the spiral wave

spreads with time from the site that received the stimulus when the solution in

a petri dish is stimulated with the tip of a toothpick.

5.2.3 Dictyostelium

Dictyostelium discoideum usually lives as an ameboid individual. Nevertheless,

when the individuals starve, one dictyostelium cell sends a crisis signal to the

surroundings, and others assemble forming a multicellular population toward the

signal. It is known that the pattern made by dictyostelium in a starving state

becomes spiral. It seems that the electric signal wave and chemical reaction wave

grow as a spiral. These spatiotemporal spiral patterns created by an excitable

and oscillating medium repeat generation and extinction [1, 7, 8, 59]．This pat-

tern is also observed in a numerical simulation of arrhythmia [12]．In the text

below, such spatiotemporal chaos is called spiral chaos. Here, we focused on the

dynamics of chaos that can be seen during atrial fibrillation.

5.3 Atrial fibrillation

The human heart always contracts autonomously in a regular beat though hu-

mans are not aware of this process. This autonomous work is due to the electrical

activity of the heart. Usually, the heart regularly delivers blood to parts of the

body by receiving electrical signals with constant rhythm that are propagated

from the sinoatrial node playing the role of a pacemaker. A schematic diagram

of a part of a electrocardiogram is shown in Fig. 5.2. There is a P wave, QRS

wave, and T wave [60]．P and QRS waves represent excitation of the myocardium

and ventricular muscle, respectively, after receipt of an electrical signal from the

sinoatrial node. The position of the P wave varies depending on the timing of

the electrical signal from the sinoatrial node, and in abnormal cases, it is absent.

The time between a P wave and Q wave corresponds to the period when an

electrical signal from the sinoatrial node is transmitted from the atrium to the

ventricle. R represents excitation when the heart contracts under the influence

of the electrical signal, and at position S, the ventricle stops getting excited.

The QRS wave corresponds to the time from the beginning of excitation of the

ventricle to the end. If the duration of the QRS wave takes longer, the excite-

ment time becomes longer. Therefore, it is assumed that the flow of the electric

signals in the ventricle deteriorated. The T wave represents the period when the

ventricular muscle contracted by excitation returns to its original state.
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Figure 5.3: An electrocardiogram. The F wave appears instead of the P wave.

Now, the waveform as shown in Fig. 5.3 is rarely seen in electrocardiograms.

The new wave, an F-like ripple wave appears instead of the P wave.

In that case, the heart does not show correct movements, and the electric

signal from the sinoatrial node is not regularly propagated to the atrium and

ventricle. This is a kind of arrhythmia, a symptom of atrial fibrillation fre-

quently encountered clinically [61]．This symptom is not only accompanied by

palpitations but also can cause cerebral infarction mediated by thrombosis in the

heart (a thrombus peels off). According to the research by the Japanese Circu-

lation Society, the prevalence of atrial fibrillation in Japan is expected to exceed

one million in 2030; thus, it is a disorder that happens to almost everyone.

Catheter ablation is known as a typical operation for atrial fibrillation [62, 63]．
When atrial fibrillation develops, the electric signals from the sinoatrial node

form spirals. These spirals meander and repeat generation and extinction in the

atrium [64].

In catheter ablation, a catheter, whose diameter is 1.3 ∼ 2.6mm, is inserted

through the vein from the groin to the heart, and the closed region of the heart

is cauterized by the electrode attached to the tip of the catheter. This way,

tissues of the heart are warmed, and proteins are coagulated, which block the

bad propagation of the electronic signal and can stop the fibrillation. In the case

of atrial fibrillation, the success rate of surgery is from 60 to 95% and there are

cases where more than two operations are needed for a full recovery. The Maze

operation is known as another surgical method. In this operation, patients use

a mechanical heart while their cardiac function is being repaired. The region

where the abnormal signal in the heart occurs is incised and the myocardium is

sewn up again, then the fibrillation is stopped. However, it is difficult to capture

the electric spirals with these surgical methods. Moreover, it is unclear how large

an area should be cauterized or incised [65]．
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Chapter 6

Analysis of transient spiral chaos

In this chapter, a theoretical formula for predicting the lifetime of spiral chaos in

excitable media is derived. The distribution of the number of defects approaches

the Gaussian distribution according to central limit theorem. On the basis of this

fact, we provide a general expression for the dependence of lifetime on system

size; this relation is valid for large system sizes.

6.1 The model and numerical settings

For most of our numerical analyses, we employ the Bär model [45], which is

a modified FitzHugh–Nagumo model representing an excitable medium. This

model has also been studied in [12]. The model gives

∂u

∂t
= −1

ε
u(u− 1)

(
u− v + b

a

)
+D∇2u, (6.1a)

∂v

∂t
= f(u)− v, (6.1b)

f(u) =


0 , u < 1

3
,

1− 6.75u(u− 1)2 , 1
3
≤ u ≤ 1,

1 , u > 1,

(6.1c)

where parameters ε, a, b, and the diffusion coefficient D are positive. The system

is two-dimensional with an area of L× L ≡ N . Variables u(x, y, t) and v(x, y, t)

are interpreted in the context of cell physiology as membrane potential and the

recovery variable, respectively [44].

Numerical simulations are performed by the fourth–order Runge–Kutta method

with a space step h = 0.3 and time step s = 0.01.

In Eq. (6.1), uniform steady state u(x, y) = v(x, y) = 0 is linearly stable
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for any set of parameter values. By inserting the ansatz u, v ∼ eλt−iq·r with

r = (x, y) and wave vector q of a perturbation, we obtain

λ = −1,− b

aε
−D|q|2, (6.2)

which is always negative. See also the appendix for the linear stability analysis.

Hence, the system should smoothly arrive at a uniform steady state if the initial

state is close to it.

Nonetheless, at appropriate parameter values and initial conditions, spa-

tiotemporal chaotic dynamics arise (referred to as spiral chaos) (Fig. 5.1). As

reported in Ref. [45], for a broad range of b (b < 0.18, a = 0.84), the following

behavior emerges. For small ε values (0.01 < ε < 0.06), spiral waves rigidly

rotate. For ε > 0.06, spiral waves begin to meander. For ε > 0.07, spiral chaos

arises. In this region, spirals begin to break up after some transient rotations,

resulting in the formation of two free ends of a wave. From these free ends, a new

pair of counter-rotating spirals arises. There is also a pair annihilation process,

in which the cores of a pair of counter-rotating spirals collide and cancel each

other out. Moreover, in the Neumann boundary condition, there is an additional

case in which a defect is absorbed by the boundary. These processes are repeated

chaotically.

Lifetime can be defined as the time that the system takes to settle down to the

steady state after the start of a long excitement state as shown in Fig. 5.1(c). To

measure the lifetime of the system, we used the Kuramoto order parameter, which

helps to analyze whether each element is synchronous or not, and calculated the

number of defects as described in Section. 6.3.1. The Kuramoto order parameter

in two-dimensional space L× L is given by

R =
1

L2

∫ L

0

∫ L

0

eiϕ(x, y)dxdy (6.3)

where ϕ(x, y) is the argument of concentration u(x, y, t)−u∗ and v(x, y, t)−v∗.
The image of the Kuramoto order parameter can be explained using a circle with

the radius of 1.0. Now we assume that there are N oscillating particles, and these

particles are rotating on the circle. When the system is synchronized, particles

that were moving apart initially, gather and move as clusters. At this time

point, the Kuramoto order parameter R converges to 1.0 because the argument

approaches zero. On the contrary, R takes a value close to zero when particles

keep moving apart on the circle. For example, we illustrate a time series of

the Kuramoto order parameter via a numerical simulation depicted in Fig. 5.1

(Fig. 6.1).
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Figure 6.1: A time series of the Kuramoto order parameter. It fluctuates while
R < 1 which corresponds to the state of Fig. 5.1(b). The system starts to
synchronize gradually as shown in Fig. 5.1(c) and finally the value of R takes
1.0. The initial condition is the same as the case in Fig. 5.1.

In our numerical simulation, we determine lifetime as the time taken to reach

R > 0.99 at first. Another way to measure lifetime is described later in Sec-

tion 6.3.1.

As a convenient initial condition for implementing this chaotic state, we em-

ploy a flat broken wave (Fig. 5.1), in which initially there exists a defect in

Neumann boundary conditions or a pair of defects in periodic boundary condi-

tions. To obtain statistically independent results for each run of the simulations,

we add independent random noise obeying a uniform probability distribution

over [−η, η] with η = 0.25 to u and v at all discretized points at t = 0. Note that

the evolution is noise free for t > 0. In the preliminary numerical simulations, we

have checked that the statistical results do no change quantitatively for η = 0.1

(results not shown). The results presented assume a periodic boundary condition

and a = 0.84, b = 0.07, ε = 0.08, D = 1 unless otherwise noted. Some results

are obtained with the Neumann boundary condition and/or other sets of b and

ε values.

To check the generality of our argument, we also numerically studied the

oscillatory media described by the CGLE, given by

∂W

∂t
= W + (1 + ic1)∇2W − (1 + ic2)|W |2W, (6.4)

where W (x, y, t) ∈ C and c1, c2 ∈ R are the parameters of this system [7].
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Figure 6.2: The Lyapunov exponent. We set X0 = 10−5, T = 2× 106, t0 = 106.

6.2 The Lyapunov exponent

Spatiotemporal chaos has initial-value sensitivity, hence a slight difference in

initial conditions yields a large difference in states. To quantify the disturbance

of the system’s state, we adopted the Lyapunov exponent (Fig. 6.2).

For the Bär model, we defined the concentration that slightly deviated from

u and v as u′ and v′. Lyapunov exponent λ is given by

λ = lim
t→∞

lim
|X0|→0

1

t
log

|X(t)|
|X0|

(6.5)

where X(t) is the difference between two trajectories (u− u′, v − v′), and | ·
| denotes the magnitude of the vector, and X(0) = X0 corresponds to the

difference between two initial trajectories.

Here, we can derive the equation

eλt ≈ |X(t)|
|X0|

, (6.6)

It can be determined that the solution of the system is stable when λ < 0,

chaotic when λ > 0, and periodic when λ = 0 because the difference between

two trajectories stays constant [19, 66]．Please note that we run calculations for

an extended period, T , after initial transition time t0 to obtain Lyapunov.

The horizontal axis represents system size, and the vertical axis denotes the

value of the Lyapunov exponent after t = 10000 numerical simulations. The

wavelength of this system is ∼ 10 which is close to half the length of one side of

the square in Fig. 6.3. Hence the changes in the behavior of the system can be

seen when the length of one side of the square system is twice the wavelength. The
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Figure 6.3: The behavior of the system at different system sizes. Each The
system size is (a)N = 18× 18; and (b)N = 21× 21.

Lyapunov exponent is negative when the system size is smaller than N = 15×15

for the periodic boundary condition; thus, the system falls into a steady state

after long transition time. In the system with system size from N = 18× 18 to

N = 24× 24, the Lyapunov exponent vanishes, and the solution of the system is

oscillating. The state of oscillating varies depending on the system size. When

the system size is N = 18 × 18, there are four stable spirals in the region as

shown in Fig. 6.3(a). These four spirals do not meander in the system and are

pinned in a four split region. In the case when the system size is N = 18× 18 or

more but less than 24 × 24, the plane wave whose velocity is v = 2.1 continues

to flow (Fig. 6.3(b)). The value of the Kuramoto order parameter keeps R < 1

after the spiral diminishes.

If the system has size from N = 27×27 to N = 30×30, the system falls again

into the steady state. As the system size increases more than N = 33× 33, the

Lyapunov exponent is still positive, and the chaotic state lasts for a long time.

6.3 Time evolution and probability distribution

of the number of defects

6.3.1 Defect counting

We first investigate the time evolution and probability distribution of the number

of defects. All the results in this section are for periodic boundary conditions.

We confirmed that qualitatively the same results were obtained with Neumann

boundary conditions.

The number m(t) of defects at time t in the system was counted as follows.
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Phase ϕ(x, y) of the state is defined by

ϕ(x, y) = arg[(u(x, y)− u0) + i(v(x, y)− v0)] (6.7)

with (u0, v0) = (0.5, 0.3). The topological charge C(x, y, t) is defined by

C(x, y, t) =
1

2π

∮
∇ϕ(x, y, t) · dl. (6.8)

The defects with C = 1 and −1 are the core of counterclockwise and clockwise

spirals, respectively. The topological charge is obtained numerically by calculat-

ing

C(x, y) =
1

2π
(ϕ1,2 + ϕ2,3 + ϕ3,4 + ϕ4,1), (6.9)

where

ϕi,j = ϕi − ϕj (−π ≤ ϕi,j < π), (6.10)

with

ϕ1 = ϕ(x, y), ϕ2 = ϕ(x+ h, y), ϕ3 = ϕ(x+ h, y + h), ϕ4 = ϕ(x, y + h),

and h is the space step employed in our numerical simulations. We then reset C =

±1 when a numerically obtained C value is in [(±2π− 0.1)/2π, (±2π+0.1)/2π]

and C = 0 otherwise. Number m(t) of defects is the sum of |C| across the entire
system. In the periodic boundary condition, defects meander in the system,

collide with different rotation defects to annihilate or generate a pair of defects.

In addition to these behaviour of defects, the latter are sometimes attracted to

the boundary and vanish in the Neumann boundary condition.

6.3.2 A time series of defects

Now we investigate the system size dependence of lifetime by counting defects

according to the above definition. As presented in Fig. 6.4, m(t) fluctuates

strongly with time, and this chaotic process appears to be stationary.

However, defects completely vanish after some time without any clear presage,

and the system falls into a uniform steady state. As is the case in Figs. 6.4 (a)

and (b), a larger system typically has a larger number of defects and a longer

transient time.
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(a) (b)

Figure 6.4: A time series of the numberm(t) of defects at system size (a) N = 242

and (b) N = 302.

6.3.3 A distribution of the number of defects

Here, statistical properties are analyzed in the time series ofm(t) during transient

chaos after the initial transient process (t > 100) (Figs. 6.5 and 6.6). For each

system size, we employ many different initial conditions and the number of defects

is counted at each time step until the system arrives at the steady state. We find

that both the mean µ and variance σ2 of m(t) are approximately proportional

to the system size N (Fig. 6.5):

µ = αN, (6.11)

σ2 = βN. (6.12)

The linear growth of µ has also been found in [67]. Next, we measure the

probability distribution of the number of defects, which is the probability that

there are m defects at each time point in the system during transient chaos.

As reported in Ref. [8], we confirmed that the probability distribution ap-

proaches the following Gaussian distribution as the system size increases (Fig. 6.6):

p(m) =
δ√
2πσ2

exp

[
−(m− µ)2

2σ2

]
, (6.13)

=
δ√

2πβN
exp

[
−(m− αN)2

2βN

]
, (6.14)

where δ = 1 for the Neumann boundary condition and δ = 2 for the periodic

boundary condition because m takes only even numbers in the latter case.
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Figure 6.5: Mean µ and variance σ2 of the number of defects. (a, b) Results
for the periodic boundary condition. The fitting lines are µ = 0.00709N and
σ2 = 0.00437N . (c, d) Results for the Neumann boundary condition. The fitting
lines are µ = 0.00660N − 1.3996 and σ2 = 0.00452N . Fitting is performed for
data with N > 2000.

6.3.4 Correlation length of defects

These results can be rationalized by the following argument. Suppose that the

system is virtually divided into n subsystems of size L̃× L̃ = Ñ . For a periodic

boundary condition, all the subsystems should share a certain probability dis-

tribution of the number of defects with mean µ̃ and variance σ̃2. If the linear

length L̃ of each subsystem is sufficiently greater than the correlation length of

the system, these subsystems are approximately independent.

To estimate the correlation length, we used two methods. First, the density

of defects with C = −1 and C = 1 at (x, y) as a function of the distance

ξ =
√

(x− x0)2 + (y − y0)2

from a certain defect with C = 1 at (x0, y0) was calculated. As illustrated

in Fig. 6.7(a,b), the correlation length is nearly 10. Second, as a calculation

of coefficient r(ξ) of the concentration u(x, y, t), Pearson’s moment-generating
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Figure 6.6: Distributions of the number of defects. (a) System size N = 272, (b)
N = 602. The dashed lines are the Gaussian distributions with average µ = αN
and variance σ2 = βN with α = 0.00709 and β = 0.00437.

function was utilized in two-dimensional system L× L as follows.

r(ξ) =

∫ T

0

(u∗ − u)(u− u)dt√∫ T

0

(u∗ − u)2dt

√∫ T

0

(u− u)2dt

(6.15)

where

u∗ = u

(
L

2
,
L

2
, t

)
, u = u

(
L

2
− ξ,

L

2
, t

)
, u =

1

T

∫ T

0

u

(
L

2
,
L

2
, t

)
dt.

(6.16)

When r takes the value∼ 1.0, it implies that the relation between them is a strong

correlation; therefore, it can be stated that this is a positive linear correlation.

On the other hand, when r takes the value near −1, it can be stated that this is

a negative linear correlation. When r = 0, there is no correlation, hence we can

say that there is no linear correlation.

Similarly to the correlation length of defects, it was found that there is a

strong positive correlation in the system up to the distance 3.0. Furthermore,

there is almost no correlation for the distance greater than 10. Judging by these

results, the correlation length is roughly 10 or smaller (Fig. 6.7).

The number of defects m in the entire system is the sum of defects of inde-

pendent subsystems. The mean and variance of m are then proportional to the

system size. Moreover, as stated by the central limit theorem, m will obey the

Gaussian distribution with mean µ = nµ̃ and variance σ2 = nσ̃2 where n ≡ N
Ñ

when n is sufficiently large. This is also approximately the case for the Neumann

boundary condition when L is sufficiently larger than the correlation length.
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Figure 6.7: Numerical measurement of correlation length. We estimate the cor-
relation length by two methods. (a, b) The density of defects with (a) C = −1
and (b) C = 1 at (x, y) as a function of distance ξ from a certain defect with
C = 1 at (x0, y0). (c) Pearson product–moment correlation coefficient r(ξ) for
variable u. These results indicate that the correlation length is roughly 10 or
less.

Because this argument is very general, the Gaussian distribution should be

obtained for both the periodic and Neumann boundary conditions and other

models showing spiral chaos when N is sufficiently large. In fact, we confirmed

this notion for the Bär model and the CGLE with all the parameter sets we chose

and both boundary conditions.

6.4 System size dependence of lifetime

As already mentioned, a previous numerical study reported that the lifetime

of transient spiral chaos increases exponentially with the system size. We also

numerically confirm it in the following manner.

Under any boundary conditions, all the defects must completely vanish before

the system settles down into the steady state. Here, it should be noted that there
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Figure 6.8: The defect generation–annihilation process for periodic boundary
condition. The circle with number m denotes the state with m defects. Symbol
S denotes the uniform steady state.

Figure 6.9: A normalized histogram of the duration in which numberm of defects
continues to be zero until m becomes 2. Here, the value at t = k ∈ N denotes the
frequency of the duration k− 1 < t ≤ k. The Bär model with b = 0.07, ε = 0.09.
Defects seldom re-emerge for t > 20.

is still a chance that a pair of defects is generated even from the state with m = 0

because of some remaining complex pattern. Therefore, the transition between

the states with different numbers of defects m can be illustrated as in Fig. 6.8,

where the periodic boundary condition is assumed for simplicity so that m takes

only even numbers, and symbol S denotes the uniform steady state.

To define lifetime, we regard the system state as the steady state when the

duration of the state with m = 0 continues for 100 simulations, because defects

hardly re-emerge if the state with m = 0 continues for 20 simulations (Fig. 6.9).

Under such a numerical setup, we analyze the dependence of lifetime on

system size N (Fig. 6.10), which is indeed exponential.

The expression for the system size dependence of lifetime T (N) can be ob-

tained as follows. We assume that the process illustrated in Fig. 6.8 is Markovian.
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(a) (b)

(c) (d)

Figure 6.10: Lifetime T (N) (log scale) vs N . The symbol and the error bar cor-
respond to the average and the standard deviation of T (N) for each system size,
respectively. (a) Bär model with periodic boundary condition, b = 0.070, ε =
0.080. (b) Bär model with Neumann boundary condition, b = 0.070, ε = 0.080.
(c) Bär model with periodic boundary condition, b = 0.030, ε = 0.075. (d) Bär
model with periodic boundary condition, b = 0.070, ε = 0.090. Note that in the
Bär model with periodic boundary condition (a,c), the system size dependence
of lifetime is obviously not exponential for small system sizes (N ≤ 242). For
such small systems, we find that transient chaotic states occasionally end up with
various complex patterns including temporally periodic states with m ̸= 0.

Starting from some initial number m∗ of defects, we have a series of defect num-

bers at each time point, e.g., {m∗,m∗ + 2, · · · , 4, 4, 4, 6, 6, 4, 2, 2, 0, 0, 2, 2, 2, S},
where the symbol “S” denotes the event at which 0 continues for 100 units of time

(which we regard as the steady state). The lifetime in each trial is the length of

this series. The expected value of lifetime T is the inverse of the probability λ to

obtain S. Because S is obtained only when the previous number is 2, λ = Zp(2)

where p(2) is the probability to obtain 2, and Z is the transition rate from the

state with m = 2 to the steady state. Therefore, the expected lifetime for a given

system size N is

T (N) =
1

Zp(2)
. (6.17)

For large N , the probability distribution of the number of defects is well approxi-

mated by Eq. (6.14), and mean number µ(= αN) of defects is large. For m≪ µ,
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approximately

p(m) ∼ exp

(
−α

2

2β
N

)
(6.18)

Plugging this into p(2) in Eq. (6.17) and next assuming that Z is independent

of N , we finally obtain

T (N) ∼ exp

(
α2

2β
N

)
. (6.19)

This expression indicates that the lifetime depends exponentially on system size

N , and its exponent is associated with density α and magnitude β of the fluctua-

tion of the number of defects. For the Neumann boundary condition, the steady

state can be reached not only from the states with m = 2 via annihilation but

also from the states with m = 1 through absorption of a defect by the boundary.

Therefore, probability λ to obtain S is λ = Z1p(1)+Z2p(2) with transition rates

Z1 and Z2. In this case as well, we obtain Eq. (6.19) because both p(1) and p(2)

can be well approximated by Eq. (6.18) for large N .

Our expression in Eq. (6.19) is numerically verified (Fig. 6.10). The slope

given by Eq. (6.19) (the dashed lines) is in good agreement with that obtained

numerically in both the Bär model (Fig. 6.10 (a–d)) and the CGLE (Fig. 7.3(a,b))

for large system sizes. Nonetheless, we find a discrepancy for some parameter

sets. In the Bär model, there are considerable deviations for large ε values (e.g.,

Fig. 6.10(d)). In the CGLE, we also find such cases for some parameter sets,

e.g., c1 = 0.50, c2 = −1.50 with periodic boundary condition (result not shown).

Overall, we find that the parameter sets for which our theory is valid are typically

in the region near the onset of transient chaos [45, 47]. A possible reason why

our theory fails when the system is far from the onset of spiral chaos will be

discussed in Section 7.4.

6.5 The dependence of lifetime on system shape

In the previous section, we have examined the lifetime for a square system and

clarified that lifetime increases exponentially. This system size dependence of

lifetime is also observed in a system with different characteristics [12]. In order

to examine how the spiral behavior changes when the aspect ratio of the system

is different, a detailed numerical calculation was carried out. We set the aspect

ratio to = 1: 1, 1: 2, 1: 3, 1: 4, and the lifetime was calculated by changing the

system size while keeping the ratio fixed. Numerical setting is b = 0.07, ε = 0.08

for the Bär model. The boundary condition is set to the Neumann boundary.
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Figure 6.11: The system size and shape dependence of lifetime. The blue, yellow,
green and red lines are the lifetime values of a system with 1 by 1, 1 by 2, 1 by
3 and 1 by 4, respectively. Over N = 1000, the lifetime of each system shape
takes the same value.

The result is given as follows (Fig. 6.11). We found that lifetime increases expo-

nentially at a large system size and the duration of lifetimes is different for each

system shape.

In the area where system size is small (N < 1000), there is a peak at a certain

system size. In such a region, the spirals are pinned and defects keep to rotate in

the same place. Therefore, defects cannot meander and it takes a long time for

the system to fall into the steady state. Although the system size dependence of

lifetime can be seen even in the area of a small system size, the slope of lifetime

varies depending on the shape of the system. Here, we investigate in detail a

system with a small size. In Fig. 6.12(a), the generated spiral rotates in the

system making the waves parallel to the short side of the system and flows in

the direction of the shorter side. As we gradually change the aspect ratio of the

system to approach a square in Fig. 6.12(b), the flow takes place in the direction

of the long side of the system though the generated spirals still tend to flow in

the direction of the short side of the system. When the shape of the system is

square, the direction of the wave flow is isotropic. In this numerical simulation,

we can see that spirals flow toward the short side of the system when the shape

of the system is a rectangle, and its waves flowing in a certain direction prevent

collision of spirals. Thus, the occurrence of defects decreases, which makes the

lifetime short. On the other hand, as the system shape becomes isotropic, the

direction of movement of the spiral also becomes isotropic, and spirals move back

and forth to collide with each other making the system more chaotic. Therefore,
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(a)

(b)

t = 115 t = 120

t = 125 t = 130

t = 30 t = 50 t = 60 t = 70

Figure 6.12: The time series of the state of spiral chaos. (a)System size N =
120 × 30. Waves flow in the direction of the short side of the system. (b)
N = 90× 60. Waves flow diagonally.

the number of defects increases, and lifetime becomes longer.

At the region that near N = 1000 where the slopes of the lifetime of each

system shape take the same value, and the distributions of the numbers of de-

fects approach the Gaussian distribution. Accordingly, systems have the same

distribution of formation of the number of defects whose slopes of the average

and variance of the number of defects are the same at a large system size. There-

fore, comparing the lifetime of a square and rectangular system, the rectangular

system has shorter lifetime than that of the square system if the system size

is fixed. In addition, it can be seen that lifetime increases exponentially with

system size in any aspect ratio when the system is sufficiently large. The slope

of the lifetime takes the same value even when the aspect ratio is different.
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Chapter 7

Statistical properties of spiral

chaos in oscillating media

To check the generality of the argument presented in the previous chapter, we

analyze the system behavior of the CGLE in the same way as that of the Bär

model. We found that our claim holds true in both models.

7.1 Model and numerical settings

In previous chapters, we dealt with statistical properties of spiral chaos in ex-

citable media. To check the generality of our argument, we also numerically

evaluated the oscillatory media described by the CGLE.

The excitable medium shows excitement when it receives an input exceeding

a certain threshold and after that, it returns to the steady state. On the other

hand, the oscillating medium is known as a system that does not fall into a steady

state even after excitation and repeats oscillation spontaneously with periodic

rhythm [68]．
We use the CGLE for the numerical calculation [32, 47]．

∂W

∂t
= W + (1 + ib)∇2W − (1 + ic)|W |2W. (7.1)

where W is the variable corresponding to u and v of the Bär model. Depending

on the parameters b and c, the state of the system changes, then a plane wave

or a turbulent state with an amplitude |W | appears. In such a system, we can

also generate the state of spiral chaos similar to that in the Bär model. Here,

the solution of the CGLE is an oscillating one (Fig. 7.1). Therefore, when the

spirals disappear after a long transient time, the concentration of elements of the

system oscillate all at once (Fig. 5.1).
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Figure 7.1: A time series of CGLE at t = 40, 120, 130, 140, 150 with the
parameter b = −0.5, c = 2.2. The boundary condition is periodic. System size
is 15× 15．The system oscillates.

This oscillating solution is given by

W = exp(−ict). (7.2)

7.2 Time evolution and probability distribution

of the number of defects

7.2.1 Defect counting

As in the Bär model, we calculate the topological charge using the equation

C(r, t) =
1

2π

∮
∇ϕ(r, t) · dl (7.3)

where (ϕ = argW ) and detects defects in the system.

The numerical setting is as follows. We use the fourth–order Runge–Kutta

method and a central differences method for calculating a Laplacian. The space

step is h = 0.3, and the time step is s = 0.01. Both periodic and Neumann

boundary conditions are performed. For the initial conditions, two monotoni-

cally increasing gradient planes are made to cross at a right angle. Defects are

generated near W = 0.

7.2.2 The distribution of the number of defects

Similarly to the Bär model, the distribution of the number of defects at each

system size is calculated. Both periodic and the Neumann boundary conditions

are used, and the parameter set is b = −0.5, c = 1.5. The results are as

follows (Fig. 7.2). We can found that the distribution approaches the Gaussian

distribution when the system size is large. Therefore, we can expect that it also

obeys the central limit theorem for the CGLE.
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Figure 7.2: The distribution of the number of defects. The parameter set is
b = −0.5, c = 1.5. Periodic boundary condition. (a) System size N = 24 × 24.
(b) N = 60 × 60. The red symbols are simulation data. The dashed lines are
the Gaussian distributions with average µ = αN and variance σ2 = βN with
α = 3.07844 (16.4916), β = 1.88106 (16.2414).

(a) (b)

Figure 7.3: Lifetime T (N) (log scale) vs N . The symbol and the error bar
correspond to the average and the standard deviation of T (N) for each system
size, respectively. (a) CGLE with periodic boundary condition, c1 = 0.80, c2 =
−1.00. (b) CGLE with periodic boundary condition, c1 = 0.50, c2 = −1.11.

7.3 System size dependence of lifetime

Now we elucidated that the distribution of the number of defects approaches

the Gaussian distribution for the large system of CGLE because the system

obeys central limit theory. The average and variance of the number of defects

increases monotonically as the system size increases. Consequently, we calculate

the lifetime using Eq. (6.19) with α and β that we obtained above. In this

case, the lifetime also increases exponentially with system size. Therefore, our

argument is general, and this system size dependence of lifetime does not depend

on models.
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Figure 7.4: System size dependence of numerically obtained T (symbol • with
a dashed line), C1/p(2) with numerically obtained p(2) (symbol ×) and C2/p(2)
with p(2) given by Eq. (6.18) (symbol□), where C1 and C2 are fitting parameters.
Parameter values for (a) and (b) are the same as those for Fig. 6.10(c) and
Fig. 6.10(d), respectively.

7.4 Conclusions and discussion for phase order-

ing

In this thesis, we investigated the system size dependence of the lifetime of spiral

chaos. We derived an expression for the lifetime, given as Eq. (6.19) [53], taking

advantage of the fact that the probability distribution of the number of defects

is Gaussian for large system sizes. We confirmed that Eq. (6.19) well fits numer-

ically obtained T (N) for two different models, the Bär model and the CGLE,

with several parameter sets and different boundary conditions.

We emphasize that Eq. (6.19) is useful for the prediction of the lifetime of

large systems. We can precisely estimate α and β values by examination of the

number of defects in a large system. The observation of a relatively small system

for different initial conditions enables us to find the average lifetime T (N). Then,

using T (N) ∼ exp
(

α2

2β
N
)
, we can estimate the average lifetime for large system

sizes.

We have also found that Eq. (6.19) fails to predict the system size dependence

for the parameter sets far from the onset of chaos. Our theory is based on

Eqs. (6.17) and (6.18). We can verify these equations by comparing the system

size dependences of T and 1/p(2) obtained numerically and these predicted by

Eqs. (6.17) and (6.18). As shown in Fig. 7.4, whereas both Eq. (6.17) and

Eq. (6.18) are valid near the onset, and the discrepancy between numerically

obtained T and 1/p(2) is particularly large far from the onset.

Thus, the assumption in Eq. (6.17) seems to be violated. Namely, transition

rate Z from the state with m = 2 to the steady state seems to depend strongly
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on the system size in such a parameter region. The following observation may

provide a reasoning for it. Even when defects completely vanish, some wave

pattern may persist for a while. Defect reemergence is attributed to such a

remaining pattern. The complexity of wave patterns in the absence of defects

might be enhanced as the system size increases, making it more difficult for

the system to settle down into the steady state. Indeed, for all parameter sets

for which our theory fails, the actual lifetime has a stronger dependence on the

system size than that expected from our theory given by Eq. (6.19) at constant Z.

We also observed that meandering of defects and fluctuation of the the number

of defects seem to be stronger. A previous numerical study of the Bär model also

indicates that the system becomes more strongly chaotic for such parameter sets

[67]. Therefore, it is indeed likely that our system cannot be fully characterized

only by the number of spirals when the system is far from the onset of transient

chaos.
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Chapter 8

Summary

In this thesis, we theoretically investigated the dynamics of ordering phenomena

of polarity and phase.

First, to analyze the dynamics of polarity ordering, we derived a phase model.

This simple model includes the cell geometric information, and global orientation

of polarity depends on the heterogeneity of coupling strengths and the shape of

cells. The phenomenon in which the orientation of cell polarity changes due to

a change in cell shape has also been observed in the experiments on Drosophila

wings and mouse embryos, and previous theoretical models have been proposed

to describe their dynamics. Some of these theoretical models are artificial in

that an energy function drives the orientation of polarity in the direction of

cell elongation. Other models are too complicated. In our study, however, we

reduced the phenomenological model by means of the phase reduction theory,

and derived a very simple model of ODE naturally. In addition, although our

model is a simple and tractable one, it is possible to reproduce the results similar

to the numerical simulations conducted by Amonlirdviman et al. [5], and to take

into account various conditions easily. This is our model’s merit. In particular,

we show that the axial asymmetry of the system facilitates the formation of

globally oriented polarity patterns. Previous experimental results suggest that

axial asymmetry of the system may play an important role in the ordering of

cell polarity; however, its mechanism is not well understood. In our model,

when the coupling strength is isotropic, the polarity is aligned toward a wide

adhesion surface of the cell, and when the coupling strength differs depending

on the adhesion surface, the cell polarity is oriented toward the region where the

coupling strength is high. Therefore, our model provides an understanding of

how the axial asymmetry in the system contributes to the formation of globally

aligned patterns of cell polarity.

Second, to analyze the dynamics of phase ordering, transient spiral chaos was
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studied because the behavior of electric waves in the heart causing arrhythmia

is similar to spiral chaos. In the arrhythmia, electrical waves fall into a chaotic

state, and it is known that this chaotic state cannot persist when the heart is

subdivided by a catheter.

Even in the mathematical model, by setting the parameters of the model to be

transient, it is clarified numerically that lifetime, the time it takes for the system

to reach a steady state after a long chaotic state, depends on the system size. In

order to derive a theoretical prediction of this lifetime, we analyzed the number of

defects corresponding to the number of waves. When the system is chaotic, it was

found that the defect distribution approaches the Gaussian distribution as the

system size increases because of the central limit theorem. Via this distribution

of the number of defects, an equation for predicting lifetime was derived. The

parameters in this equation are the average and variance of the number of defects

in a small region of the system, which can be easily determined numerically. It

is also confirmed that the system size dependence of lifetime holds true even

if the system geometry is not square. Similarly, lifetime grows exponentially

with system size in the case of a rectangular shape instead of a square, but the

slopes differ slightly for a small system size. This is because if the system size

is small, the generated wave moves isotropically in a square system, but in a

rectangular system, waves tend to propagate in the direction along the long axis.

As the system size increases, spiral waves propagate almost isotropically even

in a square system; thus, the dependence of lifetime on the system size is not

affected by the system geometry. This lifetime equation consists at the onset

of the transient spiral chaos, and we emphasize that this equation is useful for

prediction of the lifetime of large systems. Although this theoretical expression

seems valid only at the onset of the transient spiral chaos, we emphasize that

this expression is useful for the rough estimation of the lifetime of large systems.
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Appendix A

Linear stability method

For periodic boundary condition for Bär model, we use linear stability analysis.

Now we determine the stable fixed points and the deviation as (u∗, v∗), and

δu, δv, respectively. And D is the diffusion coefficient. The variables u, v are

given by

u = u∗ + δu (A.1)

v = v∗ + δv. (A.2)

Substituting u, v for the Bär model in Eq. (6.1), we get

∂u

∂t
=

∂δu

∂t
= − b

aε
δu+D∇2δu (A.3)

∂v

∂t
=

∂δv

∂t
= −δv. (A.4)

Here, Fourier-transformation is performed with space x, y ∈ [−L, L]. Thus
　

up,q(t) = F [δu] =

∫ L

−L

∫ L

−L

δu(x, y, t)e−i(px+qy)dxdy (A.5)

vp,q(t) = F [δv] =

∫ L

−L

∫ L

−L

δv(x, y, t)e−i(px+qy)dxdy. (A.6)

where p and q are the wavenumber of the direction of x and y axis, respectively.

　

p =
2πnx

L
(nx ∈ N) (A.7)

q =
2πny

L
(ny ∈ N) (A.8)
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By the properties of the Fourier transform, 　

F
[∂δu
∂r

]
= −i(p+ q)up,q (A.9)

F
[∂2δu
∂r2

]
= −(p+ q)2up,q (A.10)

which is derived from the periodic condition

δu(−L, y, t) = δu(L, y, t) (A.11)

δu(−x, − L, t) = δu(x, L, t) (A.12)

∂δu

∂t

∣∣∣∣
x=−L

=
∂δu

∂t

∣∣∣∣
x=L

(A.13)

∂δu

∂t

∣∣∣∣
y=−L

=
∂δu

∂t

∣∣∣∣
y=L

. (A.14)

Please note that this properties can hold other boundary conditions. The same

is true of variable v. We apply the above results to Eqs. (A.3) and (A.4), and

get

∂up,q
∂t

=
(
− b

aε
−D(p+ q)2

)
up,q, (A.15)

∂vp,q
∂t

= −vp,q. (A.16)

Therefore, the matrix is given by
∂up,q
∂t

∂vp,q
∂t

 =

− b

aε
−D(p+ q)2 0

0 −1


 up,q

vp,q

 . (A.17)

These eigenvalues are

λ1 = − b

aε
−D(p+ q)2, λ2 = −1. (A.18)

Hence the stability of the solution depends on the sign of λ1. Here, it is always

λ1 < 0 in the parameter region a, b, ε > 0 where we consider. From this, we

can find that the steady state is linear stable.
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