
外国語要旨

学位論文題目：Abstracting Control with Dependent Types
氏	 	 	 	 名：Youyou Cong

Dependent types are a powerful tool for ensuring safety. By interacting with
the term language, dependent types are able to precisely encode program
specifications, guaranteeing the absence of runtime errors and other
unexpected behaviors. Meanwhile, control operators have been extensively
used to increase convenience. By talking about the surroundings of programs,
control operators enable sophisticated manipulation of control flow, yielding
a wide range of practical applications.

The two language ingredients are however known to pose various difficulties
when mixed up together. Intuitively, the disharmony stems from their
contrasting nature: dependent types are used for reasoning purposes and
thus must be determined statically, whereas control operators are used to
implement dynamic, non-local behaviors. To make their combination
meaningful, previous work has imposed a purity restriction on type
dependency, that is, types may depend only on effect-free terms.

In this thesis, we build a dependently typed, effectful language called Dellina.
Dellina has support for essential features from the mainstream proof
assistants, as well as the delimited control operators shift and reset.
Similarly to the existing studies, we restrict types to depend only on pure
terms, but additionally, we impose two constraints on the type of contexts
surrounding effectful terms, in order to cope with the flexibility of the control
operators. These restrictions make the resulting language type sound. We
also define a selective CPS translation of the language, and prove that the
translation preserves typing. Our key observation is that, in a dependently
typed setting, selective translations not only yield efficient programs, but
simplify the proof of the type preservation property.

Dellina is the first non-toy language where dependent types and control
operators co-exist. To demonstrate its utility, we implement a type-safe
evaluator that uses shift, reset, and dependent types all in a non-trivial
manner. Our result further opens the door to integrating ¥shift and ¥reset
into proof assistants. We discuss how we should extend the
``proofs-as-programs'' view to a language with delimited control, and what
we can prove with the control operators.

