
Doctoral Dissertation, 2019

Abstracting Control with Dependent Types

OCHANOMIZU UNIVERSITY

Advanced Sciences,

Graduate School of Humanities and Sciences

CONG Youyou

March, 2019

ABSTRACT

Dependent types are a powerful tool for ensuring safety. By interacting with
terms, dependent types are able to precisely encode program specifications, guaran-
teeing the absence of runtime errors and other unexpected behaviors. Meanwhile,
control operators have been extensively used to increase expressiveness. By talk-
ing about the surroundings of programs, control operators enable sophisticated
manipulation of control flow, yielding a wide range of practical applications.

The two language ingredients are however known to pose various difficulties
when mixed up together. Intuitively, the disharmony stems from their contrast-
ing nature: dependent types are used for reasoning purposes and thus must be
determined statically, whereas control operators are used to implement dynamic,
non-local behaviors. To make their combination meaningful, previous work has
imposed a purity restriction on type dependency, that is, types may depend only
on effect-free terms.

In this thesis, we build a dependently typed, effectful language called Dellina.
Dellina has support for essential features from the mainstream proof assistants, as
well as the delimited control operators shift and reset. Similarly to the existing
studies, we restrict types to depend only on pure terms, but additionally, we impose
two constraints on the type of contexts surrounding effectful terms, in order to cope
with the flexibility of the control operators. These restrictions make the resulting
language type sound. We also define a selective CPS translation of the language,
and prove that the translation preserves typing. Our key observation is that, in a
dependently typed setting, selective translations not only yield efficient programs,
but simplify the proof of the type preservation property.

Dellina is the first non-toy language where dependent types and control opera-
tors co-exist. To demonstrate its utility, we implement a type-safe evaluator that
uses shift, reset, and dependent types all in a non-trivial manner. Our result
further opens the door to integrating shift and reset into proof assistants. We
discuss how we should extend the “proofs-as-programs” view to a language with
delimited control, and what we can prove with the control operators.

Acknowledgements

I have been looking forward to writing the acknowledgement section, because there
are so many people I would like to thank.

Kenichi Asai, my Ph.D. advisor, introduced me to the beauty of programming
languages. He taught me DrRacket before I was exposed to “mainstream program-
ming”, and control operators before I knew CPS. This made me think functionally
and in direct style. After I joined his group, Kenichi gave me limitless freedom
to pursue my interests, and has been a great listener of my ideas and problems.
Through working with Kenichi, I learned not to be afraid of expressing my individ-
uality. This had a crucial impact on my way of writing, talking, and even playing
the piano—indeed, the most memorable “review” I got from Kenichi is the one on
my performance of Chopin’s Barcarolle, which looked like a “weak reject”.

Daisuke Bekki, who supervised me during my Master’s studies, is the person
who suggested this thesis topic. In 2013, Daisuke showed me how continuations
and dependent types are useful in linguistics, leaving me with the question “how can
we integrate these into a single programming language?” Four years later, I finally
started to work on this challenge, and soon I realized that it was an extremely
interesting topic to exlore. I also like Daisuke’s unique advices on research. My
favorite one is “the best way to learn something new is to write a textbook on that
topic”, from which I can see how he has been widening his expertise.

I was very fortunate to have multiple opportunities to visit universities outside
Japan. My first internship was hosted by Chris Barker at New York University.
Chris is amazingly good at explaining things for non-experts. His Lambda Seminar
was one of the most enjoyable lectures I have ever participated in; I often recall
his words and examples when I write papers or prepare talks.

My second destination was Northeastern University. The three months I spent
there were critical to both this thesis and my future career. Matthias Felleisen,
who hosted me at Northeastern, knows what is beneficial to students better than
anyone else. He always asks his students to do more, which often goes beyond
what they want or are able to do, but that is because he really cares about them.

A few months later, I started another internship at Chalmers University of
Technology, hosted by Andreas Abel. I liked working in the department’s lunch
room, waiting for the appearance of the great magician—Andreas knows everything

about Agda; he always instantly identified what was wrong with my code and
solved it in just a few minutes. These “kitchen magic shows” were one of the
sweetest memories of my Ph.D. life.

Right before graduation, I visited Tiark Rompf at Purdue University. Tiark
taught me the low-level behavior of programs, which I had never studied seriously
before. Thanks to his advices and encouragement, I could co-author a paper with
Tiark and his students, which was much more than what I had expected out of a
one-month visit.

Besides the four hosts of my internships, William J. Bowman, who I met at
Northeastern, made a noteworthy contribution to my Ph.D. I got to know William
when I was ramdomly watching videos from ICFP 2015. At that time, he was just
“a clever student studying thousands of miles away”. Several months later, William
became my collaborator; more precisely, Matthias put me under supervision of
William. This experience meant a lot to me. It both broadened and deepened
my knowledge around continuations and type theory, giving me the confidence to
dive into the research question posed by Daisuke years ago. But probably more
importantly, I learned from William what it means to get a Ph.D. degree.

Most of my internships were funded by the Leading Graduate School Program
of Ochanomizu University. Without those oversea experiences, I would not have
been able to write this dissertation.

Back to the “local” community, there are two persons who significantly influ-
enced me. Yukiyoshi Kameyama helped me notice my insufficient comprehension
of various concepts. In fact, one of my must-do’s at conferences is to share my
recent ideas with Yukiyoshi and ask for his feedback. Koji Mineshima is a living
encyclopedia of linguistics and type theory. Every time I run up to Koji with a
question, he instantly finds the right references for me, making me wonder how
many papers and books he has studied so far.

And of course, my pleasant Ph.D. was due to the wonderful collegues at Asai
and Bekki laboratories. I would especially like to thank Kanae Tsushima and
Ribeka Tanaka, who advised me on my research and future career.

Lastly, I gratefully acknowledge many more people who shaped my work in
various ways but are not mentioned in this list. Your support is part of the reason
I am here today, and I hope to express my gratitude when I have a chance.

Typographical Conventions

In this thesis, we use colors and fonts to distinguish between different languages.

• non-bold, blue, sans-serif font: expressions in the Dellina- and Dellina lan-
guages, which have control operators

• bold, red, serif font: expressions in the target language of the CPS trans-
lation, which is free from control effects

• non-bold, black, italic font: expressions in languages other than the source
or target of the CPS translation

We also use different brackets for source and target typing rules.

• (round brackets): typing rules for Dellina- and Dellina

• [square brackets]: typing rules for the post-CPS language

10

Contents

1 Introduction 13
1.1 Ensuring Safety: Dependent Types 14
1.2 Increasing Expressiveness: Delimited Control 20
1.3 Mixing Dependency and Control . 27
1.4 Contributions and Outline . 31

2 Shift, Reset, and Dependent Types 35
2.1 Typing Programs with Shift and Reset 35
2.2 Simply Typed Shift and Reset . 43
2.3 Three Restrictions on Type Dependency 46
2.4 Dependent Types and Effects . 50

3 The Dellina- Language 54
3.1 Syntax . 55
3.2 Evaluation, Reduction, and Equivalence 57
3.3 Typing . 66
3.4 Metatheory . 75
3.5 Examples . 101

4 CPS Translating Dellina- 104
4.1 Challenges of CPS Translation . 105
4.2 Past Solution: Answer-type Polymorphism + CPS Axioms 108
4.3 Our Solution: Selective Translation 112
4.4 Target Language . 115
4.5 CPS Translation . 124

4.6 Proof of Type Preservation . 135
4.7 Related Work . 148

5 The Dellina Language 153
5.1 Polymorphism and Type Operators 153
5.2 Prop, Set, and Universe Hierarchy 162
5.3 Inductive Datatypes . 174
5.4 Local Definitions . 190
5.5 Example . 200

6 Call-by-name Dellina- 203
6.1 Syntax . 204
6.2 Evaluation, Reduction, and Equivalence 205
6.3 Typing . 213
6.4 CPS Translation . 224

7 Logical Understanding of Dellina 232
7.1 Logical vs. Non-logical Objects . 232
7.2 Intuitionistic vs. Classical Logic . 234
7.3 Related Work . 237

8 Conclusion and Perspectives 241
8.1 Multiple Effects . 242
8.2 Control Effects at Higher Levels . 245
8.3 Propositional Equality . 246
8.4 Specialization by Unification . 248

A Control Operators and Dependent Types in Natural Languages 250
A.1 Introduction to Natural Language Semantics 250
A.2 Solving NL Challenges using PL Techniques 253
A.3 Dellina for Natural Language Semantics 257

12

13

Chapter 1

Introduction

“Begin at the beginning,” the King said, very gravely, “and go on till
you come to the end: then stop.”

Lewis Carroll, Alice in Wonderland

Safety and expressiveness are key aspects of a programming language. Safety
means the ability to ensure that a program works in the intended way. This
includes the absence of runtime errors, as well as properties specific to individual
programs, such as “when appending two lists of length n1 and n2, we obtain a list
of length n1 + n2. Expressiveness, on the other hand, means the ability to express
sophisticated behaviors. For instance, if we wish to rewrite the value of a variable,
it is a good idea to work in a language that supports mutable references, rather
than passing around an additional argument in every function.

This thesis aims at convenient implementation of safe programs. To achieve
this goal, we build a language that provides dependent types and delimited control
operators. The present chapter is devoted to give an overview of this work. We
begin with an introduction to dependent types and control operators (Sections
1.1 and 1.2), focusing on how they are useful in everyday programming. We next
discuss known challenges with combining them (Section 1.3), and the solutions
reported by previous studies. With these in mind, we list specific contributions of
our work (Section 1.4).

14
1.1 Ensuring Safety: Dependent Types

1.1.1 Simple Types

In programming languages, types are a notion that we use to describe properties
of programs. For example, an integer 1 has type int, and a boolean true has type
bool.

The existence of types gives rise to the notion of well-typed programs. For
instance, 1 + 1 is well-typed, whereas 1 + true is not, since true is not a valid
argument of the addition operator. In statically typed programming languages1,
such as ML and Haskell, well-typedness of programs is examined by a type checker,
and only those programs that passed type checking may be executed. This means
1 + true will never be executed in typed languages; instead, the type checker will
report a type error before running it. Thus, types enable early detection of runtime
errors, making programs more reliable.

Types also induce a beautiful connection between functional programming lan-
guages and logics, which is known as the propositions-as-types principle or Curry-
Howard isomorphism. Consider the simply typed λ-calculus (STLC) [16], whose
types and terms are generated by the following grammar:

A ::= B base type

| A → A function type

e ::= x variable

| λx. e abstraction

| e e application

STLC is the core basis of functional programming languages, consisting of
variables, functions, and applications. Decades ago, Curry [53] and Howard [95]
discovered that the calculus corresponds to the implicational fragment of proposi-
tional logic, where types are propositions and terms are proofs of the proposition
their type represents2. As a simple example, the function type A → A corresponds

1There are also dynamically typed languages, where type checking takes place “on the fly.”
2The connection was in fact developed by many other researchers as well; see Section 30.5 of

Harper [90] for a complete list of contributors.

15
to the law of identity, and the identity function λx. x of type A → A serves as
a proof of this law. When viewing types and terms in this way, building a well-
typed program can be considered as writing a mathematical proof, and checking
well-typedness of a program is understood as verifying the correctness of a proof.

1.1.2 Enriching Type Systems

The type system of STLC is “simple” in that the type and term languages are
mutually independent, i.e., types do not refer to terms, and vice versa. To obtain
a more expressive type system, one could add polymorphism, by allowing term-level
functions to abstract over types:

A ::= ...

| α type variable

| ∀α.A polymorphic type

| A A type-to-type application

e ::= ...

| λα. e term-level type abstraction

| e A term-to-type application

The resulting calculus is known as System F [84], and allows definition of the
polymorphic identity function pid:

pid
def≡ λα. λ x. x

The function has type ∀α. α → α, meaning that we can apply pid to a term e of
any type, by instantiating α to the type of e. For instance, the following programs
are both well-typed:

pid int 1 pid bool true

We can also define polymorphic lists in the extended language. That is, we let
the type constant list carry a parameter representing the type of its elements, so

16
that [1; 2; 3] inhabits list int, and [true] inhabits list bool3.

The extension by polymorphism has introduced dependency of terms on types,
but the type language is still defined independently of the term language. From
a logical perspective, the extended calculus corresponds to second-order proposi-
tional logic, where one can quantify over predicates.

System F is close to the underlying type system of the mainstream functional
languages. However, sometimes it is not powerful enough to express the exact
intension of the programmer. Consider the following head function, which returns
the first element of a given list of integers:

(* head : list int -> int *)

let head lst = match lst with

[] -> ?

| first :: rest -> first

When the given list is non-empty, the task is easy, but what if the list is empty?
Since we can only take the head of a non-empty list, we wish to explicitly state
that the head function can never be applied to an empty list. Unfortunately, in
System F, we cannot rule out this unintended use along the same lines as we did
for 1 + true. The reason is that the type list int is inhabited by lists containing
any number of integers. This means an empty list is a valid argument to the
head function, hence we must account for this case to make the pattern matching
exhaustive.

Now the reader might ask: what kind of extension do we need to make the
type system expressive enough to rule out taking the head of an empty list? The
answer is: use dependent types ! Dependent types are literally types that depend
on terms; in other words, they represent program properties that are determined
by terms. Supporting dependent types requires allowing application of types to
terms, making the type and term languages mutually dependent:

3In ML and its dialects, list int is represented as int list. While the latter is more friendly
when read as a natural language expression, the former makes it easier to view the type as an
application.

17

A ::= ...

| λx.A type-level term abstraction

| A e type-term application

With this extended grammar, we can define a dependent variant of the list
type L n. The type consists of a type constant L, and an index argument n,
which is a natural number (of type N). When composed together, L n represents
a type inhabited by lists containing n natural numbers4. That is, if we inherit the
standard list notation, [] has type L 0, and [1; 2; 3] has type L 3.

Using the depedent list type, we next re-define the type of the head function:

head : Πn : N.L (n+ 1) → N

The type tells us that head is a function from lists of length n+1 to natural numbers,
i.e., head only accepts a non-empty input. With this definition, application of head
to [] is no longer well-typed, since [] has type L 0 and there is no natural number
n satisfying n+1 = 0. In dependently typed languages supporting “smart” pattern
matching [86, 42, 43], the user can skip the empty branch in the definition of head,
without getting the “non-exhaustive pattern matching” warning.

Shifting the viewpoint to logics, dependency on terms allows types to express
statements in predicate logic. For instance, function types A → B are refined to
Πx : A.B, where type B may contain free occurrences of term-level variable x.
From a logical point of view, the function type corresponds to universal quantifica-
tion ∀x ∈ A.B. That is, when we have a function λx. b of type Πx : A.B, we can
construct a proof of B[a/x] via function application (λx. b) a for any a : A. Simi-
larly, we have a dependent version of pair types Σx : A.B, where x can occur free
in type B. This type is interpreted as existential quantification ∃x ∈ A.B. That
is, when we have a proof b of B[a/x] for some a : A, we can view a as witnessing
the existence of x satisfying B, and abstract this fact as an existential statement
by constructing a pair (a, b) of type Σx : A.B.

4In a dependently typed language, natural numbers are often defined as separate data from
integers.

18
1.1.3 Programming and Proving with Dependent Types

As we saw, dependent types greatly broaden the scope of expressible program
specifications. This aspect is useful in two closely related but slightly different
ways, as we describe below.

Building Correct-by-Construction Programs One typical use of dependent
types is to build programs that are correct by construction. Let us consider the
append function, which concatenate given lists. Intuitively, when a correctly defined
append function is applied to two lists of length n1 and n2, we will obtain a list of
length n1+n2. In a dendently typed language, we can express this correct behavior
in the function definition using types. Specifically, we can declare append as having
the following type:

append : Πn1 n2 : N.L n1 → L n2 → L (n1 + n2)

Observe how we use the indices of the input types to specify the output type.
When the definition of append has passed type checking, we know that the append

function must work correctly, that is, it produces a list of the right length.

Reasoning About Programs Another use of dependent types, which seems to
be more popular, is to reason about programs that are possibly written in the non-
dependent subset of the language. Consider the simply typed append-smpl func-
tion that concatenates two integer lists. The function is given the type list int →
list int → list int. Unlike the append function we discussed above, append-smpl

does not say anything about the length of the input and output lists. However,
in a dependently typed language, we can still show that the function works cor-
rectly, by proving its property separately from the function definition. That is,
after defining append-smpl, we prove the correctness theorem append-correct, by
writing a program of the following type (where length returns the length of a given
list):

append-correct :

Π l1 l2 : int list. length (append-smpl l1 l2) = length l1 + length l2

19
The type says: for any integer lists l1 and l2, append-smpl produces a list whose
length is the sum of the length of l1 and l2. The equality symbol = is a type
constructor, which has a single inhabitant refl : a = a representing reflexivity.
When we have found a term that has the above type (i.e., if we could give a
definition of append-correct), we know that append-smpl actually satisfies the
expected property.

The append-correct example uses dependent types to represent a theorem
that holds of the append-smpl function. In general, dependently typed languages
serve as a proof assistant, aiding construction of 100% trustable proofs5. For this
reason, dependent languages such as Coq [160], Agda [128], and Isabelle [127]
are extensively used in the context of formal verification. Below are some of the
notable contributions:

• CompCert [111]: a compiler for a large subset of the C language, accompanied
by a Coq proof ensuring that the output program behaves the same as the
input.

• CertiCoq [5]: a compiler of Coq that is mechanically verified by Coq itself,
featuring efficiency, reliability, and compatibility with other languages.

• CertiKOS [89]: a framework for building OS kernels that are free from buffer
overflow, null-pointer dereference, and other runtime errors.

• CertiCrypt [20]: a toolset for constructing machine-checked cryptographic
proofs, where the interaction between an adversary and a cryptsystem is
represented as probabilistic programs.

• DeepSpec [161]: a project aiming to build bug-free software that “actually
does what it is supposed to do,” by combining all of the ideas listed above.

1.1.4 Alternatives to Dependent Types

There are several alternative ways to make a type system richer. One approach
is to simulate dependent types using singleton types [123]. Roughly speaking,
singleton types are types indexed by a reflection of some term-level computation.

5Of course, we have to assume that the underlying logic of the language is consistent.

20
The simplest example is indexed integers n̆ : sint n̂, where n̂ is the type-level
counterpart of the term-level integer n.

A similar option is to adopt Generalized Algebraic Data Types (GADTs) [40,
173]. GADTs generalize ordinary ML datatypes in that they can be indexed by
types of the meta-language. For instance, the indexed list type can be defined by
first declaring natural numbers as types, and then declaring L as a type-returning
function accepting a natural number.

The indexing mechanism of singleton types and GADTs enables implementation
of non-toy programs with non-trivial invariants, such as safe database interface
[71] and typeful normalization by evaluation [58]. Moreover, it has proven that
languages with these types enjoy the phase distinction property [35, 123], that is,
type checking and execution can be separated into two distinct phases. However,
singletons and GADTs are obviously not as expressive as full dependent types, and
working with them often makes program implementation less elegant.

A third variant of richer types are known as refinement types [142, 164]. Refine-
ment types encode data properties by means of refinement predicates: for instance,
the type of natural numbers can be represented as {v : int | v ≥ 0}. Note that
the type mentions terms v and 0, just like dependent types. The main difference
between refinement and dependent types is that the former restricts predicates to
decidable ones. This restriction reduces the burden of manually providing proof
terms, which is often required in full-spectrum dependent languages, but at the
same time it limits the scope of expressible predicates.

In this thesis, we take the most “heavy-weight” approach, and focus our atten-
tion to dependent types. Although this decision complicates the language design,
we believe that it is crucial for making our language truly practical.

1.2 Increasing Expressiveness: Delimited Control

Continuations represent the rest of the computation. Suppose we are evaluating
2 ∗ 3 in the program 1 + (2 ∗ 3)− 4. The current continuation is the computation
“given the value of 2 ∗ 3, add 1 to it and subtract 4 from the result.” The reader
may think of this continuation as a computation with a hole (denoted [.]), namely
1 + [.]− 4. It can also be understood as a function λx. 1 + x− 4, which abstracts

21
over the expression being executed (i.e., the hole).

1.2.1 Handling Continuations in Continuation-Passing Style

While continuations are everywhere in our programs, they are usually not visible
to us. If we wish to access and manipulate continuations, we have two options.
One is to transform programs into continuation-passing style (CPS) [137]. CPS
programs are different from ordinary, direct-style (DS) programs in that every
function receives an additional continuation argument representing what to do
after the function has returned a value. This allows us to simulate a wide range
of side effects, such as exceptions, non-determinism, and mutable state. Here we
demonstrate how to express exception raising in a CPS program. We start with
the following direct-style function:

let rec times lst = match lst with

[] -> 1

| h :: t -> if h = 0 then raise 0

else h * (times t)

The times function computes the product of a given list of integers. When the list
is empty, the function returns 1, and when it is not, the function checks whether
the first element h is 0 or not. If this condition does not hold, we compute the
answer in the normal way. Otherwise, we know that the ultimate answer must be
0, hence we want to ignore the rest of the computation (i.e., computing the product
of numbers we have traversed so far) and directly return 0 to the top-level. In the
times function, we skip unnecessary computation by throwing an exception via the
raise construct.

We next define times-cps, which is a CPS counterpart of the times function:

let rec times-cps lst k = match lst with

[] -> k 1

| h :: t -> if h = 0 then 0

else times-cps t (fun v -> k (h * v))

The times-cps function takes in a list lst, and a continuation k. When program-
ming in CPS, we basically follow two principles: (i) to return a value v, we pass

22
v to the current continuation; and (ii) to compute a non-value e, we supply the
computation with a continuation representing what to do when we have obtained
the value of e. The empty clause is the return-case: we pass the value 1 to the
continuation k. The else-clause of the cons branch is the compute-case, we supply
the computation times-cps t with the continuation “given the product v of the
rest of the list, return the value h * v to the current continuation k.” The then-
clause, however, does not fit into the CPS patterns: we only have a plain value 0,
which is not applied or passed to a continuation. What is happening here is that
we are discarding the continuation, which represents the redundant computation
we do not want to execute. Since the continuation is now available as an explicit
object k, we can drop it without using the language’s exception facilities.

When running the times-cps function, we have to provide an initial continua-
tion, which represents what we want to do with the value returned by the function.
If we are just intereted in the value itself, we supply an empty continuation, i.e.,
the identity function. Below we show two evaluation sequences of the times-cps

function, corresponding to the normal and exception cases, respectively:

times-cps [1; 2; 3] (fun x -> x)

times-cps [2; 3] (fun v -> (fun x -> x) (1 * v))

times-cps [3] (fun v -> (fun v -> (fun x -> x) (1 * v)) (2 * v))

times-cps [] (fun v -> (fun v -> (fun v -> (fun x -> x) (1 * v)) (2 * v)) (3 * v))

(fun v -> (fun v -> (fun v -> (fun x -> x) (1 * v)) (2 * v)) (3 * v)) 1

(fun v -> (fun v -> (fun x -> x) (1 * v)) (2 * v)) 3

(fun v -> (fun x -> x) (1 * v)) 6

(fun x -> x) 6

6

times-cps [1; 0; 3] (fun x -> x)

times-cps [0; 3] (fun v -> (fun x -> x) (1 * v))

0

By writing programs in CPS, we obtain the ability of accessing continua-
tions at any point of execution. However, naïve CPS translations are known
to make programs slower, as they generate a number of non-source abstractions

23
and applications. To avoid this problem, researchers have developed various op-
timizing CPS translations, which produce more compact and efficient programs
[57, 126, 140, 61, 12].

1.2.2 Handling Undelimited Continuations in Direct Style

An alternative approach to handling continuations is to use control operators. Con-
trol operators turn continuations into user-accessible objects as needed, in other
words, they provide access to continuations in direct-style programs. Among dif-
ferent variants of control operators, let us first look at Felleisen et al.’s C operator
[75, 74]:

1 + (Ck. 2 + k 45)− 4

= (2 + k 45)[λx : int. abort (1 + x− 4)/k]

= 1 + 45− 4

= 42

The C operator captures the whole continuation surrounding it, namely 1+ [.]− 4,
and turns it into an abortive function λx : int. abort (1 + x − 4). Then, it binds
variable k to this continuation, and computes the body expression 2+k 45. When
the value 45 is passed to k, the addition of 2 is discarded by the abort operator.
Thus, the program reduces to 42.

Using C, we can define a direct-style variant of the times-cps function, which
supports efficient exception raising without using the raise construct:

let rec times-c lst = match lst with

[] -> 1

| h :: t -> if h = 0 then C k 0

else h * times-c t

Observe that the function takes one single argument; it does not require a contin-
uation as an additional parameter. The continuation is made explicit only in the
third line, where the C operator drops the rest of the work and returns 0 to the

24
top-level. Other parts of the program are all written in direct style, without the
clutters found in times-cps.

1.2.3 From Undelimited to Delimited Continuations

So far, we have been discussing undelimited continuations, i.e., continuations that
represent the entire rest of the computation. However, what we care in practice
is often part of the computation to be done—just like we say things like “the rest
of the day” instead of “the rest of my entire life.” This gives rise to the notion
of delimited continuations, aka partial or composable continuations [72, 55]. A
delimited continuation is a continuation with a limited extent. Consider ⟨1 + (2 ∗
3)⟩ − 4, where ⟨ ⟩ represents the scope of the computation we are interested in.
When evaluation of 2∗3 is happening, the current delimited continuation is 1+ [.],
or equivalently, the function λx. 1+x. The subtraction of 4 is not included because
we have delimited the scope of the relevant computation.

Delimited continuations are handled via a pair of a continuation reifier (like
C) and a continuation delimiter (like ⟨ ⟩). There are a variety of delimited control
operators in the literature, differing in (i) whether the extent of a captured con-
tinuation is determined statically or dynamically; and (ii) whether the association
between the reifier and the delimiter is established selectively or unselectively. In
this thesis, we use Danvy and Filinski’s shift and reset operators [56], which
are classified as static and unselective. The behavior of these operators is simple:
shift grabs a continuation delimited by the nearest enclosing reset. Consider the
following program, where S and ⟨ ⟩ denote shift and reset, respectively:

⟨1 + Sk. 2 + k 45⟩ − 4

= ⟨2 + k 45[λx. ⟨1 + x⟩/k]⟩ − 4

= ⟨2 + 46⟩ − 4

= ⟨48⟩ − 4

= 48− 4

= 44

25
The shift operator captures the delimited continuation within the reset clause,
namely 1+[.], and “shifts” the control to its body k 45, with k bound to the captured
continuation λx : int. ⟨1 + x⟩. When the expression inside reset has reduced to a
value, we remove the surrounding reset, and perform the subtraction. Thus we
obtain 44.

There are two differences between the above program and the one that uses the
C operator. First, while C captures the whole continuation 1+[.]−4 it is surrounded
by, S captures part of the continuation that contains only the addition of 1. Second,
whereas a C-captured continuation is abortive, an S-captured continuation returns
normally and composes with the context 2 + [.] surrounding the application of k
(hence delimited continuations are called composable). Indeed, although the word
“delimited” may sound negatively, delimited continuations are more expressive than
undelimited continuations [69, 140, 66], and in this sense, undelimitedness should
be understood as a limitation.

1.2.4 Applications of Delimited Continuations

Delimited continuations have a diverse range of applications. Here we give three
examples, each showing a different use of continuations.

Duplicating Continuations: Non-determinism The times example from
Sections 1.2.1 and 1.2.2 simulates exception raising by calling the continuation
zero times. If we call a continuation multiple times with different arguments,
we can make programs behave non-deterministically. Let us look at the either

function below, which is a simplified version of the amb operator in the Scheme
language:

let either a b = shift k (k a; k b)

> reset (print_int (either 1 2))

12

- : unit = ()

Given two arguments a and b, the function first applies the captured continuation
k to a, and then to b. If we call this function in a printing context, we will see

26
two outputs a and b printed in this order. The non-deterministic behavior enables
us to implement backtracking programs [56]: e.g., we can find pythagorean triples
[11], and solve the famous N-queens puzzle [117].

Suspending Continuations: Coroutines A captured continuation need not
be called at once; we can temporarily save it somewhere for future use. The
following function serves as the “yield” construct from languages with support for
coroutines:

let yield v = shift k (v, k)

The yield function packs a given value v and the current continuation k in a pair,
allowing us to do some other work first and get back to the original computation
later. Notice that we are returning the continuation as part of the answer produced
by yield. This shows that continuations captured by the shift opeartor has a
first-class status (i.e., they may escape).

Suspension and resumption of continuations help us describe Web interactions,
where the server waits for the client’s input, with which it continues the rest of the
work [138]. This is the idea underlying the PLT Scheme Web Server [108], and as
reported by Flatt et al. [78], delimited (instead of undelimited) continuations are
particularily suited for concurrent handling of multiple requests.

Reordering Continuations: Program Transformation Uses of captured
continuations in a non-tail position have the effect of reordering computation.
That is, resumption of a continuation, which always happens at the last step when
evaluating a pure term, can be followed by some additional computation specified
by the programmer. This allows us to implement the reverse function in the
following way:

let rec visit lst = match lst with

[] -> []

| h :: t -> shift k (h :: k (visit t)) in

let rec reverse lst = reset (visit lst)

27
The reader may find this program a bit tricky, but the key observation is that we are
swapping consing of the first element h and resumption of the captured continuation
k. Under the call-by-value evaluation, we must reduce visit t to a value before
applying the continuation, and if t was a non-empty list of the form h’ :: t’, it
may capture the h-consing context and store it to a continuation variable k’. Now,
it is easy to see that the order of h and h’ is reversed. Note that if we replace the
body of shift by k (h :: (visit t)), reverse would be equivalent to the identity
function. The trick used in reverse extends to A-normalization [77], a program
optimization technique for specifying the order of evaluation. It has proven that
shift and reset enable direct-style implementation of partial evaluation [54, 9]
and dynamic code generation [101], where scope-safety is maintained by inserting
reset in appropriate places.

1.3 Mixing Dependency and Control

We have seen that dependent types and control operators are useful in different
ways: the former provide safety guarantees, whereas the latter allow efficient cod-
ing. Given this fact, one question naturally comes into our mind: why not using
dependent types and control operators together? Couldn’t we write safe programs
in a convenient way? It turns out that integrating these elements into a single
language is not an easy task. In this section, we review the challenges of designing
a dependently typed language with control effects, as well as the solutions reported
so far.

1.3.1 Σ-types and call/cc Lead to Inconsistency

In 2005, Herbelin [93] built a language consisting of strong Σ-types (dependent
pairs with first and second projections), equality types, and call/cc, which is
an undelimited control operator similar to Felleisen’s C. The resulting language
turned out to be inconsistent, in that every proposition is provable. Specifically,
Herbelin used the following existential proof term to derive inconsistency:

28

p
def≡ call/cc k (0, throw k (1, refl)) : Σx : N. x = 1

Here, throw k e can roughly be understood as applying the (abortive) continuation
k to the argument e. To see what causes inconsistency, let us first observe the
reduction of fst p:

fst p = call/cc k (fst (0, throw k (fst (1, refl))))

= call/cc k 0

= 0

The reduction sequence shows that call/cc makes two copies of the surrounding
context fst [.], placing one of them around the body, and the other around the
argument of throw. The computation reduces to 0, which stands for the witness
of the proof p. This witness, however, is an incorrect one. Observe the type of p:
it says there is some term that is equal to 1. The proof p has this type because
it eventually drops the context (0, [.]) and returns (1, refl) to the continuation k

(that is, it backtracks). For (1, refl) to be well-typed, refl must represent the
equality between something and 1, hence the type. Now, since snd p is a proof
witnessed by a specific term fst p, this “something” must be instantiated to fst p,
and since we have fst p = 0, we can deduce 0 = 1! Thus, Herbelin concluded
that undelimited control operators are incompatible with strong Σ-types and any
dependently-eliminated inductive types.

A further study on the above example revealed that the inconsistency is caused
by type dependency on an effectful proof. As we saw, p has two different wit-
nesses depending on its surrounding context, due to its backtracking ability. The
witnesses are unexpectedly joined up via an application of the second projection,
yielding the absurd proposition 0 = 1. Based on this observation, Herbelin [94]
defined a syntactic category called the negative-elimination free (NEF) fragement,
consisting of terms free from control effects. By restricting type dependency to
NEF terms, Herbelin successfully built a classical calculus where one can con-
structively prove two weak instances of the axiom of choice.

29
1.3.2 CPS Translation Fails to Preseve Typing

Another issue with control effects and dependent types was noticed by Barthe
and Uustalu [24]. Instead of control operators, they considered a CPS translation,
which, as we saw, gives us the same power as control operators do. In examin-
ing different constructs from dependently typed languages, Barthe and Uustalu
found that the standard call-by-name CPS translation6, which corresponds to Kol-
mogorov’s double-negtion translation [106], fails to be type-preserving in the pres-
ence of strong Σ types (dependent pairs with projections). To see why this is the
case, let us look at the translation of second projection snd e, which is one of the
problematic cases. Below, e÷ and A+ denote the CPS counterparts of term e and
type A, and ¬A is a shorthand for the type A → ⊥, representing an arbitrary
continuation accepting an A-value:

(snd e)÷ = λ k : ¬(B[fst e/x])+. e÷ (λ v : (Σ x : ¬¬A+.¬¬B+). (snd v) k)

The translation encodes the reduction of snd e: we first evaluate e, and when it
has reduced to a pair v = (e1, e2), we return snd v = e2 as the result.

Now, suppose e has type Σx : A.B. According to the typing rule of the
second projection, snd e has type B[fst e/x]. For the translation to preserve types,
the whole translated term must have type ¬¬(B[fst e/x])+. By the induction
hypothesis, we have v : Σx : ¬¬A+.¬¬B+, which implies snd v : ¬¬(B+[fst v/x]).
We have to show that application (snd v) k has type ⊥. If the translation commutes
with substitution, we could rewrite the domain (B[fst e/x])+ of k to B+[(fst e)÷/x],
but clearly, k is not a valid argument to snd v, since (fst e)÷ is distinct from fst v.
As Barthe and Uustalu point out, a similar type mismatch occurs when CPS
translating dependent elimination of sum types A+B.

Since Barthe and Uustalu’s negative result, CPS translation of dependently
typed languages had been left open for years, until the recent breakthrough made
by Bowman et al. [34]. They identify two sources of the type mismatch dis-

6Call-by-name is an evaluation strategy where we do not reduce arguments before function
application: e.g., when evaluating (λx. x) (1 + 2), we first obtain 1 + 2 by substituting 1 + 2 for
x, and then obtain 3. Another popular strategy is call-by-value, where β-reduction happens after
the arguments have been reduced to values: i.e., we first reduce (λx. x) (1+ 2) to (λx. x) 3, and
then to 3.

30
cussed above. First, CPS translations change the interface to values. In the pre-
CPS world, we obtain the value of a term by simply evaluating the term, but in
the post-CPS world, every term has turned into a continuation-awaiting function,
whose evaluation does not happen unless it is supplied a continuation. The second
problem is in the design of the double-negation translation: when we supply a CPS
function with a continuation, we would obtain a value of type ⊥, which should not
have any inhabitant. Since type checking a dependently typed term involves evalu-
ation of terms appearing in types, disruption of the computation-to-value interface
greatly affects typability of CPS programs. As a remedy, Bowman et al. give up
the fixed answer type and use instead a polymorphic one. That is, they translate
every term into a computation of type ∀α. (A → α) → α. This translation gives
us a type-safe interface to values through the identity continuation, together with
a free theorem [165] that helps us reason about CPS terms.

1.3.3 CBV Application Breaks Subject Reduction

Miquey [121] found a third challenge in building a dependently typed variant of
the λµµ̃-calculus [52], a calculus with facilities for expressing and manipulating
continuations. Miquey showed that, the subject reduction property, which states
that reduction preserves types, does not hold under the call-by-value evaluation
strategy:

⟨λx. b∥a · e⟩⇝ ⟨a∥µ̃x. ⟨b∥e⟩⟩

Programs (called commands) in the λµµ̃-calculus are represented as pairs ⟨p∥e⟩
of a term p and a continuation e. In the above reduction relation, the left-hand
side represents a situation where we have a λ-abstraction λx. b being applied to
the argument a in the context e. Since the calculus is call-by-value, the computa-
tion proceeds by reducing a to a value and evaluating b in the context e. This is
represented by the command on the right-hand side, where we have a µ̃ operator
binding the value of a. The problem is that the post-reduction command is not
well-typed, since the function’s body b, whose type depends on x, is paired with
the context e, whose hole type depends on a. In Miquey’s words, this mismatch
is caused by the desynchronization of the typing process with respect to the com-
putation. Recall from Section 1.1 that a dependent function f : Π x : A.B allows

31
constructing a proof of B[a/x] via application f a. In a call-by-value language,
however, β-reduction happens when a has reduced to a value v, hence substitution
yields a term of type B[v/x]. If the language has no control effects, we know a = v

hence B[a/x] and B[v/x] are equivalent, but if the language is effectful, as in λµµ̃,
x is not necessarily replaced by the value of a. Indeed, the role of the µ̃-abstraction
is exactly to allow arbitrary values to be substituted for x, but this freedom affects
typing in the presence of dependency.

This observation suggests two things. First, dependency of types must be
restricted to terms that reduce to a unique value. Second, the binding information
of µ̃-bound variables must be made explicit in the typing rules. Miquey found that
the set of terms satisfying the unique value requirement coincides with Herbelin’s
NEF fragment, and adopts Ariola et al.’s control delimiter t̂p [8] to define NEF
terms. He then introduced a dependencies list, which tells us what value is to be
substituted for each µ̃-bound variable. Thus, Miquey recovered the synchronization
and obtains the subject reduction property.

1.4 Contributions and Outline

While previous work has shown us how to handle continuations with dependent
types, we do not regard this as the end of the story. First, the control operators
considered so far are not the most powerful variants, limiting the use of captured
continuations. Second, the proposed languages only support a small set of expres-
sions, preventing us from building interesting programs. Third, the CPS transla-
tions rely on impredicative polymorphism and parametricity, which are unavailable
in certain dependent calculi.

This thesis aims to adress all of the three issues. To this end, we design a lan-
guage that has (i) a flexible control facility via the shift and reset operators, (ii)
a variety of constructs essential for dependent programming; and (iii) a translation
semantics that does not require non-default features. Below is the outline of the
thesis, showing what contribution each chapter makes:

• Chapter 2: As a first step, we identify the issues that arise when mixing
dependent types and delimited control operators. We begin with a simple
type system for shift and reset, highlighting the requirements that effectful

32
terms impose on their surroundings. Then, we enrich the type system with
dependent types, and see why naïve combination of delimited control and de-
pendency fails to be meaningful. Our main contribution in this chapter is to
establish three restrictions on type dependency. A key observation is that, in
addition to the purity constraints proposed by past work on dependent types
and undelimited control, we need to take care of dependencies associated
with continuations. This is due to the flexibility of delimited control, and as
far as we are aware, the additional constraints have not yet been discussed
by others.

• Chapter 3: With these results in mind, we present Dellina-, a small, call-by-
value language with dependent types and the shift/reset operators. The
main idea is to impose the three restrictions identified in Chapter 2 by means
of typing rules. Although the language lacks many features available in
the full-spectrum dependently typed languages, the non-trivial interaction
between dependency and control is pervasively present in the type system.
After showing the specification, we prove various metatheoretic properties of
Dellina-. Specifically, we show that Dellina- is type sound, in the sense that
“well-typed programs do not go wrong.” Lastly, we show three examples of
Dellina- programs, which give the reader a rough idea of what we can do
with dependent types and control operators.

• Chapter 4: To show that Dellina- is genuinely “good” as a language with
control, we define a selective CPS translation, which serves as an elimination
of the shift and reset operators. A selective translation is an optimized
version of an ordinary CPS translation, in that it only converts effectful terms
into CPS and keeps pure terms in direct style. While such a translation has
an obvious advantage from a performance perspective, we find that it also
greatly simplifies the type preservation argument of our translation. This is
a significant result, since type preservation is hard to prove in the presence of
dependent types, as we discussed earlier. The existence of a type-preserving
CPS translation makes it possible to extend existing languages with shift

and reset without all the effort to re-implement execution facilities.

• Chapter 5: At this moment, the reader should have internalized the general

33
principles for dealing with dependency and control. Building on this intu-
ition, we gradually extend Dellina- with advanced features, and thus obtain
the full language Dellina. The features to be discussed includes polymor-
phism and type operators (Section 5.1), an infinite hierarchy of universes
(Section 5.2), user-defined inductive types (Section 5.3), and local defini-
tions (Section 5.4). We then present an example program of Dellina (Section
5.5), showing how the combination of dependent types and delimited control
allows for convenient implementation of safe programs.

• Chapter 6: As control operators are usually discussed in a call-by-value set-
ting, both Dellina- and Dellina have a call-by-value semantics. On the other
hand, dependently typed languages are in many cases call-by-name, and their
type system is also designed to go well with this semantics. To see how de-
pendent types and delimited control interact in a call-by-name setting, we
build Dellinan, a call-by-name variant of Dellina-. Although we have not yet
formally proved the metatheoretic properties of the language, we found that
some elimination constructs can be given a more “generous” typing rule in
the call-by-name language, but not all.

• Chapter 7: The “good” properties of Dellina encourage us to incorporate
shift and reset into proof assistants. However, it is not clear what it means
to use these operators in proofs, or what propositions we can prove using
them. In answering the first question, we make an observation that impure
types and terms carry the information of required contexts, which cannot
be encoded in the standard logic. Based on this observation, we claim that,
in Dellina, we may only view pure types as propositions, and pure terms
as proofs. As for the second question, we conjecture that shift and reset

only prove intuitionistic theorems. This is in contrast to undelimited control
operators like call/cc, which are known to allow classical reasoning.

• Chapter 8: To our best knowledge, Dellina is the first language that allows
implementing meaningful programs using control effects and type depen-
dency. However, to use Dellina in real-world programming, we need to enrich
the language with more powerful effect and typing facilities. In Chapter 8,
we discuss some of the extentions we intend to investigate as future work,

34
focusing on their practical impact and expected challenges.

This thesis is somewhat lengthy, as it deals with two topics that are studied by
non-overlapping communities. We tried to make it as self-contained as possible,
so that readers having either background are able to follow the technical content.
We also provide a detailed discussion of related work in each chapter, which would
serve as a good pointer to readers who wish to further explore a specific topic.

35

Chapter 2

Shift, Reset, and Dependent Types

2.1 Typing Programs with Shift and Reset

2.1.1 Typing Programs in a Pure Calculus

In the pure, simply typed λ-calculus, a typing judgment takes the following form:

Γ ⊢ e : A

On the left-hand side of the turnsile, we have a typing environment Γ, which
contains a sequence of variable-type pairs xi : Ai. On the right-hand side, we have
a term e (called subject), and a type A (called predicate). The judgment tells us
that term e has type A in environment Γ.

Typing judgments are derived by a set of typing rules. For instance, the typing
rule for application looks like:

Γ ⊢ e0 : A → B Γ ⊢ e1 : A

Γ ⊢ e0 e1 : B

Notice that the rule imposes two restrictions on the type of e0 and e1. First, e0
must have an arrow type. Second, the type of e1 must be equal to the domain of
the type of e0. Thus, to see whether an application is well-typed or not, it suffices
to look at the type of the function and the argument.

36
2.1.2 Typing Terms with Undelimited Control

Now, let us look at how we type terms with undelimited control. Here we repeat
the example from the introduction:

1 + (Ck. 2 + k 45)− 4

= (2 + k 45)[λx. abort (1 + x− 4)/k]

= 1 + 45− 4

= 42

As the first reduction step shows, the captured continuation k is used as a func-
tional representation of the entire context surrounding the C construct. This func-
tion is however abortive, that is, all we can do with a continuation application is to
return it as the final result. This means, the C construct evaluates in any context,
as long as its hole type is the correct one. Therefore, when typing the C construct,
there is no need to state what kind of context it requires; we can simply use the
three-place judgment for pure terms:

Γ ⊢ Ck. 2 + k 45 : int

Since C requires no additional typing facility, incorporating this operator into
a language requires no major change in the typing rules. The only task is to define
a new rule for the C construct:

Γ, k : ¬A ⊢ e : ⊥
Γ ⊢ Ck. e : A

Observe that the return type of the captured continuation k is ⊥, i.e., it can be
any type. This corresponds to the fact that a C construct imposes no requirement
on the surrounding context.

2.1.3 Typing Terms with Delimited Control, Informally

We saw that programs that use the C operator can be typed in the same way as
programs that have no control effect. Then, what about shift and reset? It turns
out that the standard typing no longer applies in the presence of these operators.

37
Consider the following program1:

(1) 1 :: ⟨2 + Sk. (k (k 3)) :: nil⟩

The program (1) evaluates in the following way:

1 :: ⟨2 + Sk. (k (k 3)) :: nil⟩

= 1 :: ⟨((k (k 3)) :: nil)[λx. ⟨2 + x⟩/k]⟩

= 1 :: ⟨7 :: nil⟩

= 1 :: 7 :: nil

The program illustrates two characteristics of delimited control operators. To
make them easier to identify, let us separate the contexts within and outisde the
reset clause:

1 :: ⟨ 2 + Sk. (k (k 3)) :: nil ⟩

Following the continuations terminology, we call the inner context 2 + a a de-
limited context, and the outer context 1 :: a a meta context.

Now, in the reduction sequence of program (1), we see that k is used as a
functional representation of the delimited context. The delimitedness of the con-
tinuation is a natural consequence of adding a control delimiter, but there is a more
important difference between undelimited and delimited continuations: delimited
continuations return and compose like ordinary functions. Observe that in the
body of shift, we use the result of the application k 3 for further computation,
namely application of k. If k was a C-captured continuation, the nested applica-
tion k (k 3) would reduce to 5 instead of 7. The non-abortive nature of delimited
continuations means that a shift construct requires a specific kind of delimited
context, i.e., a delimited context whose return type agrees with the uses of k in
the body.

We next find that the value of the reset clause, namely 7 :: nil, is supposed to
compose with the meta context. The notion of meta contexts is again brought

1To make evaluation steps and typing derivations clearer, we use a more formal list represen-
tation (1 :: 2 :: nil instead of [1; 2]) throughout this section.

38
by the control delimiter, but of particular interest is the fact that the type of the
value to be plugged into the meta context can differ from the return type of the
delimited context. In our example, the reset clause initially surrounds an addition,
hence the whole reset appears to have type int, but at the next reduction step,
the addition is replaced by a list (k (k 3)) :: nil, therefore the reset reduces to a
value of type list int. This means, a shift construct requires a specific kind of
meta context, i.e., a meta context whose hole type coincides with the value to be
returned by the reset construct.

The above discussion suggests that the typing derivation of a shift construct
must carry two additional types: (i) the expected return type of the delimited
context; and (ii) the expected input type of the meta context. This is a central
idea underlying various type systems for shift and reset [55, 10, 140, 27, 102].
For instance, if we adopt the notation of Rompf et al. [140], the shift construct
in program (1) will have the following judgment:

Γ ⊢ Sk. k (k 3) :: nil : int[int, list int]

The typing judgment has a pair of types [int, list int], telling us that the shift

operator requires an int-returning delimited context, and a list int-accepting meta
context. These allow us to determine the well-typedness of program (1), by ob-
serving that addition of 2 is an instance of the required delimited context, and
consing of 1 is an instance of the required meta context.

2.1.4 Typing Terms with Delimited Control, Formally

In the previous subsection, we sketched a rough idea of what we need to type
programs with shift and reset. Now, let us give a more formal description of how
to design a type system for delimited control.

Pure and Impure Terms First, we define the notion of pure and impure terms.
We say a term e is pure when its evaluation does not involve access to the context
surrounding e. That is, values and reset constructs are unconditionally pure, and
complex terms consisting of only pure terms are also pure. Here are some examples
of pure terms:

1 2 + 3 λx. x λ x.Sk. 5 (λx. x) y ⟨1 + Sk. 5⟩

39
Conversely, we say a term e is impure when its evaluation involves access to

the surrounding context. This means, a shift construct is trivially impure, and
any term containing a shift in an executable position is also impure. Here are
some examples:

Sk. 5 2 + Sk. 5 (λx.Sk. 5) 1 (λx. x) (Sk. 5)

Typing Judgments with Effect Annotations From the definition of pure and
impure terms, we can see that pure terms are those terms that evaluate to a value
in an empty context, while impure terms are those terms that evaluate only in
parcticular delimited and meta contexts. This means, the additional information
of expexted contexts—namely the two types we put in the derivation of shift

above—are only needed for impure terms. Therefore, in a language with shift

and reset, a typing judgment has the following general form [140]:

Γ ⊢ e : A ρ

Here, ρ is an optional component representing an effect annotation. When e is
pure, the annotation is empty, hence the judgment takes the usual form:

Γ ⊢ e : A

On the other hand, when e is impure, ρ is a pair of two types, hence the judgment
looks like:

Γ ⊢ e : A[α, β]

Here, α is the return type of the delimited context required by e, and β is the
hole type of the meta context required by e. In this thesis, we call α initial
answer type, and β final answer type. The word “answer type” is commonly used
in the continuations literature, and describes the return type of contexts. Readers
familiar with CPS translations may recall that a program in CPS often has a type
of the form (A → r) → r; in this type, the two occurrences of r represent the
answer type of the program. What is unusual with the above judgment is that
α and β are distinct in the general case, i.e., e has two answer types. This is
because a shift operator may cause answer-type modification. The phenomenon,
often shortend for ATM, happens when elimination of a shift replacs the body of

40
the surrounding reset with a term having a different type. In the case of program
(1), the shift operator replaces an addition by a list, modifying the answer type
from int to list int. In terms of CPS, ATM corresponds to the situation where a
CPS program has a type of the form (A → r1) → r2, where r1 and r2 are different
types.

With these in mind, we look at the typing rules for shift and reset, which
serve as the introduction and elimination rules of effect annotations2:

Γ, k : A → α ⊢ e : β

Γ ⊢ Sk. e : A[α, β]
(Shift)

Γ ⊢ e : B[B,A]

Γ ⊢ ⟨e⟩ : A
(Reset)

Let us first focus our attention to (Shift). We see that the initial answer type
α in the conclusion comes from the return type of the captured continuation k.
This can be understood as: if k is used as an α-returning function in the body e,
then the whole shift construct must be surrounded by an α-returning delimited
context. We next find that the final answer type β coincides with the type of the
body e. This can be understood as: if e is a term that evaluates to a β-value, then
the whole shift construct must be surrounded by a β-accepting meta context.

Now we observe (Reset). The premise says: when we evaluate the body e in
an empty context (whose hole and return types are both B), we obtain a value of
type A. Since we regard the value of e as the value of ⟨e⟩, we conclude ⟨e⟩ is a
pure term of type A.

Using (Shift) and (Reset), we can type program (1) in the following way:

⊢ 1 : int

⊢ 2 : int

k : int → int ⊢ k (k 3) : int k : int → int ⊢ nil : list int

k : int → int ⊢ k (k 3) :: nil : list int

⊢ Sk. k (k 3) :: nil : int[int, list int]

⊢ 2 + Sk. k (k 3) :: nil : int[int, list int]

⊢ ⟨2 + Sk. k (k 3) :: nil⟩ : list int

⊢ 1 :: ⟨2 + Sk. k (k 3) :: nil⟩ : list int

Observe that the shift clause has an effect annotation [int, list int], saying that it

2These rules are slightly informal: the body e in (Shift) can be impure, and dually, the body
e in (Reset) can be pure. The precise rules will be presented in Section 3.3.

41
requires an int-returning delimited context, and a list int-returning meta context.
This information is propagated to the derivation of the addition, and since its type
and initial answer type agree, we can apply the (Reset) rule, and conclude that
the reset has type list int. Thus, we know that the consing operation is type-safe.

Composing Impure Terms In program (1), there is only one shift operator,
and its control effect simply propagates to the whole term inside the surrounding
reset. When a program has multiple shift operators, we have to reason about
their composition more carefully, keeping in mind in what order we evaluate each
shift. Consider the following program:

(2) ⟨(Sk1. (k1 1) :: ["4"]) + (Sk2. string-of-int (k2 2))⟩

⟨(Sk1. (k1 1) :: ["4"]) + (Sk2. string-of-int (k2 2))⟩

= ⟨(k1 1) :: ["4"][λx : int. ⟨x+ (Sk2. string-of-int (k2 2))⟩/k1]⟩

= ⟨⟨1 + (Sk2. string-of-int (k2 2))⟩ :: ["4"]⟩

= ⟨⟨string-of-int (k2 2)[λx. ⟨1 + x⟩/k2]⟩ :: ["4"]⟩

= ⟨⟨string-of-int 3⟩ :: ["4"]⟩

= ["3"; "4"]

Program (2) has two shift operators. Among which, we first eliminate the one
on the left. What we should pay attention to is the initial answer type of this
shift construct: as we can see from (k1 1) :: ["4"], we are using k1 as a string-
returning function. By careflly observing the reduction sequence, we find that the
string is formed by string-of-int (k2 2), which is a computation that happens
when we eliminate the second shift construct. Thus, when we have two successive
occurrences of shift, it looks like the initial answer type of the first shift must
coincide with the final answer type of the second one.

This finding is indeed true, and can be justified by the reduction rule of the
shift operator. Let us make two observations in the above reduction sequence.
First, the body of a shift-captured continuation is surrounded by a reset. Second,
elimination of the second shift happens when we call the continuation k1 captured
by the first shift. What this means is that the return type of k1 (i.e., the initial

42
answer type of the first shift) is determined by what the second shift eventually
returns (i.e., the final answer type of the second shift).

The answer types of constituent terms also determine the answer types of the
whole term. In the reduction sequence of program (2), we see that the addition
operation happens when we call the continuation k2 captured by the second shift.
This seems to suggest that the initial answer type of the whole term is equal to the
initial answer type of the last-eliminated shift operator. The reduction sequence
further shows that elimination of the first shift replaces the addition by a string
list, and this overall structure is fixed in later reduction steps. This seems to imply
that the final answer type of the whole term is equal to the final answer type of
the first-evaluated shift.

These observations again hold in the general case, and can be explained in terms
of the reset surrounding the body of shift-captured continuations. When we have
successive occurrences of shift, as in ⟨op Sk1. e1 Sk2. e2 ... Skn. en⟩ (where op is
an n-ary operator), evaluation of later shift’s happens when the continuation
captured by a preceding shift is applied to an argument. That is, the second
shift is evaluated when k1 is called, and the third one is evaluated when k2 is
called, and so on. As a captured continuation has a reset in its body, every ki

must share the same overall structure, and differ only in the position of the hole.
That is, if k1 takes the form ⟨op [.] Sk2. e2 ... Skn. en⟩, then k2 takes the form
⟨op a1 [.] ... Skn. en⟩, and kn takes the form ⟨op a1 a2 ... [.]⟩. Now, it is easy to see
that the computation of op really takes place when kn is applied to some argument
an. The result of kn an must compose with the rest of the computation in en, hence
return type of op, which is going to be the initial answer type of the whole term
inside reset, must agree with the use of kn. On the other hand, when the first
shift is evaluated, the application of op is replaced by e1. As we saw, evaluation
of succeeding shift’s happens when k1 is applied, but these shift’s cannot affect
e1 because their effects are encapsulated in the reset surrounding the body of k1.
Therefore, the final answer type of the whole op construct is determined by that
of e1.

To check the composability of (possibly) impure terms, Rompf et al. [140] use
an effect composition operator in the typing rule. For instance, the rule of addition
looks like:

43

Γ ⊢ e1 : int ρ Γ ⊢ e2 : int σ τ = comp(ρ, σ)

Γ ⊢ e1 + e2 : int τ
(Add)

where comp(ρ, σ) is defined as:

comp(ϵ, ρ) = ρ comp(ρ, ϵ) = ρ

comp(ρ) = [α, β]

comp([β, γ], ρ) = [α, γ]

Observe how the last rule generalizes our three findings: (i) two adjacent effects
has a common type β (which serves as either an initial or the final answer type);
(ii) the overall initial answer type is that of the last effectful computation (α); and
(iii)the overall final answer type is that of the first effectful computation (γ).

2.2 Simply Typed Shift and Reset

Type Systems for Shift and Reset The shift and reset operators have a
solid type theoretical foundation. The original type system, given by Danvy and
Filinski [55], uses a five-place judgment of the following form:

Γ; α ⊢ e : A; β

The judgment communicates the same information as Γ ⊢ e : A[α, β], but the two
answer types are not optional, and every term—including pure values—must use
this non-standard judgment. The initial and final answer types for pure terms can
be arbitrary, since pure terms evaluates in any context, but they must be equal,
because pure terms never cause answer-type modification.

The Danvy-Filinski type system was later extended with different forms of
purity distinction. One of the variants was given by Asai and Kameyama [10],
who incorporate the ordinary three-place judgment Γ ⊢p e : A into the original
type system. The judgment is used for syntactically pure terms, which include
variables, functions, and reset constructs. Asai and Kameyama further refine the
type of continuations so that we may treat them as pure functions, i.e., functions
having a pure body. This refinement allows us to use a continuation in different
context, making more programs typable3.

3Asai and Kameyama give the following example:

let rec visit lst = match lst with

[] -> shift k []

44
The type system of Rompf et al. [140], which we used in the previous section,

can be viewed as extending Asai and Kameyama’s system with a finer purity
distinction. Recall that we had a composition operation, which we use to decide
whether the effects of subterms meet the chaining rule. Since each effect annotation
can be either empty or non-empty, the composition operater absorbs all possible
combinations of the subterms’ effects. In Asai and Kameyama’s type system, on
the other hand, all subterms are derived using the impure judgment. For instance,
in the typing rule of addition, the two arguments must carry a non-empty effect
annotation. This design choice does not limit typability of terms in a simply typed
setting, since the type system has the following rule for casting a pure term into
an impure one:

Γ ⊢p e : A

Γ; α ⊢ e : A; α

In a dependently typed setting, however, application of the casting rule may turn a
well-typed term into an ill-typed one, since allowing impure terms in types leads to
undesired consequences. What this means is that, when dealing with control effects
and dependent types at the same time, we need to be precise about which terms
actually involve control effects. For this reason, we use Rompf et al.’s judgment
throughout this thesis.

ATM and Parameterized Monads The typing mechanism of shift and reset

can also be explained by means of monads [166]. First, it is widely recognized
that there is a strong connection between CPS and the continuations monad. If
we look at the MonadCont class of Haskell, we will find the following construc-
tor/destructor declaration:

cont :: ((a -> r) -> r) -> Cont r a

| a :: rest -> a :: shift k (k [] :: reset (k (visit rest)))

let prefix lst = reset (visit lst)

The prefix function receives a list and returns a list consisting of its prefixes: e.g., prefix [1;

2; 3] = [[1]; [1; 2]; [1; 2; 3]]. Among the two occurrences of k, the first one is used as
a function whose body expects a list (list int)-returning context (since the body of shift

returns a list of integer lists), whereas the second one is used as a function whose body expects
a list int-returning context (since subsequent shift’s require a list int-context). This use of
k is not possible in Danvy and Filinski’s type system, where we must fix the type and effect of k
when extending the typing environment.

45
runCont :: Cont r a -> (a -> r) -> r

The type of cont says, in the continuations monad, computations are functions
awaiting a continuation. Dually, the type of runCont says, we can run a computa-
tion by supplying a continuation. The continuations monad is however insufficient
to express shift and reset, because the answer type r is fixed. To support mod-
ification of answer types, we replace the two occurrences of r with different types
r1 and r2, obtaining the parameterized monad [13]:

pcont :: ((a -> r1) -> r2) -> PCont r2 r1 a

runPCont :: PCont r2 r1 a -> (a -> r1) -> r2

An advantage of studying delimited control in terms of the parameterized
monad is that we can understand the chaining of answer types via the bind oper-
ation, which we use to compose two monadic computations. Specifically, the bind

operator for the parameterized monad has the following type:

bind :: (PCont r3 r2 A) -> (A -> PCont r2 r1 B) -> PCont r3 r1 B

The duplicated occurrences of r2 and the parameters of the conclusion are exactly
what we observed in program (2).

Shift and Reset without ATM The type systems we have discussed so far,
as well as the parameterized monad, are all adapted to account for ATM, but
there is also a variant of shift and reset that does not have this ability. The
variant is obviously weaker than the full shift and reset, as it limits the kind
of computation we may have in the body of shift. Nevertheless, it has proven
that the ATM-free shift and reset can express any monadic effects—including
exceptions, non-determinism, and state—in direct style4 [76]. The weaker shift

and reset have also been studied from a logical perspective [96]. Interestingly,
the fixed answer type makes it easier to extend the proofs-as-programs notion to
delimited control, as we will see in Chapter 7.

4In this sense, shift and reset are the mother of all monads, as summarized by Koppel et al.
[107].

46
2.3 Three Restrictions on Type Dependency

Having discussed shift and reset in a simply typed setting, let us integrate them
into a dependently typed world. As we saw in Section 1.3, handling control in the
presence of dependent types is a delicate issue. To solve the challenges, previous
studies restrict types to depend only on pure terms [94, 121]. The restriction
guarantees that, whenever a term appears in a type, that term must reduce to a
unique value, regardless of its surroundings. This helps us maintain fundamental
properties such as logical consistency and subject reduction.

In this section, we establish three restrictions for soundly extending a depen-
dently typed language with the shift and reset operators. We observe that de-
pendency on impure terms makes the whole type unuseful, and furthermore, the
flexibility of shift and reset necessitates additional care on the dependency of
continuations, as well as the dependency on continuations. In the subsequent sec-
tions, we study a seriese of examples illustrating invalid dependencies that may
arise when unrestrictedly using the shift and reset operators.

2.3.1 Types Dependent on Impure Terms

Let us begin by discussing what kind of terms can appear in types and what cannot.
Compare the following programs:

(3) (λx : L (1 + 1). x) [0; 1]

(4) (λx : L ⟨1 + Sk. 2⟩. x) [0; 1]

(5) (λx : L (1 + Sk. 2). x) [0; 1]

In dependently typed languages, types may contain term-level computations.
Therefore, when deciding equality between two types, we first normalize terms
inside types, and then compare the results. Observe program (3): the identity
function requires a term of type L (1+1), whereas the actual argument [0; 1] has a
syntactically different type L 2. However, these types can be considered equivalent,
since 1 + 1 normalizes to 2. Thus, we conclude that the application is type-safe.

Program (4) differs from program (3) in that the index of the domain type uses
control operators. But still, we can type check the application in the standard
manner, because the index is a pure term as a whole, which we can normalize to

47
a value. In this case, ⟨1 + Sk. 2⟩ normalizes to 2, hence the list [0; 1] is a valid
argument to the identity function.

Now we look at program (5). Compared with the previous one, this program
lacks a reset clause surrounding the list index. The difference may appear subtle,
but once we try type checking the application, we immediately find that things
do not go as before. With the absence of reset, the index 1 + Sk. 2 is judged
impure. To see if the application is well-typed, we are tempted to somehow elimi-
nate the shift operator, but we cannot do so because shift captures a delimited
continuation—it requires a reset. What this implies is that the normalize-and-
compare method does not apply to types dependent on impure terms.

Aside from type checking, having non-normalizable types does not seem to be
beneficial to the user either. The reason is that such types do not tell us what
property their inhabitants have. Consider program (5) again. In the body of the
identity function, we know that x has type L (1+ Sk. 2), but we still do not know
how many elements x contains. If the reader finds the example not clear enough,
think of L (get a), where the index accesses the value of some globally defined
mutable reference a. At type checking time, we cannot know what the type means
as a whole, since the value of a depends on the runtime environment. Furthermore,
if we had two lists of this type, it would not necessarily be the case that they must
have the same length, because impure terms are not pervasive [70] and hence their
copies should all be considered different.

The above discussion tells us that, if we wish to use types to reason about
programs, then we must restrict types to depend only on pure terms, which we
can locally normalize.

2.3.2 Continuations Having A Dependent Type

We next turn our viewpoint to dependencies associated with continuations. Recall
that, in a dependently typed language, functions have a type of the form Πx : A.B,
where x may occur free in the codomain B. Since continuations are functions, we
will naturally wonder whether they can have a dependent type as well. Let us
consider the programs below, assuming mk-lst : Π x : N.L x and append : Πm :

N.Πn : N.L m → L n → L (m+ n):

48
(6) ⟨mk-lst Sk. k 1⟩

(7) ⟨mk-lst (Sk. append 1 2 (k 1) (k 2))⟩

(8) ⟨mk-lst Sk. k⟩

(9) ⟨mk-lst Sk. k⟩ 1

In all the four programs, the captured continuation k is the application of
mk-lst, hence it has a dependent function type Πx : N.L x. To type the shift

constructs in these programs, we have to slightly modify the (Shift) typing rule
from Section 2.1, by replacing the assumption k : A → α with k : Π x : A.α. Then,
the shift constructs in the above programs will have a derivation of the following
form:

k : Π x : N.L x ⊢ e : β

⊢ Sk. e : N[L x, β]

Recall that the initial answer type of a shift construct coincides with the return
type of the captured continuation. In the above examples, the continuation returns
a value of type L x. Clearly, this type does not serve as a valid initial answer type
of the shift construct, because it has a free occurrence of variable x.

The reader might think that we could close off this variable by substituting
the actual argument we pass to the continuation. In the case of program (6), the
remedy seems to work: when we type check the shift construct, we can see that k
is called exactly once with argument 1, hence we could “instantiate” L x to a closed
type L 1. However, this does not work when we call the captured continuation
multiple times (as in program (7)), or zero times (as in program (8)). In the former
case, we would have more than one candidate value for closing off the free variable,
while in the latter case, we have no candidate value at all. Another case where type
instantiation fails is illustrated by program (9): the captured continuation receives
an argument outside the control construct, which is not visible when type checking
the shift construct. To find this argument, we have to analyze the whole program
during type checking, violating the principle of static typing—that is, types are
determined using local information.

Summing up these observations, we conclude that continuations must be non-
dependent functions. Put differently, we must use the shift operator only in a
non-dependent context.

49
Remark In languages with undelimited control, dependency on holes can never
arise, because continuations have a type of the form ¬A.

2.3.2.1 Types Dependent on Continuations

What we discussed in the previous section is dependency of continuations. Now,
let us look at dependency on continuations. Consider the following program:

(10) ⟨1 + Sk. mk-lst (k 2)⟩

The typing rule from Section 2.1 gives us the following derivation for the shift

construct:
•, k : N → N ⊢ mk-lst (k 2) : L (k 2)

• ⊢ Sk. mk-lst (k 2) : N[N,L (k 2)]
(Shift)

Recall that the final answer type of a shift construct is determined by what its
body evaluates to. In program (10), the body evaluates to a value of type L (k 2).
Similarly to the situation with dependent continuations, this type does not serve
as a valid final answer type of the shift construct, because it contains a free
continuation variable k.

Just like we tried to obtain a closed initial answer type by substituting the
actual argument, we might attempt to obtain a closed final answer type by substi-
tuting the actual continuation. In the case of program (10), it is not hard to see
that k will be the function λx : N. ⟨1 + x⟩, hence we could instantiate L (k 2) to
a closed type L ((λx : N. ⟨1 + x⟩) 2). However, in the general case, figuring out
what continuation is to be captured requires evaluating the whole program, which
is not allowed at type checking time if the language is statically typed. Moreover,
there is no guarantee that we have a candidate continuation to substitute for ev-
ery continuation variable, because well-typedness of terms does not require shift

operators to have a matching reset.
Wrapping up the discussion, we conclude that continuations may appear only

in types that are not used as the final answer type of a shift construct. In other
words, a shift construct may give us different values depending on the context,
but all the values must have a common type.

50
Remark In languages with undelimited control, dependency on continuations
can never arise, because the body of undelimited control constructs either has an
empty type ⊥, or has the same type as the hole of the continuation.

2.4 Dependent Types and Effects

The combination of dependent types and (control and non-control) effects has been
extensively studied over the last twenty years. With a few exceptions, most studies
share the same design principle: types may depend only on pure terms. In this
section, we review different approaches to restricting type dependency.

No Restriction The earliest attempt at building dependent and effectful calculi
goes back to 1997. Barthe et al. [21] invent Classical Pure Type System (CPTS),
which extends ordinary Pure Type System (PTS) [16] with a C-like control oper-
ator. CPTS allows arbitrary use of the control operator, and enjoys a number of
desirable properties, including subject reduction, consistency, decidability of type
checking, and type preservation of the CPS translation5. This may sound surpris-
ing, but a large part of the result relies on the specification of their calculus: the
only computation in CPTS is application, which is evaluated in a call-by-name
manner. This keeps us away from various issues reported by subsequent studies
[24, 93, 121].

Almost at the same time, Augustsson [14] designed the Cayenne language,
which can be understood as a subset of Haskell extended with dependent types.
Cayenne supports general recursion, and allows the user to freely use this construct.
Consequently, Cayenne’s type checking is undecidable, but experiments show that
the type checker “works remarkably well” in practice.

Separate Index Language Dependent ML (DML) [174, 172] is a variant of
ML [120] with support for a restricted form of dependent types. Types in DML
are allowed to depend on terms generated by an index language, which is defined

5Strictly speaking, the translation is only given for the domain-free variant of CPTS, where
λ-abstractions do not have a type annotation. Giving up annotations makes type checking
undecidable, but simplifies the type preservation argument of the CPS translation. See Section
3.2 for details.

51
separately from runtime programs and has no effects. This approach makes it
possible to accommodate dependent types without complicating type checking too
much: for instance, the resulting language does not require the user to provide
type annotations everywhere in her program.

Syntactic Value Restriction Instead of having a distinguished index language,
some languages impose a syntactic value restriction on type dependency. AURA
[98] is a domain-specific language for access control, which combines read-like op-
erations and value-dependent types. An old version of the F⋆ language [155], which
was designed for secure distributed programming, soundly mixes dependency and
different kinds of computational effects by imposing a similar value restriction.

Restricting dependency to values, however, leads to slowdown and inconve-
nience in languages featuring computational irrelevance. Readers with experience
in dependently typed programming would have seen functions requiring arguments
that are only used for type checking. In some languages, such arguments can be
marked irrelevant, and get erased after the type checking phase. This is a prac-
tically useful feature, since it helps us reduce computation steps at runtime, and
often unnecessitates verbose type casting in the implementation phase. However,
when limiting type dependency to values, many computationally useless arguments
can no longer be marked as irrelevant. We invite the interested reader to visit Sec-
tion 3.8 of Sjöberg [150] for a detailed discussion.

Semantic Value Restriction Lepigre [110] extends the syntactic value restric-
tion to a semantic one. He builds a dependently typed version of the λµ-calculus
[131] with ML-like constructors and records, where types may depend on terms that
are observationally equal to values. The relaxation admits strictly more terms in
types, but makes it harder to decide whether dependency on a certain term is
allowed or not. Indeed, the observational equivalence is undecidable, as pointed
out by Miquey [121].

Negative-Elimination-Free Condition A more lightweight, but reasonably
permissive, approach is Herbelin’s negative-elimination-free (NEF) condition [94],
which we saw in Section 1.3. Herbelin classifies a proof p as NEF when evaluation
of p causes no effect. That is, an NEF proof is either a value, or a computation

52
that does not trigger control effects involved in its subterm. The latter rules out
application, which eliminates a function type. Since function types are classified
as “negative” in logics, we call the condition “NEF.”

Miquey [121] incorporates the NEF restriction into his dependent λµµ̃-calculus,
by introducing delimited continuations. This solves the issue with subject reduc-
tion for application, as we saw in Section 1.3. In a more recent study, Miquey
extends the calculus with co-delimited continuations [122], to make the standard
reduction of dependent pairs type-safe. The notion of co-delimited continuations
had never appeared before, but considering the fact that Π and Σ types are the
dual of each other, it is quite natural that their elimination forms require dual
notions to be type-preserving.

Side-effect-free Fragment A third approach to relaxing the value restriction
is to build some form of type-and-effect system, and allow types to depend on
effect-free terms. This idea is used in the dependent calculi proposed by Ou et al.
[129], Casinghino et al. [38], and Gordon [87], which feature non-termination. In
particular, Casinghino et al. distinguish between logical and programmatic frag-
ments of their language, and allow non-termination only in the latter fragement.
By restricting proofs and dependency to the logical fragment, they obtain a lan-
guage that is both powerful as a programming language and consistent as a proof
assistant.

The same idea extends to languages with different kinds of effects. Sheldon
and Gifford [149] observe that first-class modules give rise to type dependency
on module inhabitants. To guarantee static type checking, they propose static
dependent types, which are essentially types dependent on terms having an empty
effect annotation.

Call-By-Push-Value So far, we have looked at languages where type depen-
dency is restricted to a certain fragment defined by the language’s designer. There
are also frameworks that have an intrinsic distinction between pure and effectful
terms. The Call-By-Push-Value (CBPV) calculus of Levy [113] is an instance of
such frameworks. In CBPV, terms are divided into two categories: value terms
(which are pure) and computation terms (which are impure). Using this distinc-

53
tion, Ahman [1, 2] and Vákár [163] independently develop a dependent version of
CBPV, which only allows types to depend on value terms. The restricted depen-
dency helped Ahman and Vákár define a category-theoretical semantics of their
calculus, but it turns out that this single strategy is not sufficient to work with
dependently typed CBPV syntax.

CBPV has a syntactic construct called sequential composition, which takes the
form e1 to x : A in e2. This construct is similar to a call-by-value let expression:
we evaluate the computation e1, bind x to the resulting value, and then evaluate
the computation e2. The challenge stems from the fact that, in a dependently
typed setting, the type of e2 may contain occurreces of x, which would remain free
in the conclusion of the typing rule below:

Γ ⊢ e1 : A Γ, x : A ⊢ e2 : B(x)

Γ ⊢ e1 to x : A in e2 : B(x)

We know that x is to be replaced by the value of e1, but this value is unknown at
type-checking time. Note that we cannot simply substitute e1 for x, because it is
an effectful computation.

Ahman solves this issue by introducing computational Σ types. The idea is to
close off the free variable by existentially quantifying over possible values, which
amounts to saying “the result type depends on some x, though I don’t know what
exactly x will be.” Vákár, on the other hand, gives a different solution to this
problem. He turns effectful e1 into a pure value by thunkifying it (i.e., by delaying
the evaluation of e1 via λ (). e1), and lets the result type depend on the thunk.

The free variable in the conclusion reminds us of the open initial and final
answer types we observed earlier in this chapter. In particular, Ahman’s idea
gives us some hope to obtain a closed initial answer type in programs (7) and
(9), where we have a candidate value for x (the argument to the continuation).
The naïve value instantiation fails because the value is not unique or currently
invisible, but it seems plausible to abstract the value using an existential quantifier.
However, Ahman’s approach implicitly assumes that there is always a candidate
value for the free variable to be closed off. This assumption is inappropriate in
program (8), where no value is substituted for x in the course of evaluation. While
Ahman does not aim to support control operators, our observation suggests that
the computational Σ types would not work for first-class continuations.

54

Chapter 3

The Dellina- Language

In this chapter, we present Dellina-1, a dependently typed language with delimited
control via the shift and reset operators. As we saw in the previous chapter,
unconstrained dependency in the presence of control effects brings unuseful types
and open answer types. To avoid these, we have established three restrictions on
type dependency: (i) types should not depend on impure terms; (ii) continuations
should not be dependent functions; and (iii) final answer types should not refer to
continuations. In Dellina-, we enforce these restrictions by means of typing rules.
To focus our attention to this “real issue”, we equip Dellina- with a minimal set of
features available in the mainstream dependently typed languages, and defer the
discussion of the full language, Dellina, to Chapter 5.

In what follows, we present the specification of Dellina- in three steps: syntax
(Section 3.1), reduction and equivalence (Section 3.2), and typing (Section 3.3).
Then, we prove a series of metatheoretic properties (Section 3.4). Our ultimate
goal is to show that the type system is sound [170], that is, once a program is
judged well-typed, it never “goes wrong” at runtime. Dellina- is a small language,
but it already allows implementing simple programs where dependency and effects
co-exist. We show two such examples (Section 3.5), which build a dependent list
via non-determinism and mutable state.

1The name is inspired by Gallina, the specification language of the Coq proof assistant. The
intention is that our language is a variant of Gallina with DELimited control.

55

Environments Γ ::= • | Γ, x : A
Kinds κ ::= ∗ | □
Types A, α ::= Unit | N | L e | Πx : A.B ρ
Effects ρ ::= ϵ | [α, β]
Values v ::= x | λ x : A. e | rec fΠx :A.B ρ x. e

| () | z | suc v | nil | :: v v v
Terms e ::= v | e e | suc e | :: e e e

| pm x as N in P ret e with z → e | suc n → e
| pm x as L a in P ret e with nil → e | :: m h t → e
| Sk : A→α. e | ⟨e⟩

Figure 3.1: Dellina- Syntax

3.1 Syntax

We define the syntax of Dellina- in Figure 3.1. Throughtout this thesis, we use
a blue, sans-serif font to typeset Dellina- (and Dellina) expressions. The first cat-
egory, Γ, denotes typing environments. We build an environment by extending
an empty environment • with variable declarations of the form x : A. The snoc-
list-style presentation of environments is popular in dependently typed languages,
because each type A may refer to the previously introduced variables. We will
explain how this reference is made available when we present the environment
well-formedness rules in Section 3.3.

Next, we have kinds κ. Since Dellina- does not allow formation of type-level
functions, we only have a base kind ∗, representing the type of types, and a higher
kind □, representing the type of ∗. Note that these kinds never show up in the
user program; they are only used to define the formation rules of types and kinds.

Types A, α consist of primitive inductive datatypes and function types. In-
ductive types include the unit type Unit, the natural number type N, and the
length-indexed list type L e from Section 1.1. Remember that L e is inhabited by
lists containing e natural numbers. Function types take the form Πx : A.B ρ. Here,
A is the domain, B is the co-domain, and ρ is an effect annotation. The annotation
tells us what kind of control effect the function’s body has. When the body is pure,
the annotation is empty (ϵ when written explicitly), and the function type looks
like Πx : A.B. Otherwise, ρ is a pair [α, β] of initial and final answer types, and the

56
whole function type takes the form Πx : A.B[α, β]. As a notational convention, we
usually use greek letters to evoke answer types. Note that effect annotations are
present only in the co-domain part of function types. This is because Dellina- is a
call-by-value language: functions can only ever receive a value, which is free from
effects2. Note also that we allow the variable x to occur free in the co-domain B,
as well as the answer types α and β. When we want to explicitly state the absence
of such dependency (e.g., in the (E-NDApp) typing rule in Figure 3.9), we use
the arrow type A→B ρ instead3.

Lastly, we have terms e, consisting of values v and computations. A value is
either a variable x, an abstraction λ x : A. e, a recursive function rec fΠx :A.B ρ x. e,
or an inductive datum of the value form (i.e., constructor application where all
arguments are values). We use Church-style abstractions, where the bound variable
has an explicit type annotation. This is necessary for deciding typability and
purity of terms [64, 29], as we will detail in the next section. Among inductive
data, () is the unit value, z is the zero constructor, suc v is the successor of v,
nil is an empty list, and :: v0 v1 v2 means consing the value v1 to the list v2,
whose length is v0. For simplicity, we require constructors to be fully applied.
Computations include application, inductive data of the computation form, pattern
matching for natural numbers and lists, and the shift/reset constructs. Dellina-
supports dependent pattern matching [49], a variant of pattern matching constructs
where the result type may depend on the term being analyzed. The dependency
necessitates additional annotations for typing purposes: for instance, when we
pattern match on a natural number e, we use the following syntax:

pm e as x in N ret P with z → e1 | suc n → e2

Here, the type N explicitly tells us that we are inspecting a natural number, and
P denotes the return type of the whole construct. What is different from non-
dependent pattern matching is that P may contain free occurrences of the variable
x, which abstracts over all possible scrutinees (i.e., natural numbers). The corre-
sponding construct for lists can be understood in a similar way. The difference is

2As we will see in Chapter 6, the call-by-name variant of Dellina- has function types whose
domain carries an effect annotation.

3When ρ = [α, β], A→B ρ is equivalent to A/α→B/β of Danvy and Filinski [55] and A α→β B
of Biernacka and Biernacki [27].

57
that P may depend on two variables: a, which abstracts over length indices, and
x, which abstracts over lists.

As a notational convention, we use the metavariable t to mean an expression
of any category. That is, t can be a kind, a type, or a term.

3.2 Evaluation, Reduction, and Equivalence

We next define rules for running Dellina- expressions. Following previous studies
[151, 38, 37, 150], we define two kinds of reduction: one for runtime evaluation, and
the other for type checking. Having separate reductions has various benefits when
working with dependent types; we will motivate this at the beginning of Section
3.2.2.

3.2.1 Runtime Evaluation

In Figure 3.2, we present evaluation contexts, which guide us searching for redexes
(reducible expressions) in a deterministic manner. The reader will find that there
are two kinds of contexts, E and F. These contexts denote general and pure con-
texts, repectively. Observe that the definition of F lacks the pattern ⟨F⟩. This
ensures that pure contexts never contain a reset surrounding a hole, which, as we
will see shortly, helps us define the elimination rule of the shift operator. All other
patterns are shared by both kinds, imposing a call-by-value, left-to-right evalua-
tion strategy. For instance, when we have an application e0 e1, we first evaluate
the function e0, which corresponds to the context E e, then evaluate the argument
e1, which corresponds to v E.

The plug function tells us how to build a term by plugging a term into the hole
of a pure evaluation context4. By observing the definition, the reader will find that
evaluation contexts are represented “inside-out”, that is, the top-level shape of an
evaluation context determines the shape of the term to be plugged into, not that
of the resulting term. As a notational convenience, we often write F[e] to mean
the result of plug F e.

4The definition extends to E by adding the clause plug ⟨E⟩ e = plug E ⟨e⟩, but we do not need
this variant in the reduction rules defined below.

58

Evaluation Contexts E, F

E ::= [] | E e | v E

| suc E | :: E e e | :: v E e | :: v v E

| pm E as x in N ret P with z → e | suc n → e

| pm E as x in L a ret P with nil → e | :: m h t → e

| ⟨E⟩
F ::= [] | F e | v F

| suc F | :: F e e | :: v F e | :: v v F

| pm F as x in N ret P with z → e | suc n → e

| pm F as x in L a ret P with nil → e | :: m h t → e

Plugging Function plug F e = e′

plug [] e = e

plug (F e1) e = plug F (e e1)

plug (v0 F) e = plug F (e0 e)

plug (suc F) e = plug F (suc e)

plug (:: F e1 e2) e = plug F (:: e e1 e2)

plug (:: e0 F e2) e = plug F (:: e0 e e2)

plug (:: e0 e1 F) e = plug F (:: e0 e1 e)

plug (pm F as x in N ret P with

z → e1 | suc n → e2) e
=

plug F (pm e as x in N ret P with

z → e1 | suc n → e2)

plug (pm F as x in L a ret P with

nil → e1 | :: m h t → e2) e
=

plug F (pm e as x in L a ret P with

nil → e1 | :: m h t → e2)

Figure 3.2: Dellina- Evaluation Contexts

59

Reduction Rules e ▷ e′

(λ x : A. e) v ▷β e[v/x]

(rec fΠx :A.B ρ x. e) v ▷µ e[rec fΠx :A.B ρ x. e/f, v/x]

pm z as x in N ret P with

z → e1 | suc n → e2
▷ι e1

pm suc v as x in N ret P with

z → e1 | suc n → e2
▷ι e2[v/n]

pm nil as x in L a ret P with

nil → e1 | :: m h t → e2
▷ι e1

pm :: v0 v1 v2 as x in L a ret P with

nil → e1 | :: m h t → e2
▷ι e2[v0/m, v1/h, v2/t]

⟨F[Sk : A→α. e]⟩ ▷S ⟨e[λ x : A. ⟨F[x]⟩/k]⟩
⟨v⟩ ▷R v

Single-step Evaluation

e ▷ e′

E[e] ▷ E[e′]
(R-Eval)

Multi-step Evaluation e ▷⋆ e′

e ▷⋆ e
(RS-Refl)

e0 ▷ e1 e1 ▷⋆ e2
e0 ▷⋆ e2

(RS-Trans)

Figure 3.3: Dellina- Runtime Reduction Rules

60
We next define reduction rules in Figure 3.3. These rules take the form e ▷ e′,

where e is a redex and e′ is a reduct. The first rule is the familar β-reduction,
which happens when a function is applied to a value. We use the notation e[v/x]

to mean capture-avoiding substitution of v for free occurrences of x in e. The
µ-reduction is similar to β-reduction, and is used for application of a recursive
function; notice that the rule involves an extra substitution for the name f of the
function. We have four rules for pattern matching, called ι-rules, which choose an
appropriate branch and perform substitution for pattern variables. Since Dellina-
is call-by-value, ι-rules only apply when all constructor arguments have reduced
to values. The last two rules account for the control constructs. We eliminate a
shift operator when it is surrounded by an F-context and a reset clause. In the
post-reduction expression, k is replaced by the function λ x : A. ⟨F[x]⟩ representing
the context that was surrounding the shift construct. The last rule lets us drop
a reset surrounding a value. This reflects the fact that a value-surrounding reset

is redundant, since values cannot have any control effects.
Rule (R-Eval) defines single-step evaluation: if e reduces to e′ via one of

the rules listed in Figure 3.3, then E[e] reduces to E[e′]. Single-step evaluation is
extended to multi-step evaluation e ▷⋆ e′ by the reflexivity rule (RS-Refl), and
the transitivity rule (RS-Trans).

3.2.2 Parallel Reduction

As we saw in Section 2.3, type checking a dependently typed program involves
reduction of terms that appear in types. This makes the notion of type equivalence
dependent on reduction. What this implies is that the choice of reduction strategy
affects typability of programs: the more terms a strategy rewrites, the more types
it equates. Consider for instance the following terms:

λ x : N. 1 + 1 λ x : N. 2

Under the call-by-value strategy, we do not reduce under binders, because we do
not have an evaluation context of the form λ x : A.E. Therefore, the former term
does not reduce to the latter. This means, if we defined equivalence in terms
of runtime evaluation, we would not be able to equate types dependent on these
terms.

61
Call-by-value reduction also poses several challenges in the proof of the preser-

vation theorem. We defer the details until Section 3.4.5, but the intuition is that
reduction of terms requires corresponding reduction of their type, and the type-
level reduction is not always valid under the call-by-value strategy.

For these reasons, we define a more generous notion of reduction, called parallel
reduction [158], and discuss equivalence of expressions in terms of this reduction.

Figures 3.4 – 3.6 show the definition of parallel reduction t ▷p t′. As the name
suggests, parallel reduction reduces all subterms—including those under binders,
and those serving as type annotations—in parallel. Reduction of annotations
means that parallel reduction is defined not only on terms, but on types as well.
However, what happens at the level of types is actually term-level reduction, be-
cause Dellina- has no construct that gives rise to type-level computation. That
is, the reduction on types simply recurses on the structure of types, and when it
encounters L e, it applies term-level reduction to the length index e. Note that
reduction on a non-empty effect annotation [α, β] is defined as [α′, β′] when α ▷p α

′

and β ▷p β′.
We will hereafter write t ▷⋆p t′ to mean the reflexive and transitive closure of

the ▷p-relation, as defined by rules (PS-Refl) and (PS-Trans).

3.2.3 Equivalence

Using prarllel reduction, we define the notion of equivalence (Figure 3.7). We
say two expressions t1, t2 are equivalent when they parallel-reduce to a common
expression t. Since we are using parallel reduction, we can equate the terms λ x :

N. 1 + 1 and λ x : N. 2, as well as the types A(λ x : N. 1 + 1) and A(λ x : N. 2). The
derived type equivalence is used in the type conversion rule, as we will see in the
next section.

An important design decision of our equivalence is that it is untyped, i.e., we
do not require the left- and right-hand sides of ≡ to have the same type, or even
be well-typed. This is in contrast to the above-mentioned previous studies, which
require t1 and t2 to have some (possibly different) type. The reason we use an
untyped equivalence is that the typing preconditions on the two expressions would
introduce an unfortunate circularity into the type preservation argument of the
CPS translation. This problem has been noticed by others [23, 34], and will be

62

t ▷p t
(P-Refl)

e ▷p e′

L e ▷p L e′
(P-List)

A ▷p A′ B ▷p B′ ρ ▷p ρ′

Πx : A.B ρ ▷p Πx : A′.B′ ρ′
(P-Pi)

A ▷p A′ e ▷p e′

λ x : A. e ▷p λ x : A′. e′
(P-Abs)

Πx : A.B ρ ▷p Πx : A′.B′ ρ′ e ▷p e′

rec fΠx :A.B ρ x. e ▷p rec fΠx :A′.B′ ρ′ x. e′
(P-Rec)

e0 ▷p e′0 e1 ▷p e′1
e0 e1 ▷p e′0 e′1

(P-App)

e0 ▷p e′0 v1 ▷p v′1
(λ x : A. e0) v1 ▷p e′0[v

′
1/x]

(P-AppBeta)

Πx : A.B ρ ▷p Πx : A′.B′ ρ′

e0 ▷p e′0 v1 ▷p v′1
(rec fΠx :A.B ρ x. e0) v1 ▷p e′0[rec fΠx :A′.B′ ρ′ x. e′0/f, v

′
1/x]

(P-AppMu)

Figure 3.4: Dellina- Parallel Reduction (Types and λ-terms)

63

e ▷p e′

suc e ▷p suc e′
(P-Suc)

e0 ▷p e′0 e1 ▷p e′1 e2 ▷p e′2
:: e0 e1 e2 ▷p :: e′0 e′1 e′2

(P-Cons)

e ▷p e′ P ▷p P′ e1 ▷p e′1 e2 ▷p e′2
pm e as x in N ret P with z → e1 | suc n → e2 ▷p

pm e′ as x in N ret P′ with z → e′1 | suc n → e′2

(P-MatchN)

e1 ▷p e′1
pm z as x in N ret P with z → e1 | suc n → e2 ▷p e′1

(P-MatchZero)

v ▷p v′ e2 ▷p e′2
pm suc v as x in N ret P with z → e1 | suc n → e2 ▷p e′2[v

′/n]
(P-MatchSuc)

e ▷p e′ P ▷p P′ e1 ▷p e′1 e2 ▷p e′2
pm e as x in L a ret P with nil → e1 | :: m h t → e2 ▷p

pm e′ as x in L a ret P′ with nil → e′1 | :: m h t → e′2

(P-MatchL)

e1 ▷p e′1
pm nil as x in L a ret P with nil → e1 | :: m h t → e2 ▷p e′1

(P-MatchNil)

v0 ▷p v′0 v1 ▷p v′1 v2 ▷p v′2 e2 ▷p e′2
pm :: v0 v1 v2 as x in L a ret P with nil → e1 | :: m h t → e2 ▷p

e′2[v
′
0/m, v′1/h, v

′
2/t]

(P-MatchCons)

Figure 3.5: Dellina- Parallel Reduction (Inductive Data)

64

A→α ▷p A′ →α′ e ▷p e′

Sk : A→α. e ▷p Sk : A′ →α′. e′
(P-Shift)

e ▷p e′

⟨e⟩ ▷p ⟨e′⟩
(P-Reset)

A ▷p A′ F[x] ▷p F′[x] e ▷p e′

⟨F[Sk : A→α. e]⟩ ▷p ⟨e′[λ x : A′.F′[x]/k]⟩
(P-ResetS)

v ▷p v′

⟨v⟩ ▷p v′
(P-ResetV)

t ▷⋆p t
(PS-Refl)

t0 ▷p t1 t1 ▷⋆p t2

t0 ▷⋆p t2
(PS-Trans)

Figure 3.6: Dellina- Parallel Reduction (Control Operators, Reflexibity, Transitiv-
ity)

t0 ▷⋆p t t1 ▷⋆p t

t1 ≡ t2
(≡)

Figure 3.7: Dellina- Equivalence

65
elaborated in Section 4.5.

Remark In dependently typed languages, reduction is often defined on an im-
plicitly typed version of the language, where all type annotations have been erased.
This is because annotations do not affect the runtime behavior of programs; they
are present only for the type-checking purposes. Equivalence of the explicitly typed
language, then, is defined via an erasure function | t |: two expressions t1, t2 are
equivalent if their annotation-free counterparts | t1 |, | t2 | reduce to a common
expression t.

We have designed Dellina- as an explicitly typed language, and defined re-
duction directly on this language. The reason mainly comes from the presence of
control effects and our fine-grained purity distinction. As reported in the literature
[12], the absence of type annotations may allow terms to have multiple derivations
concluding with different types. Consider the following function5:

λ f. λ g. :: 1 2 ⟨f 3 + g 4⟩

Since addition reduces to a natural number, we know that either f, or g, or both,
change the answer type in the course of evaluation. However, we do not know
exactly which. As a consequence, the two types below can both be assigned to the
above function:

(N→N[N, L 1])→ (N→N)→ L 2 and (N→N)→ (N→N[N, L 1])→ L 2

This poses a problem to the type-preservation argument of the CPS translation.
Since our translation converts function application differently depending on the
function’s purity, the above function is mapped to two distinct CPS images. As
a consequence, we lose the guarantee that the translation preserves equivalence,
at least in the usual sense. If we define a more advanced notion of equivalence
(via logical relations [135]), it might be possible to relate CPS images of different
derivations [29], but here we avoid the additional complication by simply adding

5This is a modified version of the example from Asai and Uehara [12], who develop an effect-
annotating algorithm for a simply and implicitly typed language with shift and reset. Their
algorithm is designed to yield as many pure terms as possible, but this example shows that there
is no best annotation in general.

66
type annotations.

3.3 Typing

In this section, we define typing rules of Dellina-. The rules play a key role in our
language, as they enforce the three restrictions on type dependency. Remember
that our motto is:

1. Types do not depend on impure terms;

2. Continuations are non-depnedent functions; and

3. Final answer types do not refer to continuations.

As we will see below, we rule out dependency on impure terms by defining
separate rules for the dependent and non-dependent forms of elimination constructs
(i.e., application and pattern matching). The other two dependencies are excluded
by two premises we put in the rule for the shift construct.

In Figure 3.8, we define well-formed typing environments, kinds, and types.
The first two rules are completely standard. (G-Empty) tells us that an empty
environment • is unconditionally well-formed. (G-Ext) states that an extended
context Γ, x : A is well-formed if Γ is well-formed, and the type A is well-formed in
Γ. As the second premise suggests, determining well-formedness of types requires
an environment, since types may contain terms. Hence, when we extend an envi-
ronment with a type A, we must make sure that A only refers to variables that are
currently available. For instance, when Γ = •, a : N, we can extend Γ with x : L a,
but not x : L b.

The next three rules, (K-Star), (T-Unit), and (T-Nat), share a common
pattern: they all require well-formedness of the typing environment Γ in the con-
clusion. As these rules all deal with a constant, we do not actually use the en-
vironment to determine the well-formedness of the subject, but we still need the
premise to guarantee that every derivation uses a well-formed environment.

Rule (T-List) tells us how to form a list type L e. We can see that the rule
requires e to be a pure term of type N. The purity restriction comes from our
principle that types may depend only on pure terms.

67

Well-formed Environments ⊢ Γ

⊢ •
(G-Empty)

⊢ Γ Γ ⊢ A : ∗
⊢ Γ, x : A

(G-Ext)

Well-formed Kinds Γ ⊢ κ : □

⊢ Γ

Γ ⊢ ∗ : □ (K-Star)

Well-formed Types Γ ⊢ A : ∗

⊢ Γ

Γ ⊢ Unit : ∗
(T-Unit)

⊢ Γ

Γ ⊢ N : ∗
(T-Nat)

Γ ⊢ e : N
Γ ⊢ L e : ∗

(T-List)

Γ ⊢ A : ∗ Γ, x : A ⊢ B : ∗ Γ, x : A ⊢ ρ

Γ ⊢ Πx : A.B ρ : ∗
(T-Pi)

Figure 3.8: Dellina- Well-formed Environments, Kinds and Types

68
Well-typed Terms Γ ⊢ e : A ρ

⊢ Γ x : A ∈ Γ

Γ ⊢ x : A
(E-Var)

Γ, x : A ⊢ e : B ρ

Γ ⊢ λ x : A. e : Πx : A.B ρ
(E-Abs)

Γ, f : Πx : A.B ρ, x : A ⊢ e : B ρ

Γ ⊢ Πx : A.B ρ : ∗ guard(f, x, e, { })
Γ ⊢ rec fΠx :A.B ρ x. e : Πx : A.B ρ

(E-Rec)

Γ ⊢ e0 : (Πx : A.B τ) ρ Γ ⊢ e1 : A

Γ ⊢ B[e1/x] : ∗ ν = comp(ρ, τ [e1/x]) Γ ⊢ ν

Γ ⊢ e0 e1 : B[e1/x] ν
(E-DApp)

Γ ⊢ e0 : (A→B τ) ρ Γ ⊢ e1 : A σ ν = comp(ρ, σ, τ)

Γ ⊢ e0 e1 : B ν
(E-NDApp)

Figure 3.9: Dellina- Typing Rules (Lambda Terms)

The last rule (T-Pi) accounts for function types. A function type Πx : A.B ρ

is well-formed if its subcomponents A, B, and ρ are well-formed. The notion of
well-formed effect annotations is simple: Γ ⊢ ρ trivially holds when ρ = ϵ, and
requires Γ ⊢ α : ∗ and Γ ⊢ β : ∗ when ρ = [α, β]. An important observation is
that well-formedness of B and ρ is checked in the extended environment Γ, x : A,
judstifying reference to x from these components.

Now we look at typing rules for terms. Let us sort the rules into several groups,
and elaborate them one by one.

Values We begin with the rules for values, which we show (together with appli-
cation rules) in Figure 3.9. A variable x has type A if there is a declaration x : A

in the environment Γ. An abstraction is given two different types depending on
the purity of its body e. If e is a pure term of type B (i.e., if ρ = ϵ), the whole

69
abstraction is given a pure function type Πx : A.B. If e is an impure term that
modifies the answer type from α to β (i.e., if ρ = [α, β]), we give the abstraction
an impure function type Πx : A.B[α, β].

The rule for recursive functions is different from abstractions in three ways.
First, the rule allows references to f from the body e by making the type information
of f available during type checking of e. Second, the rule requires the type Πx :

A.B ρ of the function to be well-formed under Γ, in order to exclude dependency
of B on f (which would be allowed by the first premise). Thirdly, the rule checks if
f is guarded in the body e, via the premise guard(f, x, e,V). The guard condition
ensures termination of recursive functions by requiring every recursive call to be
made on a structurally smaller argument [83]. Among the four components, f is
the name of the recursive function, x is its parameter, e is a subexpression of f’s
body, and V is a set of variables f is allowed to be applied to. This variable set is
initially an empty set, and is extended while we recurse on the body e. Formally,
the guard condition is defined as follows:

• When f does not appear in e, guard(f, x, e,V) holds without any condition.

• When e = L e′, guard(f, x, e′,V).

• When e = Πx′ : A.B ρ, guard(f, x,A,V), guard(f, x,B,V), and guard(f, x, ρ,V).

• When e = λ x′ : A. e′, guard(f, x,A,V) and guard(f, x, e′,V).

• When e = rec f ′Πx :A′.B′ ρ′ x
′. e′, guard(f, x,A′,V), guard(f, x,B′,V), guard(f, x, ρ′,V),

and guard(f, x, e′,V).

• When e = e0 e1,

– If e0 = f, e1 ∈ V.

– Otherwise, guard(f, x, e0,V) and guard(f, x, e1,V).

• When e = suc e′, guard(f, x, e′,V).

• When e = :: e0 e1 e2, guard(f, x, e0,V), guard(f, x, e1,V), and guard(f, x, e2,V).

• When e = pm y as x′ in N ret P with z → e1 | suc n → e2,

70
– If y = x, guard(f, x, e1,V) and guard(f, x, e2,V ∪ {n}).

– Otherwise, guard(f, x, e1,V) and guard(f, x, e0,V).

• When e = pm y as x′ in L a ret P with nil → e1 | :: m h t → e2,

– If y = x, guard(f, x, e1,V) and guard(f, x, e2,V ∪ {t}).

– Otherwise, guard(f, x, e1,V) and guard(f, x, e2,V).

• If e = Sk : A→α. e′ or ⟨e′⟩, guard(f, x, e′,V).

Observe that, in the case where e is a pattern matching scrutinizing x, we use
an extended variable set V ∪ {n} or V ∪ {t} for guardedness check on the second
branch e2. The added variables are called recursive arguments of suc and ::, as they
inhabit the same datatype as the whole pattern. Now, if we look at the application
case f e1, we can see that the guard condition holds if e1 is a member of V, i.e.,
if it is a recursive argument of the datum we are scrutinizing. Since a recursive
argument is smaller than the scrutinee by one constructor, any recursive function
that passes guardedness checking must terminate.

Application We next look at rules for application, which is defined at the bot-
tom of Figure 3.9. The first one, (E-DApp), derives a dependent application. We
see that the function e0 has a dependent Π type, which means the result type of
this application involves substitution of the argument e1 for the free occurrences
of x in B. Since we do not allow dependency on impure terms, we require that the
argument e1 is a pure term, that is, its derivation ends with a judgment that has
no effect annotation.

The second rule, (E-NDApp), derives a non-dependent application. Here, we
see that the argument e1 is potentially an impure term, which means it is unsafe to
substitute this term into the result type. Therefore, we require that the function e0

has a non-dependent → type, that is, the co-domain does not refer to the argument.
By separating dependent and non-dependent rules in this way, we obtain the

guarantee that, if an application is judged well-typed, then it can never be the case
that the result type depends on an impure argument. However, these rules are not
sufficient to ensure the result type and effect annotation are well-formed; we need

71

⊢ Γ

Γ ⊢ () : Unit
(E-Unit)

⊢ Γ

Γ ⊢ z : N
(E-Zero)

Γ ⊢ e : N ρ

Γ ⊢ suc e : N ρ
(E-Suc)

⊢ Γ

Γ ⊢ nil : L z
(E-Nil)

Γ ⊢ e0 : N Γ ⊢ e1 : N ρ Γ ⊢ e2 : (L e0) σ

τ = comp(ρ, σ)

Γ ⊢ :: e0 e1 e2 : (L (suc e0)) τ
(E-Cons)

Figure 3.10: Dellina- Typing Rules (Inductive Data)

explicit proofs Γ ⊢ B[e1/x] : ∗ and Γ ⊢ τ [e1/x] in the dependent rule (E-DApp)6.
The need for these premises comes from the call-by-value nature of Dellina-: when
e1 is a non-value, some reduction that takes place in B can be blocked by the
substitution B[e1/x]. We will revisit this issue in Section 3.4.3.

Turning our viewpoint to the effect annotations, we see that the chaining of
answer types goes the same way as we described in Section 2.1. In (E-DApp),
the argument e1 is a pure term, hence the composition operator only takes two
arguments: ρ, which represents the effect of the function e0, and τ [e1/x], which
represents the effect of its body. We pass the two effect arguments in this order be-
cause evaluation of the function happens before that of the body. In (E-NDApp),
the effect σ of the argument comes in between the other two effects. So, if all these
effects are non-empty, we will have:

ρ = [γ, δ], σ = [β, γ], τ = [α, β], and ν = [α, δ]

for some α, β, γ, and δ.

Inductive Data Having seen how to type application, it would be easy to see
how to type inductive data. In Figure 3.10, we present rules for unit, natural
numbers, and indexed lists. Rules (E-Unit) and (E-Zero) are similar to those

6Substitution on effect annotations distributes to their constituent types, if any. That is,
τ [e1/x] = ϵ when τ = ϵ and [α[e1/x], β[e1/x]] when τ = [α, β].

72
for constant kinds and types: they have a premise stating that the environment
Γ is well-formed. (E-Suc) is also simple, but it would be worth noting that the
effect of suc e is determined by the effect of e, since evaluation of suc e requires
evaluation of e. (E-Nil) and (E-Cons) tell us how list indices are determined: an
empty list is indexed by z, and consing an element to an e0-indexed list yields a
suc e0-indexed list. Notice that the rule does not allow impure e0, because it would
make the result type L (suc e0) ill-formed7. The other two arguments, e1 and e2,
may be effectful, as long as their effects ρ and σ compose.

Pattern Matching What we saw in Figure 3.10 are the introduction rules of
datatypes. The elimination rules, namely rules for pattern matching, are shown in
Figure 3.11. As mentioned earlier, Dellina- supports dependent pattern matching,
where the return type P may depend on the scrutinee. Thus, we have two rules
for each pattern matching construct, similarly to application. Let us look at (E-

DMatchN), where we scrutinize a pure term e of type N. The first branch, e1,
is what we compute when e has evaluated to zero. We find that the rule requires
e1 to have type P[z/x] (we are ignoring the effect annotation for readability), i.e.,
a variant of the return type P where x is replaced by the current pattern z. The
second branch, e2, is what we compute when e has evaluated to the successor of
some natural number n. We see that the rule requires e2 to have type P[suc n/x]

under the assumption n : N, that is, the variable x is instantiated to an arbitrary
non-zero number. If both branches have the correct type, we conclude that the
whole pattern matching construct has type P[e/x], which depends on the actual
scrutinee e.

The three different instantiations of variable x allow us to view the typing rule
as an induction principle of natural numbers: if P(z) holds, and P(n + 1) holds
for an arbitrary n, then P(e) holds for any natural number e. Indeed, we use
symbol P to communicate with the reader that it corresponds to a predicate. The
dependency is however not allowed in (E-NDMatchN), where e is an impure
term. The reason is, of course, that substitution of an impure e into P results in

7We can see that the argument e0 is present only for the type checking purpuse. Indeed,
if the list type had no length index, the argument would be redundant. This means e0 is not
supposed to be used in the computation, i.e., it is computationally irrelevant. Therefore, the
purity restriction on e0 does not limit computational expresiveness of the language.

73

Γ ⊢ e : N Γ, x : N ⊢ P : ∗
Γ ⊢ e1 : P[z/x] ρ[z/x] Γ, n : N ⊢ e2 : P[suc n/x] ρ[suc n/x]

Γ ⊢ P[e/x] : ∗ Γ ⊢ ρ[e/x]

Γ ⊢ pm e as x in N ret P with z → e1 | suc n → e2 : P[e/x] ρ[e/x]
(E-DMatchN)

Γ ⊢ e : N ρ Γ ⊢ P : ∗
Γ ⊢ e1 : P σ Γ, n : N ⊢ e2 : P σ τ = comp(ρ, σ)

Γ ⊢ pm e as _ in N ret P with z → e1 | suc n → e2 : P τ
(E-NDMatchN)

Γ ⊢ e : L n Γ, a : N, x : L a ⊢ P : ∗
Γ ⊢ e1 : P[z/a, nil/x] ρ[z/a, nil/x]

Γ, m : N, h : N, t : L m ⊢ e2 : P[suc m/a, :: m h t/x] ρ[suc m/a, :: m h t/x]

Γ ⊢ P[n/a, e/x] : ∗ Γ ⊢ ρ[n/a, e/x]

Γ ⊢ pm e as x in L a ret P with nil → e1 | :: m h t → e2 : P[n/a, e/x] ρ[n/a, e/x]
(E-DMatchL)

Γ ⊢ e : (L n) ρ Γ ⊢ P : ∗
Γ ⊢ e1 : P σ Γ, m : N, h : N, t : L m ⊢ e2 : P σ τ = comp(ρ, σ)

Γ ⊢ pm e as _ in L _ ret P with nil → e1 | :: m h t → e2 : P τ
(E-NDMatchL)

Figure 3.11: Dellina- Typing Rules (Pattern Matching)

74

Γ, k : A→α ⊢ e : β or Γ, k : A→α ⊢ e : B[B, β]

Γ ⊢ β : ∗
Γ ⊢ Sk : A→α. e : A[α, β]

(E-Shift)

Γ ⊢ e : A or Γ ⊢ e : B[B,A]

Γ ⊢ ⟨e⟩ : A
(E-Reset)

Γ ⊢ e : A ρ Γ ⊢ B : ∗ Γ ⊢ σ

A ≡ B ρ ≡ σ

Γ ⊢ e : B σ
(E-Conv)

Figure 3.12: Dellina- Typing Rules (Control Operators and Conversion)

an ill-formed type.
Pattern matching on lists has two similar rules, but there is one difference: in

the dependent case, (E-DMatchL), the result type P depends also on the length
of the scrutinee, which is represented by variable a. The variable is replaced by
z when type checking the first branch e1, and by suc m when type checking the
second branch e2. Note that there is no need to check the purity of the length n

of the scrutinee e, since well-typedness of e implies well-formedness of its type L n

(by the regularity property proved in Section 3.4.2), and well-formedness of L n

implies purity of n (by (T-List)).

Control Operators and Conversion Lastly, we present rules for control con-
structs and type conversion in Figure 3.12. Among the three rules, (E-Shift)

imposes the two restrictions on the continuation-related dependency, which we
have not yet addressed so far. The rule tells us that, a shift operator may either
have a pure body of type β, or have an impure body that requires an empty context
and returns an answer of type β. In either case, we type check the body e with the
assumption that the continuation k has a non-dependent arrow type A→α. This
ensures that the initial answer type α of the shift construct is closed under the
environment Γ. The rule further has a well-formed precondition Γ ⊢ β : ∗ on β.
This guarantees that the final answer type β of the shift construct is closed under
Γ. The next rule, (E-Reset), is identical to the rule from simply typed calculi.

75
Similarly to (E-Shift), we accept both a pure body and an impure body, and in
the pure case, the type of the whole reset construct is simply determined by the
type of its body.

The conversion rule plays a critical role in a dependently typed language, as
it lets us convert between two syntactically different but semantically equivalent
types. Specifically, we can change the type of a term from A to B as long as A ≡ B.
For instance, when we have a function f expecting an argument of type L z, and
a term e of type L ((λ x : N. x) z), we can make the application f e well-typed by
casting the type of e to L z, since L ((λ x : N. x) z) ▷⋆p L z. Note that the rule
accounts for conversion of effect annotations as well: we say [α, β] ≡ [α′, β′] holds
when α ≡ α′ and β ≡ β′.

3.4 Metatheory

In this section, we prove metatheoretic properties of Dellina-. Our goal is to show
that the type system of Dellina- is sound. Following Wright and Felleisen [170],
we prove type soundness by showing preservation and progress. Compared to
the simply typed, effect-free setting (c.f., [134]), we have to deal with subtleties
introduced by dependent types, and prove additional statements about impure
terms. Fortunately, our “pure terms only” restriction on type dependency allows
us to combine the proof techniques from other call-by-value dependent languages
[151, 38, 37, 150], and simply typed languages with control effects [10].

3.4.1 Confluence

Our first goal is to show the confluence property of parallel reduction. Confluence
states that if an expression e reduces to e1 and e2, then these reducts must reduce
to a common expression e′. This property is necessary for showing transitivity
of equivalence, which we rely on in the preservation proof. We proceed by first
proving basic facts about substitution and reduction, and then proving the main
theorem.

76
3.4.1.1 Substitution and Parallel Reduction

Lemma 3.4.1 (Substitution of Computations and Parallel Reduction). If e ▷p e′,
then t[e/x] ▷p t[e′/x].

Proof. The proof is by induction on the structure of t.

Case 1: t = x

This case is trivial, since x[e/x] = e and e ▷p e′.

Case 2: t = y where y ̸= x

This case is also trivial, since y[e/x] = y[e′/x] = y.

Case 3: t = λ x′ : A. e0

By the induction hypothesis, we have e0[e/x] ▷ e0[e
′/x]. The goal follows by

(P-Abs). All other cases are similar.

Lemma 3.4.2 (Substitution of Values and Parallel Reduction). If t ▷p t′, then
t[v/x] ▷p t′[v/x].

Proof. The proof is by induction on the derivation of t ▷p t′.

Case 1: (P-AppBeta)

Our goal is to show

((λ x′ : A. e0) v1)[v/x] ▷p (e′0[v
′
1/x

′])[v/x]

By the induction hypothesis, we have

e0[v/x] ▷p e′0[v/x] and v1[v/x] ▷p v′1[v/x]

Using (P-AppBeta), we obtain

((λ x′ : A. e0) v1)[v/x] ▷p e′0[v/x][v
′
1[v/x]/x

′]

The goal follows by the definition of substitution.

Lemma 3.4.3 (Substitution and Parallel Reduction). If t ▷p t′ and v ▷p v′, then
t[v/x] ▷p t′[v′/x].

77
Proof. This is a direct consequence of Lemma 3.4.1 and Lemma 3.4.2: we can
either first reduce t[v/x] to t[v′/x], and then reduce the result to t′[v′/x], or the
other way around.

3.4.1.2 Confluence of Reduction

Lemma 3.4.4 (One-step Diamond Property of ▷p). If t ▷p t1 and t ▷p t2, then
there exists some t′ such that t1 ▷p t′ and t2 ▷p t′.

Proof. The proof is by induction on the structure of t. Following Sjöberg et al.
[151], we consider all possible combinations of the two reductions t ▷⋆ t1 and
t ▷⋆ t2.

Case 1: t = e0 e1

Sub-Case 1: One reduction is (P-Refl)

This case is trivial.

Sub-Case 2: Both reductions are (P-App)

We have

e0 e1 ▷p e00 e10

where e0 ▷p e00 and e1 ▷p e10, and

e0 e1 ▷p e01 e11

where e0 ▷p e01 and e1 ▷p e11. By the induction hypothesis on e0, there exists some
e′0 such that e00 ▷p e′0 and e01 ▷p e′0. Similarly, by the induction hypothesis on e1,
there is an e′1 such that e10 ▷p e′1 and e11 ▷p e′1. Now, we can derive e00 e10 ▷p e′0 e

′
1

and e01 e11 ▷p e′0 e′1 using (P-App), which is exactly what we want.

Sub-Case 3: One reduction is (P-AppBeta)

In this case, t must have the form (λ x : A. e0) v1.

Sub-Sub-Case 1: The other reduction is (P-App)

We have

(λ x : A. e0) v1 ▷p e00[v10/x]

78
and

(λ x : A. e0) v1 ▷p (λ x : A1. e01) v11

By the induction hypothesis, there is an e′0 such that e00 ▷p e′0 and e01 ▷p e′0.
We also have a similar v′1. Now, the substitution lemma (Lemma 3.4.3) gives us
e0[v1/x] ▷p e′0[v

′
1/x], and (P-AppBeta) gives us (λ x : A1. e01) v11 ▷p e′0[v

′
1/x],

which imply the goal.

Sub-Sub-Case 2: The other reduction is (P-AppBeta)

We have

(λ x : A0. e0) v1 ▷p e00[v10/x]

and

(λ x : A1. e0) v1 ▷p e01[v11/x]

By the induction hypothesis, there is an e′0 such that e00 ▷p e′0 and e01 ▷p e′0. We
also have a similar v′1. By Lemma 3.4.3, we know that e00[v10/x] ▷p e′0[v

′
1/x] and

e01[v11/x] ▷p e′0[v
′
1/x]. Therefore the statement holds.

Sub-Case 4: One reduction is (P-AppMu)

This case is analogous to the β-reduction case.

Case 2: e = ⟨e⟩

Sub-Case 1: One reduction is (P-Refl)

This case is trivial.

Sub-Case 2: Both reductions are (P-Reset)

We have

⟨e⟩ ▷p ⟨e0⟩ and ⟨e⟩ ▷p ⟨e1⟩

By the induction hypothesis, there is an e′ such that e0 ▷p e′ and e1 ▷p e′. The
goal follows by (P-Reset).

Sub-Case 3: One reduction is (P-ResetS)

In this case, t must have the form ⟨F[Sk. e]⟩.

79
Sub-Sub-Case 1: The other reduction is (P-Reset)

We have

⟨F[Sk : A→α. e]⟩ ▷p ⟨e0[λ x : A0. ⟨F0[x]⟩/k]⟩

and

⟨F[Sk : A→α. e]⟩ ▷p ⟨F1[Sk : A1 →α1. e1]⟩

By the induction hypothesis, there is an A′ such that A0 ▷p A′ and A1 ▷p A′.
We have similar F′[x] and e′. The substitution lemma (Lemma 3.4.3) gives us
⟨e0[λ x : A. ⟨F0[x]⟩/k]⟩ ▷p ⟨e′[λ x : A′. ⟨F′[x]⟩/k]⟩ (note that F[e] = F[x][e/x]). Using
(P-ResetS), we can also derive ⟨F1[Sk : A→α. e1]⟩ ▷p ⟨e′[λ x : A′. ⟨F′[x]⟩/k]⟩,
which completes the proof.

Sub-Sub-Case 2: The other reduction is (P-ResetS)

We have

⟨F[Sk : A→α. e]⟩ ▷p ⟨e0[λ x : A0. ⟨F0[x]⟩/k]⟩

and

⟨F[Sk : A→α. e]⟩ ▷p ⟨e1[λ x : A1. ⟨F1[x]⟩/k]⟩

By the induction hypothesis, there is an A′ such that A0 ▷p A
′ and A1 ▷p A

′. We have
similar F′ and e′. By Lemma 3.4.3, we know that ⟨e0[λ x : A. ⟨F0[x]⟩/k]⟩ ▷p ⟨e′[λ x :
A′. ⟨F′[x]⟩/k]⟩ and ⟨e1[λ x : A. ⟨F1[x]⟩/k]⟩ ▷p ⟨e′[λ x : A′. ⟨F′[x]⟩/k]⟩. Therefore the
statement holds.

Sub-Case 4: One reduction is (P-ResetV)

In this case, t must have the form ⟨v⟩.

Sub-Sub-Case 1: The other reduction is (P-Reset)

We have

⟨v⟩ ▷p v0 and ⟨v⟩ ▷p ⟨v1⟩

By the induction hypothesis, there is a v′ such that v0 ▷p v′ and v1 ▷p v′. The
goal follows by (P-ResetV).

Sub-Sub-Case 2: The other reduction is (P-ResetV)

We have

80

⟨v⟩ ▷p v0 and ⟨v⟩ ▷p v1

By the induction hypothesis, there is a v′ such that v0 ▷p v′ and v1 ▷p v′. Therefore
the statement holds.

Theorem 3.4.1 (Confluence of ▷⋆p). If t ▷⋆p t1 and t ▷⋆p t2, then there exists some
t′ such that t1 ▷⋆p t′ and t2 ▷⋆p t′.

Proof. The proof is by induction on the length of the reduction sequence. The
base case is trivial. The inductive case follows by the induction hypothesis and
Lemma 3.4.4.

Corollary 3.4.1 (Confluence of ▷⋆). The reduction relation ▷⋆ is confluent.

Proof. This is a direct consequence of Theorem 3.4.1, since ▷⋆ is a subrelation of
▷p.

3.4.1.3 Properties of Equivalence

Using the confluence theorem, we can easily show that our equivalence is transitive:

Lemma 3.4.5 (Transitivity of Equivalence). If t0 ≡ t1 and t1 ≡ t2, then t0 ≡ t2.

Proof. If we have t0 ≡ t1, then we know that there is some t such that t0 ▷⋆p t

and t1 ▷⋆p t. Similarly, if we have t1 ≡ t2, then there is some t′ such that t1 ▷⋆p t′

and t2 ▷⋆p t′. By Theorem 3.4.1, the two reductions t1 ▷⋆p t and t1 ▷⋆p t′ must be
confluent, that is, there is some t′′ such that t ▷⋆p t′′ and t′ ▷⋆p t′′. This implies
t0 ▷⋆p t′′ and t2 ▷⋆p t′′, allowing us to derive t0 ≡ t2 via (≡).

We can also prove the following injectivity lemma, which we use in the preser-
vation proof:

Lemma 3.4.6 (Injectivity of Equivalence).

1. If L e1 ≡ L e2, then e1 ≡ e2.

2. If Πx : A1.B1 ρ1 ≡ Πx : A2.B2 ρ2, then A1 ≡ A2, B1 ≡ B2, and ρ1 ≡ ρ2.

81
Proof. These facts easily follow by the definition of parallel reduction.

Lemma 3.4.7 (Substitution and Equivalence). If t ≡ t′, then t[v/x] ≡ t′[v/x].

Proof. This is a direct consequence of Lemma 3.4.2.

3.4.2 Regularity

We next prove regularity: if an expression is well-typed, then its type and effect
annotation are also well-formed. Below, we use the judgment Γ ⊢ t : T ρ to mean
t is a valid expression of any category. In our current setting, this means:

• If T = □ and ρ = ϵ, then t is a kind

• If T = ∗ and ρ = ϵ, then t is a type

• Otherwise, t is a term

Lemma 3.4.8 (Environment Regularity). If Γ ⊢ t : T ρ, then ⊢ Γ.

Proof. The proof is by induction on the derivation of t.

Case 1: (K-Star), (T-Unit), (T-Nat), (E-Var), (E-Unit), (E-Zero), (E-Nil)

These cases are trivial since the rules require a well-formed context.

Case 2: (E-Abs)

Suppose we have Γ ⊢ λ x : A. e : T. By the induction hypothesis on the derivation
of e, we know that the extended environment ⊢ Γ, x : A is well-formed. This
environment must be derived by (G-Ext), which requires well-formedness of Γ.
Therefore the statement holds.

Case 3: All other cases
The goal easily follows by the induction hypothesis.

Lemma 3.4.9 (Environment Inversion). If ⊢ Γ, x : A, Γ′, then Γ ⊢ A : ∗.

Proof. The proof is by induction on the derivation of Γ, x : A, Γ′.

82
Case 1: (G-Empty)

This case is impossible.

Case 2: (G-Ext)

Sub-Case 1: Γ′ = •
The goal immediately follows by the premise Γ ⊢ A : ∗.

Sub-Case 2: Γ′ = Γ′′, x′ : A′

The goal follows by the induction hypothesis on Γ, Γ′.

Lemma 3.4.10 (Subderivation of Types). If Γ, x : A, Γ′ ⊢ t : T ρ, then there is
a subderivation of Γ ⊢ A : ∗.

Proof. This is a consequence of Lemma 3.4.8 and Lemma 3.4.9.

Lemma 3.4.11 (Weakening). Suppose Γ ⊢ A : ∗ and x /∈ Γ, Γ′. Then, the following
hold.

1. If ⊢ Γ, Γ′, then ⊢ Γ, x : A, Γ′.

2. If Γ, Γ′ ⊢ t : T ρ, then Γ, x : A, Γ′ ⊢ t : T ρ.

Proof. The proof is by mutual induction on the derivation of the environment and
the expression.

Case 1: (G-Empty)

This case is impossible.

Case 2: (G-Ext)

Sub-Case 1: Γ′ = •
The goal immadiately follows by the well-formedness of Γ and A.

83
Sub-Case 2: Γ′ = Γ′′, x′ : A′

Our goal is to show

⊢ Γ, x : A, Γ′′, x′ : A′

By the induction hypothesis, we have

⊢ Γ, x : A, Γ′′ and Γ, x : A, Γ′′ ⊢ A′ : ∗

The goal follows by (G-Ext).

Case 3: (K-Star), (T-Unit), (T-Nat), (E-Var), (E-Unit), (E-Zero), (E-Nil)

These cases can be proven easily using the induction hypothesis on the typing
environment.

Case 4: All other cases
The goal follows by the induction hypothesis on the subderivations.

Lemma 3.4.12 (Environment Conversion).

1. If ⊢ Γ, x : A, Γ′, and Γ ⊢ B : ∗ with A ≡ B, then ⊢ Γ, x : B, Γ′.

2. If Γ, x : A, Γ′ ⊢ t : T ρ, and Γ ⊢ B : ∗ with A ≡ B, then Γ, x : B, Γ′ ⊢ t : T ρ.

Proof. The proof is by mutual induction on the derivation of the environment and
the expression.

Case 1: (G-Empty)

This case is impossible.

Case 2: G-Ext

Sub-Case 1: Γ′ = •
Our goal is to show ⊢ Γ, x : B, which immediately follows by Γ ⊢ B : ∗.

Sub-Case 2: Γ′ = Γ′′, x′ : A′

Our goal is to show

84

⊢ Γ, x : B, Γ′′, x′ : A′

By the induction hypothesis, we have

⊢ Γ, x : B, Γ′′ and Γ, x : B, Γ′′ ⊢ A′ : ∗

which imply the goal.

Case 3: (K-Star), (T-Unit), (T-Nat), (E-Unit), (E-Zero), (E-Nil)

These cases follow by the induction hypothesis on the typing environment.

Case 4: (E-Var)

Sub-Case 1: t = x

Our goal is to show

Γ, x : B, Γ′ ⊢ x : A

By the induction hypothesis, we have

⊢ Γ, x : B, Γ′

The fact that Γ, x : A, Γ′ ⊢ x : A implies we have a subderivation of

Γ ⊢ A : ∗

By weakening (Lemma 3.4.11), we obtain

Γ, x : B, Γ ⊢ A : ∗

Now we can derive the goal using the equivalence between A and B via (E-Conv).

Sub-Case 2: t = y

This case follows by the induction hypothesis on the environment.

Case 5: All other cases
The goal follows by the induction hypothesis on the subderivations.

Lemma 3.4.13 (Regularity). If Γ ⊢ e : A ρ, then Γ ⊢ A : ∗ and Γ ⊢ ρ.

85
Proof. The proof is by induction on the derivation of e. We show some represen-
tative cases:

Case 1: (E-Var)

Our goal is to show Γ ⊢ A : ∗. By the premise of the typing rule, we have ⊢ Γ.
The goal easily follows by environment inversion (Lemma 3.4.9) and weakening
(Lemma 3.4.11).

Case 2: (E-Abs)

Our goal is to show Γ ⊢ Πx : A.B ρ : ∗. By the induction hypothesis on e, we
have Γ, x : A ⊢ B : ∗ and Γ, x : A ⊢ ρ. By environment regularity (Lemma 3.4.8)
and inversion (Lemma 3.4.9), we obtain Γ ⊢ A : ∗. The goal follows by (T-Pi).

Case 3: (E-DApp)

The goal immediately follows by the premises Γ ⊢ B[e1/x] : ∗ and Γ ⊢ ρ[e1/x] of
the typing rule.

Case 4: (E-NDApp)

The goal immediately follows by the premises of the typing rule.

Case 5: (E-Shift)

Our goal is to show Γ ⊢ A : ∗, Γ ⊢ α : ∗, and Γ ⊢ β : ∗. The well-formedness
of β follows by the premise of the typing rule, so it suffices to check the other two
types. By applying environment inversion (Lemma 3.4.9) to the derivation of e,
we obtain Γ ⊢ A→α : ∗. This type can only be derived by (T-Pi), which requires
Γ ⊢ A : ∗ and Γ ⊢ α : ∗. Therefore the statement holds.

Case 6: (E-Reset)

Our goal is to show Γ ⊢ A : ∗. This immediately follows by the induction
hypothesis on e.

Case 7: (E-Conv)

Our goal is to show Γ ⊢ B : ∗ and Γ ⊢ ρ′, which are explicitly given as the
premises of the typing rule.

86
3.4.3 Substitution

As in simply typed calculi, the preservation theorem requires a substitution lemma,
which states that closing off a free variable by replacing it with a value of the correct
type preserves typability. Specifically, we use the substitution lemma in the cases
where the subject takes step via a β-like rule, which involves substitution. Below
is the formal statement of the lemma we are going to prove:

Lemma 3.4.14 (Substitution). Suppose Γ ⊢ v : A. Then, the following hold.

1. If ⊢ Γ, x : A, Γ′, then ⊢ Γ, Γ′[v/x].

2. If Γ, x : A, Γ′ ⊢ t : T ρ, then Γ, Γ′[v/x] ⊢ t[v/x] : T[v/x] ρ[v/x].

The statement is different from its simply typed counterpart in that substitution
happens not only at the level of terms, but at the level of types as well. Thus,
we have [v/x] in all the four components of a typing judgment. Note that we only
need to consider the case where we substitute a value v, because no reduction rule
of Dellina- performs substitution of a computation.

Proof. The proof is by mutual induction on the derivation of the environment and
the expression.

Case 1: (G-Empty)

This case is impossible.

Case 2: (G-Ext)

Sub-Case 1: Γ′ = •
Our goal is to show ⊢ Γ. This follows immediately by the premise of the formation

rule.

Sub-Case 2: Γ′ = Γ′′, x′ : A′

Our goal is to show ⊢ Γ, Γ′′[v/x], x′ : A′[v/x]. By the induction hypothesis on
Γ, x : A, Γ′′, we have ⊢ Γ, Γ′′[v/x]. By the induction hypothesis on A′, we also have
Γ, Γ′′[v/x] ⊢ A′[v/x] : ∗. These imply the goal.

87
Case 3: (T-Unit), (T-Nat), (E-Unit), (E-Zero), (E-Nil)

These cases can be shown by appealing to environment regularity (Lemma 3.4.8)
and the induction hypothesis on the typing environment.

Case 4: (E-Var)

Sub-Case 1: t = x

Our goal is to show

Γ, Γ′[v/x] ⊢ v : A

which follows by the weakning lemma 3.4.11.

Sub-Case 2: t = y where y ̸= x

Our goal is to show

Γ, Γ′[v/x] ⊢ y : B[v/x]

By the induction hypothesis on Γ, x : A, Γ′, we have

⊢ Γ, Γ′[v/x]

The goal follows by the fact that B[v/x] ∈ Γ, Γ′[v/x].

Case 5: (E-DApp)

Our goal is to show

Γ, Γ′[v/x] ⊢ e0 e1[v/x] : (B[e1/x
′])[v/x] ν[v/x]

By the induction hypothesis, we have

Γ, Γ′[v/x] ⊢ e0[v/x] : (Πx′ : A′.B τ)[v/x] ρ[v/x] , Γ, Γ′[v/x] ⊢ e1[v/x] : A
′[v/x]

Γ, Γ′[v/x] ⊢ (B[e1/x
′])[v/x] : ∗ , and Γ, Γ′[v/x] ⊢ ν[v/x]

By (E-DApp), we obtain

Γ, Γ′[v/x] ⊢ e0[v/x] e1[v/x] : (B[v/x])[e1[v/x]/x
′] ν[v/x]

The goal follows by the definition of substitution.

88
Case 6: (E-Conv)

Our goal is to show

Γ, Γ′[v/x] ⊢ e[v/x] : B[v/x] ρ′[v/x]

By the induction hypothesis, we have

Γ, Γ′[v/x] ⊢ e[v/x] : A′[v/x] ρ[v/x]

To make this case go through, we have to show

A′ ≡ B ⇒ A′[v/x] ≡ B[v/x]

and

Γ, x : A, Γ′ ⊢ B : ∗ ⇒ Γ, Γ′[v/x] ⊢ B[v/x] : ∗

By (≡), we know that there is a type C such that A′ ▷⋆p C and B ▷⋆p C. By
Lemma 3.4.2, we also know that A′[v/x] ▷⋆p C[v/x], and similarly for B. The well-
formedness of B[v/x] also follows by the induction hypothesis on B. After proving
similar statements for the effect annotation, we obtain the desired result.

Remark Since Dellina- allows dependency on non-value terms as long as they
are pure, the reader might think we could prove a stronger substitution lemma,
which looks like:

If Γ ⊢ e : A and Γ, x : A, Γ′ ⊢ t : T ρ, then Γ, Γ′[e/x] ⊢ t[e/x] : T[e/x] ρ[e/x].

If we had this lemma, then we would not need the well-formedness certificates of
the result type in the typing rules for dependent constructs. Unfortunately, it is
not possible to prove this lemma. Specifically, we would get stuck in the type
conversion case, which requires us to show:

A′ ≡ B ⇒ A′[e/x] ≡ B[e/x]

This statement does not hold, because A′ ▷p C does not imply A′[e/x] ▷p C[e/x]

for a non-value e under our call-by-value strategy. To give an example, we have

L ((λ y : N. y) x) ▷p L x

89
but not

L ((λ y : N. y) (loop ())) ▷p L (loop ())

if loop is a non-terminating function. Since we require recursive functions to be
guarded, we should not be able to build a looping term, but as we have not yet
established normalization of pure terms, we must take this possibility into account.

3.4.4 Inversion

The last thing we need for proving preservation is a set of inversion lemmas. These
lemmas literally allow us to invert a typing relation and extract some useful facts
about subterms. In the preservation proof, we use inversion when e.g. checking
well-typedness of a β-reduct (λ x : A. e) v, where we need Γ, x : A ⊢ e : B to show
e[v/x] : B[v/x]. This cannot be obtained directly when the last rule used for the
derivation of the abstraction was (Conv), but we still know that e satisfies some
“equivalent” properties—this is what inversion lemmas tell us.

Lemma 3.4.15 (Inversion for Function Types). If Γ ⊢ Πx : A.B ρ : ∗, then
Γ ⊢ A : ∗, Γ, x : A ⊢ B : ∗, and Γ, x : A ⊢ ρ.

Proof. This is obvious from (T-Pi).

Lemma 3.4.16 (Inversion for λ). If Γ ⊢ λ x : A. e : C, then C ≡ Πx : A.B ρ for
some B and ρ, such that Γ, x : A ⊢ e : B.

Proof. The proof is by induction on the derivation of λ x : A. e.

Case 1: (E-Abs)

This case is trivial.

Case 2: (Conv)

Suppose we have the following derivation:
Γ ⊢ λ x : A. e : C0 Γ ⊢ C1 : ∗ C0 ≡ C1

Γ ⊢ λ x : A. e : C1
(Conv)

By the induction hypothesis, we have

C0 ≡ Πx : A.B ρ and Γ, x : A ⊢ e : B ρ

The goal follows by transitivity of equivalence (Lemma 3.4.5).

90

Lemma 3.4.17 (Inversion for Recursive Functions). If Γ ⊢ rec fΠx :A.B ρ x. e : C,
then C ≡ Πx : A.B ρ, and Γ, f : Πx : A.B ρ, x : A ⊢ e : B ρ.

Proof. The proof is analogous to the previous lemma.

Lemma 3.4.18 (Inversion for Shift). If Γ ⊢ Sk : A0→α0. e : C[α′, β′], then the
following hold.

• A0→α0 ≡ A→α for some A and α

• Γ, k : A→α ⊢ e : β or Γ, k : A→α ⊢ e : B[B, β] for some B and β

• Γ ⊢ β : ∗

• C ≡ A, α′ ≡ α, and β′ ≡ β.

Proof. The proof is by induction on the derivation of Sk : A0→α0. e.

Case 1: E-Shift
This case is trivial.

Case 2: Conv
Suppose we have the following derivation:

Γ ⊢ Sk : A0 →α0. e : C0[α1, β1] C0 ≡ C1 [α1, β1] ≡ [α2, β2]

Γ ⊢ Sk : A0→α0. e : C1[α2, β2]
(Conv)

By the induction hypothesis, we have

A0→α0 ≡ A→α,

Γ, k : A→α ⊢ e : β or Γ, k : A→α ⊢ e : B[B, β],

C0 ≡ A, α1 ≡ α, and β1 ≡ β.

The goal follows by transitivity of equivalence (Lemma 3.4.5).

91
3.4.5 Preservation

Using the lemmas we have proved so far, we show preservation: evaluation of a well-
typed, non-value term preserves its type and purity. Instead of directly proving
this theorem, we first show preservation under parallel reduction, and then derive
preservation under call-by-value evaluation as a corollary.

Theorem 3.4.2 (Preservation under Parallel Reduction). If Γ ⊢ t : T ρ and
t ▷p t′, then Γ ⊢ t′ : T ρ.

Proof. The proof is by induction on the derivation of t.

Case 1: (K-Star), (T-Unit), (T-Nat), (E-Unit), (E-Zero), (E-Nil)

These cases are impossible because the subject cannot take step.

Case 2: (E-Abs)

An abstraction λ x : A. e may reduce to λ x : A′. e′ via (P-Abs). Our goal is to
show

Γ ⊢ λ x : A′. e′ : Πx : A.B ρ

By the induction hypothesis, we have

Γ, x : A ⊢ e′ : B ρ

By Lemma 3.4.10, we know that there is a subderivation of

Γ ⊢ A : ∗

The induction hypothesis on this derivation gives us

Γ ⊢ A′ : ∗

and since A ≡ A′, we obtain

Γ, x : A′ ⊢ e′ : B ρ

by Lemma 3.4.12. Now, by (E-Abs), we can derive

Γ ⊢ λ x : A′. e′ : Πx : A′.B ρ

What remains to be done is to cast the type to the original one, which requires us to
show the well-formedness of Πx : A.B ρ. As we saw, the domain A is well-formed.

92
By regularity (Lemma 3.4.13) on e, we also know that B and ρ are well-formed.
Thus we obtain the goal.

Case 3: (E-DApp)

Sub-Case 1: e0 e1 ▷p e′0 e′1 by (P-App)

Our goal is to show:

Γ ⊢ e′0 e′1 : B[e1/x] τ

By the induction hypothesis on e0 and e1, we have

Γ ⊢ e′0 : (Πx : A.B σ) ρ and Γ ⊢ e′1 : A

Since e1 ▷p e′1, Lemma 3.4.1 gives us B[e1/x] ▷p B[e′1/x] and σ[e1/x] ▷p σ[e′1/x].
This allows us to use the induction hypothesis on B[e1/x] and σ[e1/x], that is,
Γ ⊢ B[e′1/x] : ∗ and Γ ⊢ σ[e′1/x]. Now by (E-DApp), we can derive Γ ⊢ e′0 e′1 :

B[e′1/x] τ
′, where τ ′ = comp(ρ, σ[e′1/x]). As we have B[e1/x] ≡ B[e′1/x] and σ[e1/x] ≡

σ[e′1/x], plus well-formedness of the left-hand sides of these equivalences, we obtain
Γ ⊢ e′0 e′1 : B[e1/x] τ by (E-Conv), as desired.

Sub-Case 2: (λ x : A1. e0) v1 ▷p e′0[v
′
1/x] by (P-AppBeta)

Our goal is to show

Γ ⊢ e′0[v
′
1/x] : B[v1/x] σ[v1/x]

Note that both the function and argument must be a pure term, hence the overall
effect is σ[v1/x], which comes from the function’s body. By the induction hypothesis
on λ x : A1. e0, v1, and B[v1/x], we have

Γ ⊢ λ x : A′
1. e

′
0 : Πx : A.B σ , Γ ⊢ v′1 : A ,

Γ ⊢ B[v′1/x] : ∗ , and Γ ⊢ σ[v′1/x]

We also have the following facts:

1. Πx : A.B σ ≡ Πx : A′
1.B1 σ1 (by inversion for λ (Lemma 3.4.16))

2. Γ, x : A′
1 ⊢ e′0 : B1 σ1 (by inversion for λ)

93
3. A ≡ A′

1 and B ≡ B1 (by item 1 and injectivity of Π (Lemma 3.4.6))

4. There is a subderivation of Γ ⊢ A′
1 : ∗ (by item 2 and Lemma 3.4.10)

Using items 3, 4 and (E-Conv), we can derive Γ ⊢ v′1 : A′
1. Then, using item 2

and the substitution lemma (Lemma 5.4.4), we obtain

Γ ⊢ e′0[v
′
1/x] : B1[v

′
1/x] σ1[v

′
1/x]

Item 2 and Lemma 3.4.7 further give us B[v′1/x] ≡ B1[v
′
1/x] and σ[v′1/x] ≡ σ1[v

′
1/x].

These imply

Γ ⊢ e′0[v
′
1/x] : B[v

′
1/x] σ[v

′
1/x]

Now, Lemma 3.4.2 tells us that B[v1/x] ▷p B[v′1/x] and σ[v1/x] ▷p σ[v′1/x]. Using
these facts, and the well-formedness premises of the result type and effect annota-
tion, and (E-Conv), we can derive Γ ⊢ e′0[v

′
1/x] : B[v1/x] σ[v1/x] as desired.

Case 4: (E-Shift)

Our goal is to show

Γ ⊢ Sk : A′ →α′. e′ : A[α, β]

By the induction hypothesis on e, we have

Γ, k : A→α ⊢ e′ : B[B, β]

By Lemma 3.4.10, we know that there is a subderivation of

Γ ⊢ A→α : ∗

The induction hypothesis on this derivation gives us

Γ ⊢ A′ →α′ : ∗

and since A→α ≡ A′ →α′, we obtain

Γ, k : A′ →α′ ⊢ e′ : B[B, β]

by Lemma 3.4.12. The goal now follows by (E-Shift).

Case 5: (E-Reset)

94

α ▷p α′ e ▷p e′ e1 ▷p e′1
(Sk : A′ →α. e) e1 ▷p Sk′ : B[e1/x]→α′. e[λ v : Πx : A.B ρ. ⟨k′ (v e1)⟩/k]

(P-SApp1)

α ▷p α′ v0 ▷p v′0 e ▷p e′

v0 (Sk : A′ →α. e) ▷p Sk′ : B→α′. e[λ v : A. ⟨k′ (v0 v)⟩/k]
(P-SApp2)

e ▷p e′ α ▷p α′

suc (Sk : A→α. e) ▷p Sk′ : N→α′. e[λ v : N. ⟨k′ (suc v)⟩/k]
(P-SSuc)

α ▷p α′e0 ▷p e′0 e ▷p e′ e2 ▷p e′2
:: e0 (Sk : A→α. e) e2 ▷p Sk′ : L (suc e′0)→α′. e[λ v : L e′0. ⟨k′ (:: e′0 v e′2)⟩/k]

(P-SCons1)

α ▷p α′ e0 ▷p e′0 e1 ▷p e′1 e ▷p e′

:: e0 e1 (Sk : A→α. e) ▷p Sk′ : L (suc e′0)→α′. e[λ v : L e′0. ⟨k′ (:: e′0 e′1 v)⟩/k]
(P-SCons2)

α ▷p α′ e ▷p e′ e1 ▷p e′1 e2 ▷p e′2
pm (Sk : A→α. e) as _ in N ret P with z → e1 | suc n → e2 ▷p

Sk′ : P→α′. e[λ v : N. ⟨k′ (pm v as _ in N ret P with z → e1 | suc n → e2)⟩/k]

(P-SMatchN)

α ▷p α′ e ▷p e′ e1 ▷p e′1 e2 ▷p e′2
pm (Sk : A→α. e) as _ in N ret P with nil → e1 | :: m h t → e2 ▷p

Sk′ : P→α′. e[λ v : L n. ⟨k′ (pm v as _ in N ret P with nil → e1 | :: m h t → e2)⟩/k]

(P-SMatchL)

e ▷p e′

⟨Sk : A→α. e⟩ ▷p ⟨e′[λ v : A. v/k]⟩
(P-SEmpty)

Figure 3.13: Small Reductions

95
Sub-Case 1: (P-Reset)

Our goal is to show

Γ ⊢ ⟨e′⟩ : A

This can be easily obtained by the induction hypothesis on e.

Sub-Case 2: (P-ResetS)

Following Asai and Kameyama [10], we prove this case by decomposing the re-
duction into small reductions, which capture one context frame at a time. These
reductions are defined in Figure 3.13; observe that when there is no more context
between shift and reset, we substitute the identity function for the continuation
variable.

We show one instance of the first reduction, and one instance of the last reduc-
tion.

Sub-Sub-Case 1: (P-SApp1)

Suppose we have
Γ ⊢ Sk : A0→α0. e : Πx : A.B[α, β] Γ ⊢ e1 : A

Γ ⊢ (Sk : A0 →α0. e) e1 : B[e1/x][α, β]
(E-DApp)

where e is a pure term. Our goal is to show

Γ ⊢ Sk′ : B[e′1/x]→α′
0. e

′[λ v0 : Πx : A.B. ⟨k′ (v0 e′1)⟩/k] : B[e1/x][α, β]

By the induction hypothesis, we have

Γ ⊢ Sk : A′
0 →α′

0. e
′ : Πx : A.B[α, β] and Γ ⊢ e′1 : A

Using inversion for shift (Lemma 3.4.18), we obtain the following derivations:

Γ, k : A1→α1 ⊢ e′ : β1 and Γ ⊢ β1 : ∗

and the following equivalence relations:

Πx : A.B ≡ A1 , A′
0 →α′

0 ≡ A1→α1 , α ≡ α1 , and β ≡ β1

For our purpose, we must show

Γ, k′ : B[e′1/x]→α′
0 ⊢ e′[λ v0 : Πx : A.B. ⟨k′ (v0 e′1)⟩/k] : β

96
By (E-DApp), we have v0 e′1 : B[e′1/x]. By (E-NDApp), we obtain k′ (v0 e′1) :

α′
0. Since we have A′

0→α′
0 ≡ A1 →α1 and α ≡ α1, we know that α ≡ α′

0 (by
transitivity and injectivity), allowing us to derive k′ (v0 e′1) : α via (E-Conv) (note
that well-formedness of α follows by regularity). Now by (E-Reset), we obtain
⟨k′ (v0 e′1)⟩ : α. Using (E-Abs), we further obtain λ v0 : Πx : A.B. ⟨k′ (v0 e′1)⟩ :

Πx : A.B→α. To safely substitute this function for k, we have to cast its type to
A1→α1. As we saw, inversion gives us Πx : A.B ≡ A1 and α ≡ α1, which imply
Πx : A.B→α ≡ A1 →α1. By Lemma 3.4.10, we also know Γ ⊢ A1 →α1 : ∗. These
allow us to cast the type of the function we are substituting for k, obtaining

Γ, k′ : B[e′1/x]→α′
0 ⊢ e′[λ v0 : (Πx : A.B). ⟨k′ (v0 e′1)⟩/k] : β1

via the substitution lemma (Lemma 5.4.4). Since β ≡ β1 and Γ ⊢ β : ∗, (E-Conv)

gives us

Γ, k′ : B[e′1/x]→α′
0 ⊢ e′[λ v0 : (Πx : A.B). ⟨k′ (v0 e′1)⟩/k] : β

and (E-Shift) lets us conclude

Γ ⊢ Sk′ : B[e′1/x]→α′
0. e

′[λ v0 : (Πx : A.B). ⟨k′ (v0 e′1)⟩/k] : B[e1/x][α′
0, β]

Now the goal follows by (E-Conv), using α ≡ α′
0 and Γ ⊢ α : ∗.

Sub-Sub-Case 2: (P-SEmpty)

Suppose we have
Γ ⊢ Sk : A0→α0. e : A[α, β]

Γ ⊢ ⟨Sk : A0→α0. e⟩ : β
(E-Reset)

where e is an impure term. Our goal is to show

Γ ⊢ ⟨e′[λ v : A. v/k]⟩ : β

By the induction hypothesis, we have

Γ ⊢ Sk : A′
0 →α′

0. e
′ : A[α, β]

Using inversion for shift (Lemma 3.4.18), we obtain the following derivations:

Γ, k : A1 →α1 ⊢ e′ : B[B, β1] and Γ ⊢ β1 : ∗

and the following equivalence relations:

97

A ≡ A1 , A′
0 →α′

0 ≡ A1→α1 , α ≡ α1 , and β ≡ β1

For our purpose, we must show

Γ ⊢ e′[λ v : A. v/k] : B[λ v : A. v/k][B[λ v : A. v/k], β]

By (E-Abs), we have λ v : A. v : A→A. To safely substitute this function for k,
we must cast its type to A1→α1. Since we know A ≡ A1 by inversion, it suffices
to show A ≡ α1. Now, recall that there is no further context between shift and
reset. This means A ≡ α holds. Since we have α ≡ α1 by inversion, we can
conclude A ≡ α1 by transitivity. Using well-formedness of A1→α1 obtained by
inversion and Lemma 3.4.10, we can derive λ v : A. v : A1 →α1, and then

Γ ⊢ e′[λ v : A. v/k] : B[λ v : A. v/k][B[λ v : A. v/k], β1]

The goal follows by β ≡ β1 and well-formedness of β.

Sub-Case 3: (P-ResetV)

Our goal is to show

Γ ⊢ v′ : A

This can be obtained easily by the induction hypothesis on v.

Corollary 3.4.2 (Preservation of Runtime Evaluation). If Γ ⊢ e : A ρ and e ▷ e′,
then Γ ⊢ e′ : A ρ.

Proof. This is a direct consequence of Theorem 3.4.2; remember that runtime
evaluation is a subrelation of parallel reduction.

3.4.6 Progress

We now prove the progress theorem: a well-typed, closed, pure term does not get
stuck. This theorem requires a canonical forms lemma, which states that we can
determine the shape of closed values by looking at their type. For instance, if we
have a closed value of type Πx : A.B ρ, then we know that it must be an abstraction
or a recursive function. While the lemma may appear trivial, it requires special

98
care due to the presence of the conversion rule. Suppose we have casted the type
of a value v from A to B using the equivalence A ≡ B. If A and B were different
kinds of types—e.g., A = N and B = Πx : N.N—then what holds of Γ ⊢ v : A

would no longer be true for Γ ⊢ v : B. Therefore, before proving progress, we show
soundness of our equivalence, using the notion of head constructors defined below.

Definition 3.4.1 (Head Constructors). The head constructor of a type A, written
head(A), is defined as follows:

head(Unit) = Unit

head(N) = N

head(L e) = L

head(Πx : A.B ρ) = Π

Lemma 3.4.19 (Soundness of Equivalence). If A ≡ B, then A and B have the
same head constructor.

Proof. This can be easily shown by observing that reduction preserves head con-
structors.

Lemma 3.4.20 (Canonical Forms). If • ⊢ v : A, then the following hold:

1. If A ≡ Πx : A1.B ρ, then v is either λ x : A′. e or rec fΠx :A′.B′ ρ′ x. e.

2. If A ≡ Unit, then v is ().

3. If A ≡ N, then v is either z or suc v′.

4. If A ≡ L e, then v is either nil or :: v0 v1 v2.

Proof. The proof is by induction on the derivation of v.

Case 1: (E-Var)

This case is impossible because well-typedness of variables requires a non-empty
context.

Case 2: (E-DApp), (E-DLet), (E-DMatchN), (E-DMatchL), (E-Reset)

These cases are also impossible because their conclusion has a non-value subject.

99
Case 3: (E-Abs), (E-Rec)

These rules conclude with a function type Πx : A.B ρ. The subject is a λ or a
recursive function, as required by item 1.

Case 4: (E-Unit)

This rule concludes with the unit type Unit. The subject is a unit value, as
required by item 2.

Case 5: (E-Zero), (E-Suc)

These rules conclude with the natural number type N. The subject is either z or
suc v, as required by item 3.

Case 6: (E-Nil), (E-Cons)

These rules conclude with a list type L e. The subject is either nil of :: v0 v1 v2,
as required by item 4.

Case 7: (E-Conv)

We have
Γ ⊢ v : A Γ ⊢ B : ∗ A ≡ B

Γ ⊢ v : B
(E-Conv)

The induction hypothesis tells us that v has the specific form required by A. To
say the same thing for type B, we need the fact that A and B have the same shape.
This follows by the soundness of equivalence (Lemma 3.4.19).

Theorem 3.4.3 (Progress).

1. If • ⊢ e : A, then either e is a value, or there is an e′ such that e ▷ e′.

2. If • ⊢ e : A[α, β], then either e is a stuck term of the form F[Sk : A′ →α′. e′],
or there is an e′ such that e ▷ e′.

Proof. The proof is by induction on the derivation of e. The progress property in
the usual sense holds only for pure terms, because impure terms are not executable
in general (e.g., a shift clause is a stuck term).

Case 1: (E-Var)

This case is impossible since no variable can be well-typed in an empty context.

100
Case 2: (E-Abs), (E-Rec), (E-Unit), (E-Zero), (E-Nil)

These cases conclude with a value subject, which trivially satisfies the statement.

Case 3: (E-App)

Suppose both e0 and e1 are pure. By the induction hypothesis, we know e0 is
either a value or there is an e′0 such that e0 ▷ e′0, and similarly for e1. If e0 is a
value, we know from Lemma 3.4.20 that it has the form λ x : A′. e′0. If e1 is also
a value, the application is a β-redex, hence (λ x : A′. e′0) e1 ▷ e′0[e1/x]. If e1 is a
non-value, e0 e1 ▷ e0 e′1. If e0 is a non-value, e0 e1 ▷ e′0 e1.

Next, suppose e1 is impure. By the induction hypothesis, we know e1 is either
a stuck term of the form F[Sk : A′ →α′. e], or there is a e′1 such that e1 ▷ e′1. If e0
is a value, the the whole application is either a stuck term e0 F[Sk : A′→α′. e] or
it reduces to e0 e′1. If e0 is a non-value, e0 e1 ▷ e′0 e1.

Lastly, suppose e0 is impure. By the induction hypothesis, we know e0 is either
a stuck term of the form F[Sk : A′ →α′. e], or there is a e′0 such that e0 ▷ e′0. In
the former case, the whole application is a stuck term F[Sk : A′ →α′. e] e1. In the
latter case, e0 e1 ▷ e′0 e1.

Case 4: (E-Shift)

This case is trivial, because a shift construct is itself a stuck term.

Case 5: (E-Reset)

Suppose e is pure. By the induction hypothesis, we know either e is a value, or
there exists some e′ such that e ▷ e′. If e is a value, ⟨e⟩ ▷ e. Otherwise, ⟨e⟩ ▷ ⟨e′⟩.

Next, suppose e is impure. By the induction hypothesis, we know e is either
a stack term F[Sk : A′ →α′. e′], or there exists some e′ such that e ▷ e′. If e is a
stuck term, ⟨F[Sk : A′→α′. e′]⟩ ▷ ⟨e′[λ x : A. ⟨F[x]⟩/k]⟩. Otherwise, ⟨e⟩ ▷ ⟨e′⟩.

Remark The preservation and progress theorems imply something more than
“well-typed programs do not go wrong”; they tell us that well-typed, closed pro-
grams evaluate to a value of the same type, if they terminate. This property is
known as strong type soundness in the literature [170].

101
3.5 Examples

In the previous sections, we studied the design and properties of Dellina-. Now
it’s time to see what kind of programs we can build using control operators and
dependent types. In this section, we show two example programs of Dellina-: one
with non-deterministic behaviors, and the other with mutable state.

3.5.1 Non-deterministic Choice

Let us first look at how to program with dependent types and non-deterministic
choice. Our goal is to implement the following behavior:

run-choose (λ () : Unit. 10 + (choose 1 2)) ▷⋆ [11; 12]

The intention is that, when we call the choose function with arguments a and b

in the context E, we want back a two-element list [E[a];E[b]]. It would be easy for
the reader to identify the role of choose and run-choose: they are basically shift

and reset operators!

choose
def≡ λ a : N. λ b : N.Sk : N→N. [k a; k b]

run-choose
def≡ λ f : Unit→N[N, L 2]. ⟨f ()⟩

The choose function brings non-determinism by calling the captured continuation
twice with different arguments. Since our list type is dependent, the function
additionally guarantees that the resulting list has exactly two elements. This
invariant is trivial, but it is something we cannot explicitly state in a simply typed
language.

3.5.2 Mutable State

Our next example is yet another list-building function. The goal is to make the
following program work:

run-state (λ () : Unit.mk-lst 3) ▷⋆ [1; 2; 3]

To make the program interesting, we generate each element using a mutable

102
state, which we simulate using shift and reset8 [11]:

inc
def≡ Sk : Unit→N→ L 3. λ s : N. k () (suc s)

get
def≡ Sk : N→N→ L 3. λ s : N. k s s

e1; e2
def≡ (λ () : Unit. e2) e1

The inc and get are structurally similar: they both capture the current continuation
k, receive the value of the state s, and apply k to two arguments. Among the two
arguments, first one is what to be returned to the current context, and the second
one is the state used by the subsequent computation. In the case of inc, we want
to increment the state but do not expect a result, therefore we have an application
k () (suc s). In the case of get, we want the value of the current state but do not
need to change it, hence we have an application k s s. With these functions, we
define mk-lst using an auxiliary function mk-lst′:

mk-lst
def≡

rec fΠm:N. L m[N→ L 3,N→ L 3]m. pm m as x in N ret L x with

z → Sk : L z→N→ L 3. k nil | suc n → :: n (inc (); get ()) (mk-lst n)

The mk-lst function pattern matches on the first argument, and returns an empty
list if it is z. The use of shift here is necessary for making the two branches have
the same control effect (which is required by (E-DMatchN)); computationally,
the entire branch is equivalent to nil [100]. If the argument is non-zero, we build a
list whose first element is an increment of the current state, and whose tail is the
result of a recursive call.

Similarly to the choose function, inc and get require a run-state function that
resets the context:

run-state
def≡ λ f : ()→ L 3[N→ L 3,N→ L 3]. ⟨(λ r : L 3. λ s : N. r) (f ())⟩ z

The function plays two roles. First, it initializes the value of the state to z. Second,
it builds a delimited context of the form “given a state, return a value.” This

8Note that the first two functions are specialized for uses in an L 3-returning context as in the
goal program. A more general definition is possible once we have extended our language with
polymorphism.

103
function, together with inc and get, allows us to manipulate the state without
explicitly referring to s passed around behind the scene.

Shifting the viewpoint to types, we again find an invariant that holds for the
input and output of mk-lst: the output list has exactly m elements when the input
is m.

104

Chapter 4

CPS Translating Dellina-

When studying control operators, one of the must-have discussions is how to de-
scribe their semantics using pure λ-terms. This question reduces to whether there
exists a CPS translation that eliminates the control operators. If the source lan-
guage is typed, we further require that CPS translation is type-preserving, i.e., a
well-typed program that uses control operators is converted to a well-typed pro-
gram that does not use them.

The shift and reset operators are notable for their succinct CPS semantics,
and the translation is known to preserve typing in simply and polymorphically
typed settings [10, 28]. This is a pleasant property from a practical point of view,
since it allows supporting shift and reset in an existing language without re-
building runtime facilities.

In this chapter, we give a CPS translation of Dellina-. This is a non-trivial task,
because CPS translations are known to misbehave in the presence of dependent
types. Recall from Section 1.3 that the double negation translation fails to preserve
typing when the language has strong Σ types and dependent case analysis. Recent
studies managed to recover type preservation by assuming impredicativity and
parametricity in the target language [121, 34, 45], but the solution is not satisfac-
tory because the two assumed features are not available by default in dependently
typed languages [128, 30].

We solve this challenge by adopting a selective CPS translation [126]. A selec-
tive translation can be understood as an on-demand CPS translation: it translates
impure terms (which manipulate continuations) into CPS, and keeps pure terms

105
(which do not touch continuations) in direct style. Selective CPS translations have
been studied as an efficient approach to simulating control operators, since they
yield more compact programs compared to unselective translations. We, on the
other hand, discovered another wonderful advantage of using a selective transla-
tion: it gives us the type presevation property for free. The intuition is that,
since a selective translation does not change the shape of pure terms, and since
pure terms are the only things we admit in types, any type equality that holds in
Dellina- stays as is in the target.

In the rest of this chapter, we first revisit the challenges with unselective
CPS translations of dependently typed languages (Section 4.1), and elaborate the
parametricity-based solution of Bowman et al. [34] (Section 4.2). Then we show
how selectiveness avoids the known issues without relying on parametricity or im-
predicativity (Section 4.3). The full translation of Dellina- is given in Section 4.5,
and proved type-preserving in Section 4.6.

4.1 Challenges of CPS Translation

Before going into technical details, let us introduce some CPS terminology. When
discussing CPS translations, we distinguish between computations and values in
the post-translation world. Computations are terms in CPS, whose evaluation is
suspended until they are given a continuation. Values, on the other hand, are
direct-style terms that run on their own. Following the literature [3, 34], we use
the ÷-superscript to denote computation translation, which produces CPS compu-
tations, and +-superscript to denote value translation, which produces direct-style
values. These translations differ in their ability to change the overall structure of
the given expression. Suppose we have a function λx. x : N → N. When applied to
the function, the ÷-translation produces a suspended computation λ k. k (λx. x)+,
where (λx. x)+ = λx. λ k′. k′ x. Notice that while ÷ introduces a new λ wrap-
ping around the whole term, + keeps the structure of the original function. When
applied to the type N → N, the ÷-translation generates a doubly negated type
¬¬(N → N)+, where (N → N)+ = N → ¬¬N. Observe that while ÷ introduced
two new arrows at the top-level, + preserves the head constructor of the original
type.

106
Now, recall the negative result reported by Barthe and Uustalu [24]: the double-

negation-based, call-by-name CPS translation do not scale to Σ and sum types.
The conclusion is derived from the observation that second projection and depen-
dent case analysis are mapped to an ill-typed term. For instance, the CPS image
of the former looks like:

(snd e)÷ = λ k : ¬(B[fst e/x])+. e÷ (λ v : Σ x : ¬¬A+.¬¬B+. (snd v) k)

As we saw in Section 1.3, the problem is in the application (snd v) k: while
snd v : ¬¬B+[fst v/x], we have k : ¬(B[fst e/x])+ = ¬B+[(fst e)÷/x]. For this
application to be well-typed, we need fst v = (fst e)÷, which is not immediately
true.

It turns out that call-by-value translations are even more “broken”, in that the
type mismatch is already present in the CPS image of function application [34].
Consider the following translation of application e0 e1:

(e0 e1)
÷ = λ k : ¬(B[e1/x])

+. e÷0 (λ v0 : Π x : A+.¬¬B+. e÷1 (λ v1 : A
+. v0 v1 k))

We are presuming that e0 : Π x : A.B and e1 : A. What is wrong with the
translation is the application v0 v1 k: while v0 v1 requires a B+[v1/x]-accepting
continuation, k is a (B[e1/x])

+-accepting continuation. In the call-by-name trans-
lation of second projection, we assumed commutativity and rewrote (B[fst e/x])+

to B+[(fst e)÷/x], but here we cannot convert (B[e1/x])
+ into B+[e÷1 /x], since e÷1

represents a computation (of type ¬¬A+), while x must be substituted by a value
(of type A+).

Interestingly, if we compare call-by-name projection snd e and call-by-value
application e0 e1, we find that their typing and reduction share a common pattern:
both terms have a type dependent on their subterm, and the subterm must be
evaluated during evaluation of the whole term.

Let us look at this shared pattern in more detail. snd e is an elimination form
of dependent pairs of type Σx : A.B. The reduction of this construct goes as
follows: we first evaluate e to a pair (e1, e2), and then convert snd (e1, e2) into
e2 (note that in a call-by-name setting, the reduction rule applies even when e1

107
and e2 are non-value). Typingwise, snd e is given the type B[fst e/x]. We see
that the type depends on the subterm e, which we evaluate when evaluating snd e.
The post-reduction term e2 canonically has type B[e1/x], but we know this type
is equivalent to the original type B[fst e/x] because fst e evaluates to e1.

On the other hand, e0 e1 is an elimination form of dependent functions of type
Πx : A.B. The reduction of this construct goes in the following way: we first
evaluate e0 to a function λx : A. e′0 (which is not important here), and evaluate
e1 to a value v1, then convert (λx : A. e′0)v1 into e′0[v1/x]. Typingwise, e0 e1 is
given the type B[e1/x]. We see that the type depends on the subterm e1, which
we evaluate when evaluating e0 e1. The post-reduction term e′0[v1/x] canonically
has type B[v1/x], but we know this type is equivalent to the original type B[e1/x]

because e1 evaluates to v1.
Now we look at their translations. In the call-by-name CPS image of snd e, eval-

uation of e is represented by the application e÷ (λ v : (Σ x : ¬¬A+.¬¬B+). (snd v) k).
Here, the problematic application is (snd v) k, where we are applying a v-dependent
computation to an e-dependent continuation.

Similarly, in the call-by-value CPS image of e0 e1, evaluation of e1 is represented
by the application e÷1 (λ v1 : A+. v0 v1 k). Here, the problematic application is
v0 v1 k, where we are applying a v1-dependent computation to an e1-dependent
continuation.

Now the question is: what are v and v1? It turns out that if the source terms
e and e1 are pure, these variables are to be replaced by a unique value, which, in
essence, corresponds to the value of e and e1 [34]. The key to recovering typability,
then, is to find a way to communicate this fact to the type system.

As Bowman et al. [34] suggests, our task can be decomposed into two sub-
tasks: (i) representing the unique value in terms of e and e1; and (ii) expressing
its uniqueness. Let us focus our attention on call-by-value application and see
what the puzzle is. If we try to tackle the first task, we will find that the fixed
answer type ⊥ gets in the way. In the source language, we obatin the value of e1
by evaluating it in an empty context. Therefore, in the target of the translation,
we want to obtain the unique value by running e÷1 with an empty continuation
λ v : A+. v. Clearly, this results in a type error, because e÷1 has type ¬¬A+, and
hence cannot be applied to the identity function.

108
In fact, this type error stems from a deeper mismatch in the nature of the

continuation e÷1 expects and that of the continuation we supply. In a double-
negation-based translation, computations demand a continuation that never re-
turns, but what we are trying to do with the identity continuation is to obtain a
value, which means we are implicitly expecting the continuation to return some-
thing. This suggests that the use of the ⊥ type is one source of the challenges with
CPS translating dependent types.

The second task, expressing uniqueness of the value, is also non-trivial. Suppose
we have managed to obtain the unique value to be substituted for v1. Since the
variable is bound by a λ, we have to type check the body v0 v1 k—which contains
the problematic application—only with the assumption that v1 : A+. This means,
in the body of λv1, v1 represents an arbitrary value inhabiting A+, instead of some
specific value. That is, if we type check continuations as we do for the standard
λ-abstraction, we cannot use the unique value even if we have one.

The incapability of expressing uniqueness, however, is an unsurprising conse-
quence, since the double-negation CPS translation allows implementing control
operators (such as call/cc), which can return an arbitrary value to the context
surrounding them. Indeed, if the source term is impure, it is invalid to assume that
its continuation receives a unique value. What this means is that, when translating
pure terms, we have to use a translation that cannot express control effects in the
first place, and then, enrich the type system in such a way that we can soundly
impose the unique-value requirement on the continuation of pure terms.

4.2 Past Solution: Answer-type Polymorphism +

CPS Axioms

As we saw, the failure of type preservation is due to the lack of a type-safe repre-
sentation of CPS values, and the incapability of expressing the uniqueness of the
value represented by λ-bound variables. How can we overcome these difficulties?

Bowman et al. [34] give the following solution. First, they adopt a specific
variant of CPS translation that uses a polymorphic answer type. That is, instead
of translating a source term e : A to a computation λ k : ¬A+. e′ of type ¬¬A+,
they translate e to λα : ∗. λ k : A+ → α. e′ of type Πα : ∗. (A+ → α) → α.

109
Now, e÷ expects a continuation that returns as ordinary functions do, and since
the answer type can be any type, we are always able to run e÷ with an empty
continuation. More specifically, we first instantiate the answer type of e÷ to A+,
and then pass λ v : A+. v of type A+ → A+ (we will hereafter abbreviate the
identity function on A+ as idA+). Thus, we obtain a type-safe interface from CPS
computations to values.

The second idea of Bowman et al. is to equip the target language of the trans-
lation with a new equivalence rule, and a new typing rule. These rules are used to
reason about CPS computations with a polymorphic type, and are defined roughly
as follows:

e1 A (λ v : B. e2) ≡ (λ v : B. e2) (e1 B idB)
[≡-Cont]

Γ ⊢ e1 : Πα : ∗. (B → α) → α Γ ⊢ A : ∗
Γ, v = e1 B idB : B ⊢ e2 : A

Γ ⊢ e1 A (λ v : B. e2) : A
[T-Cont]

The equivalence rule, [≡-Cont], gives us an equivalence relation that holds of
polymorphic CPS computations. The rule reads: running a CPS computation e1

with a given continuation λ v : B. e2 is equivalent to first running e1 with the
identity continuation, and then passing the result to the actual continuation. This
is a free theorem [165] obtained from answer-type polymorphism, and essentially,
it tells us that a CPS translated pure term uses its continuation in a trivial way:
it calls the continuation with the value it evaluates to. And this value is the result
of running the computation with the identity continuation. Since the continuation
is called exactly once with this value, no other value can be substituted for the
variable v, i.e., v denotes a unique value. The equivalence is also called naturality
[162] and continuation shuffling [3, 34] in the literature.

The typing rule, [T-Cont], makes the uniqueness information available when
typing an application of a CPS computation to its continuation. The rule says:
when type checking the body e2 of the continuation λ v : B. e2 passed to a CPS com-
putation e1, we can assume that the variable v represents a unique value e1 B idB.
The assumption can be used via the following reduction rule:

110

Γ ⊢ x ▷δ e if x = e : A ∈ Γ

The rule, often called δ-reduction, allows replacing a variable with its definition
[143]. Notice that the reduction rule is indexed by a typing environment Γ, which
serves as a store of definitions. Extension by definitions happens in languages
featuring dependent let, which has a typing rule like the following one:

Γ, x = e1 : A ⊢ e2 : B

Γ ⊢ let x = e1 : A in e2 : B[e1/x]
(Let)

With this in mind, we can view [T-Cont] as turning the continuation λ v : B. e2

into a let expression let v = e1 B idB : B in e2. That is, it makes a λ, which binds
a variable representing an arbitrary value, behave like a let, which binds a variable
denoting a unique value.

The sharp-eyed reader might have noticed that, while the equivalence [≡-

Cont] holds only when e1 has a polymorphic type, the rule has no typing precon-
dition (and it cannot have one, because Bowman et al., like us, use an untyped
equivalence), which makes this equivalence a bit suspicious. To prohibit uses of
ill-typed equivalence, Bowman et al. introduce a special syntax e1 @ A e2 for
application of CPS computations to their continuation. This can be understood as
telling the type system that we have turned on CPS reasoning. Thus, the actual
equivalence and typing rules look like:

e1 @ A (λ v : B. e2) ≡ (λ v : B. e2) (e1 B idB)
[≡-Cont]

Γ ⊢ e1 : Πα : ∗. (B → α) → α Γ ⊢ A : ∗
Γ, v = e1 B idB : B ⊢ e2 : A

Γ ⊢ e1 @ A (λ v : B. e2) : A
[T-Cont]

Now, we obtain the following guarantee: when we use [≡-Cont], e1 cannot
have a wrong type. This is because (i) equivalence can only ever be used via the
conversion rule, which checks the well-formedness of the types on the left- and
right-hand sides of ≡; and (ii) the only introduction rule of @ is [T-Cont], which
requires e1 to have a polymorphic type.

111
Using a polymorphic answer type, a special application form, and two addi-

tional rules, Bowman et al. show that it is possible to give a type-preserving
translation of call-by-name second projection, as well as call-by-value application.
Let us see how the proof goes. We first look at the call-by-name translation of
snd e, which, when using a polymorphic answer type, takes the following form (for
brevity, we write A÷ to mean Πα : ∗. (A+ → α) → α):

λα : ∗. λ k : (B[fst e/x])+ → α. e÷ @ α (λ v : Σx : A÷. B÷. (snd v) α k)

By the induction hypothesis, we have

e÷ : Πα : ∗. (Σx : A÷. B÷ → α) → α

Since the application of e÷ uses @, we type this application using [T-Cont]. The
rule makes the definition v = e÷ S idS available for typing checking of (snd v) α k,
where S stands for Σx : A÷. B÷. This allows us to cast the type of snd v from
B÷[fst v/x] to B÷[fst (e÷ S idS)/x] via the δ-rule. The domain of k, on the
other hand, can be rewritten to B+[(fst e)÷/x], since the translation commutes
with substitution (this can be proved easily). What remains to be shown is the
equivalence (fst e)÷ ≡ fst (e÷ S idS). By the definition of the translation, we have:

(fst e)÷ = λα : ∗. λ k : A+ → α. e÷ @ α (λ v : Σ x : A÷. B÷. (fst v) α k)

Using [≡-Cont], we can rewrite the application of e÷ in the following way:

e÷ @ α (λ v : Σx : A÷. B÷. (fst v) α k)

≡ (λ v : Σx : A÷. B÷. (fst v) α k) (e÷ S idS) by [≡-Cont]

▷β fst (e
÷ S idS) α k

Now, by η-equivalence, we obtain (fst e)÷ ≡ fst (e÷ S idS) as desired.
We next sketch the case where we translate a call-by-value application:

λα : ∗. λ k : (B[e1/x])
+ → α.

e÷0 α (λ v0 : Π x : A+.Πα : ∗. (B+ → α) → α. e÷1 @ α (λ v1 : A
+. v0 v1 k))

112
By the induction hypothesis, we have

e0 : Πα : ∗. (Πx : A+. (Πα′ : ∗. (B+ → α′) → α′) → α) → α

and

e1 : Πα : ∗. (A+ → α) → α

Similarly to the snd case, we type the application of e÷1 using [T-Cont], which
makes the definition v1 = e÷1 A+ idA+ available when type checking v0 v1 k. This
allows us to convert the type of v0 v1 from B+[v1/x] to B+[e÷1 A+ idA+/x]. Since
we are doing a call-by-value translation, commutativity tells us that the domain
of k, (B[e1/x])

+, is equivalent to B+[e÷1 A+ idA+/x]. That is, we replace x by
the CPS value of e÷1 , which corresponds to the value we obtain by evaluating the
source term e1 in an empty context. This is justified by [≡-Cont], as we will see
in Section 4.6. Now, we can conclude that the application v0 v1 k is well-typed.

The translation of Bowman et al. was later extended to a calculus with in-
ductive datatypes and the shift/reset operators [45]. In the presence of control
effects, we can no longer translate every term using a polymorphic answer type.
However, the tricks of Bowman et al. still apply to the shift/reset-calsulus, since
it has a purity restriction on type dependency. This means, any term appearing
in a type can be translated into a polymorphic computation, from which we can
extract a CPS value.

The polymorphism-based CPS translation is also used in the dependent λµµ̃-
calculus of Miquey [121]. The type preservation proof again relies on the con-
strained dependency of the source language, which guarantees that types depend
only on NEF terms.

4.3 Our Solution: Selective Translation

The polymorphic answer type translation solved the 15-year-old problem, but the
solution is not completely satisfactory, because the type preservation argument
relies heavily on impredicativity and parametricity. Recall how we proved type
preservation of snd e : B[fst e/x]: to obtain the CPS value of e, we ran e÷ with
the identity continuation by instantiating its answer type to Σx : A÷. B÷, where

113
A÷ = Πα : ∗. (A+ → α) → α. The instantiated answer type has a universal
quantification, which means, for the type instantiation to be valid, we must allow
Π types to quantify over types including the type being formed. That is, the base
kind ∗ has to be impredicative.

Assuming impredicativity restricts scalability of the CPS translation. For in-
stance, Agda is a predicative language, hence it does not admit type instantiation
that makes the proof of snd e go through. Coq has an impredicative sort Prop,
which is the type of type of proof terms, but all other sorts, like Set and Type1, are
predicative; in particular, disallowing impredicative sorts at non-bottom levels is
mandatory for the language to be consistent [84]. This means the value extraction
technique does not apply to anything other than proofs and atomic data—that is
to say, we cannot even make the call-by-value translation of (λx : N. x) 0 type-
preserving!

Parametricity, which justifies the [≡-Cont] rule, is not a default feature, either.
Boulier et al. [30] gives a syntactical translation of a CC-like calculus, where the
target can prove the existence of a polymorphic function f : Πα : ∗. α → α that is
not an identity function. In our context, this result implies that not every variant
of type theory admits addition of the equivalence rule [≡-Cont].

So the question is: can we have a type-preserving CPS translation that does not
require impredicativity or parametricity? The answer is yes and no, depending on
in what context we CPS translate programs. CPS is often used as an intermediate
language of compilers [6], because we can specify the order of evaluation by making
the continuation of every piece of code explicit. In this context, it seems inevitable
to assume impredicativity and parametricity, because every single term has to
be converted into a CPS computation, whose value can only be accessed via the
interface e÷ A+ idA+ .

On the other hand, if we use the translation as an earsure of control operators—
that is, if all we want is a program that simulates control effects using pure λ-
terms—then we do not have to CPS translate everything; we only need to turn im-
pure terms, which actually uses their continuation, into CPS. Such a non-uniform
translation is called a selective CPS translation. Selective translations have been
studied as a practical means to support control operators [140, 12]. We show that
selective translations are particularly well-suited when working with dependent

114
types, since they give us type preservation for free, as long as the source language
does not allow types dependent on impure terms.

To see how exactly a selective translation works, let us translate a call-by-value
function application. Suppose we have a Dellina- application e0 e1, where the
function e0 is an impure term, while the argument e1 and the body of the function
are both pure. That is, we have the following derivation:

Γ ⊢ e0 : Πx : A.B[α, β] Γ ⊢ e1 : A

Γ ⊢ e0 e1 : B[e1/x][α, β]
(E-DApp)

The application is translated as follows (note that we use a red font to typeset
the target terms); for comparison, we also repeat Bowman et al.’s call-by-value
translation of a pure application:

Selective Translation

λk : (B[e1/x])
+ →α+. e0

÷ (λv0 : Πx : A+.B+.k (v0 e1
+))

Unselective Translation (Bowman et al.)

λα : ∗. λ k : (B[e1/x])
+ → α.

e÷0 α (λ v0 : Π x : A+.Πα : ∗. (B+ → α) → α. e÷1 @ α (λ v1 : A
+. v0 v1 k))

When selectively translating terms, we follow two principles: (i) turn every
impure term into λk. e; and (ii) keep every pure term in direct style. That is,
we apply a computation translation ÷ to impure terms, and a value translation +

to pure terms. Now, if we look at the derivation of e0 e1, we see that the whole
application is an impure term, hence it must be applied the computation transla-
tion, and be turned into a continuation-awaiting function λk. e. The impureness
is brought by the function e0, so e0 also has to be applied the computation trans-
lation, and the result e0

÷ must be passed a continuation λv0. e0. The argument
e1, on the other hand, is a pure term. This means that we should apply the value
translation + to e1, which gives us a direct-style term. Therefore, in the CPS image
of the application, we do not have the familiar CPS pattern e1

÷ (λv1. e1); instead,
we directly pass e1

+ to v0, which represents the CPS value of the function e0.
Lastly, we need to figure out how to use the top-level continuation k to perform

115
the computation that happens after the application e0 e1. In this case, the right
way to continue evaluation is to apply k to the application v0 e1

+. Notice that we
are using k differently from the unselective translation, where the application is
the other way around, namely v0 v1 k. This difference is due to the fact that we
do not translate the body of e0, which, as the derivation suggests, is a pure term.
While this body is not present syntactically, we can see how it is translated if we
look at the type of v0: the co-domain B+ has no arrow representing the demand for
a continuation. In contrast, the unselective translation tells us that the co-domain
of v0 is B÷ = Πα : ∗. (B+ → α) → α, i.e., v0 is a function that requires an extra
argument representing a continuation.

Having seen how to selectively translate application, let us look at how selec-
tiveness helps us type CPS-translated application. Our goal is to show:

λk : (B[e1/x])
+ →α+. e0

÷ (λv0 : Πx : A+.B+.k (v0 e1
+))

has type

((B[e1/x])
+→α+)→ β+

in the environment Γ+. By the induction hypothesis, we have

Γ+ ⊢ e0
÷ : (Πx : A+.B+ →α+)→ β+ and Γ+ ⊢ e1

+ : A+

The interesting part is the last application k (v0 e1
+). By the application rule of

the target language, we know v0 e1
+ : B+[e1

+/x]. It suffices to show that B+[e1
+/x]

is equivalent to the domain of k, namely (B[e1/x])
+. As we will see in Section 4.6,

it is fairly easy to show this is the case, thanks to the selectiveness. Now, we know
k (v0 e1

+) : α+, and the goal follows by the application and abstraction rules.

4.4 Target Language

As a first step to defining a CPS translation of Dellina-, we formalize the target
language of the translation. The language is roughly the pure subset of Dellina-
featuring a call-by-value semantics. Below we define the syntax, reduction, equiv-
alence, and typing rules.

116

Environments Γ ::= • | Γ, x : A | Γ, e1 ≡ e2
Kinds κ ::= ∗ | □
Types A ::= Unit | N | L e | Πx : A.B
Values v ::= x | λx : A. e | rec fΠx :A.B x. e | z | suc v | nil | :: v v v
Terms e ::= v | e e | suc e | :: e e e

| pm e as x in N ret P with z → e | suc n → e
| pm e as x in L a ret P with nil → e | :: m h t → e

Figure 4.1: Target Syntax

4.4.1 Syntax

We show the the syntax of the target language in Figure 4.1. We use a red, serif font
to typeset target expressions. Our first observation is that typing environments
can be extended with equivalence information e1 ≡ e2. As we will see in Section
4.6, this is necessary for the CPS image of pattern matching to be well-typed. We
next find that function types Πx : A.B are in their standard form; that is, they
do not carry effect annotations. This should not be surprising, because the target
language has no control effects. Thirdly, the definition of values and computations
tells us that the target language is call-by-value. It is a common design decision
to equip the target with a call-by-value semantics when CPS translating call-by-
value control operators. The reason is that the translation does not fix the order
of evaluation in the presence of control effects: if the translation is unselective,
it produces nested function application in the shift and reset cases, and if the
translation is selective, it yields potentially nested function calls in the application
cases with a pure argument.

4.4.2 Reduction and Equivalence

As in Dellina-, we define runtime evaluation and typechecking-time reduction of
the target language using distinct sets of rules. In Figure 4.2, we see one kind of
evaluation contexts E, which have the exactly same definition as Dellina-’s pure
contexts (i.e., F). On the other hand, reduction rules have been extended with the
βΩ-rule, which allows substitution of non-value function arguments for variables
in a redex position. These rules are commonly used when reasoning about CPS

117
Evaluation Contexts E

E ::= [] | E e

| v E

| pm E as x in N ret P with z → e | suc n → e

| pm E as x in L a ret P with nil → e | :: m h t → e

Reduction Rules e ▷ e′

(λx. e) v ▷β e[v/x]

(λx.E[x]) e ▷βΩ
E[e] if x ̸∈ FV (E)

(rec f x. e) v ▷µ e[rec f x. e/f ,v/x]

pm z as x in N ret P with

z → e1 | suc n → e2
▷ι e1

pm suc v as x in N ret P with

z → e1 | suc n → e2
▷ι e2[v/n]

pm nil as x in L a ret P with

nil → e1 | :: m h t → e2
▷ι e1

pm :: v0 v1 v2 as x in L a ret P with

nil → e1 | :: m h t → e2
▷ι e2[v0/m,v1/h,v2/t]

Single-step Evaluation

e ▷ e′

E[e] ▷ E[e′]
[R-Eval]

Multi-step Evaluation e ▷⋆ e′

e ▷⋆ e
[RS-Refl]

e0 ▷⋆ e1 e1 ▷⋆ e2
e0 ▷⋆ e2

[RS-Trans]

Figure 4.2: Target Evaluation and Reduction Rules

118
programs, and are compatible with the call-by-value semantics [100], because a
computation in a redex position must be evaluated to a value.

We next extend the reduction relation to parallel reduction (Figures 4.3 - 4.4),
which we use to define the equivalence rule [≡] (Figure 4.5). However, in the target
language, this is not the only rule for deriving equivalence: we also have a pair
of η-rules, which we use in the proof of type preservation. The addition of the
η-rules require explicit congruence and transitivity rules. Note that congruence
rules simply state that two expressions are equivalent if all of their subexpressions
are equivalent: e.g., e0 e1 ≡ e′0 e′1 if e0 ≡ e′0 and e1 ≡ e′1.

Remark We do not include η-reduction (λx : A. e x ▷ e) in the rules for
runtime/typechecking-time reduction. The reason is that η-reduction is known to
behave badly in dependently typed languages. In particular, adding η-reduction
results in the loss of preservation [160], and makes confluence dependent on nor-
malization of the language1 [80, 81].

4.4.3 Typing

We now look at typing rules, which are defined in Figures 4.6 - 4.8. Most rules are
instances of Dellina- rules where all effect annotations are empty. As the language
is effect-free, there is no need to separate dependent and non-dependent rules for
application and pattern matching. However, we still need the well-formedness
premises of result types, because substitution of values is unsafe under a call-by-
value semantics. A closer look at [E-MatchN] and [E-MatchL] reveals the fact
that we reason about target parttern matching with some additional information.
These rules say: when we type check the branches, we extend the context not
only with the constructor arguments, but also with equivalence information. For
instance, when we have a pattern matching construct that inspects a natural num-
ber e, we type check the zero branch e1 with e ≡ z, and the suc branch e2 with
e ≡ suc n. That is, we assume that the actual scrutinee e is equivalent to the

1Nederpelt [125] was the first to identify the issue with η and confluence on “pseudo-terms”, i.e.,
terms that have not applied type checking. Specifically, he used the following counterexample:

λx : A.x ◁β λx : A. (λy : B.y) x ▷η λy : B.y where A ̸≡ B

119

t ▷p t
[P-Refl]

e ▷p e′

L e ▷p L e′
[P-List]

A ▷p A′ B ▷p B′

Πx : A.B ▷p Πx : A′.B′ [P-Pi]

A ▷p A′ e ▷p e′

λx : A. e ▷p λx : A′. e′
[P-Abs]

Πx : A.B ▷p Πx : A′.B′ e ▷p e′

rec fΠx :A.B x. e ▷p rec fΠx :A′.B′ x. e′
[P-Rec]

e0 ▷p e′0 e1 ▷p e′1
e0 e1 ▷p e′0 e′1

[P-App]

e0 ▷p e′0 v1 ▷p v′
1

(λx : A. e0) e1 ▷p e′0[v
′
1/x]

[P-AppBeta]

Πx : A.B ▷p Πx : A′.B′

e0 ▷p e′0 v1 ▷p v′
1

(rec fΠx :A.B x. e0) v1 ▷p e′0[rec fΠx :A.B x. e′0/f ,v
′
1/x]

[P-AppMu]

E ▷p E′ e ▷p e′

(λx : A.E[x]) e ▷p E′[e]
[P-AppBetaOmega]

Figure 4.3: Target Parallel Reduction (Types and λ-Terms)

120

e ▷p e′

suc e ▷p suc e′
[P-Suc]

e0 ▷p e′0 e1 ▷p e′1 e2 ▷p e′2
:: e0 e1 e2 ▷p :: e′0 e′1 e′2

[P-Cons]

e ▷p e′ P ▷p P′ e1 ▷p e′1 e2 ▷p e′2
pm e as x in N ret P with z → e1 | suc n → e2 ▷p

pm e′ as x in N ret P′ with z → e′1 | suc n → e′2

[P-MatchN]

e1 ▷p e′1
pm z as x in N ret P with z → e1 | suc n → e2 ▷p e′1

[P-MatchZero]

v ▷p v′ e2 ▷p e′2
pm suc v as x in N ret P with z → e1 | suc n → e2 ▷p e′2[v

′/n]
[P-MatchSuc]

e ▷p e′ P ▷p P′ e1 ▷p e′1 e2 ▷p e′2
pm e as x in L a ret P with nil → e1 | :: m h t → e2 ▷p

pm e′ as x in L a ret P with nil → e′1 | :: m h t → e′2

[P-MatchL]

e1 ▷p e′1
pm nil as x in L a ret P′ with nil → e1 | :: m h t → e2 ▷p e′1

[P-MatchNil]

v0 ▷p v′
0 v1 ▷p v′

1 v2 ▷p v′
2 e2 ▷p e′2

pm :: v0 v1 v2 as x in L a ret P with nil → e1 | :: m h t → e2 ▷p

e′2[v
′
0/m,v′

1/h,v
′
2/t]

[P-MatchCons]

t ▷⋆p t
[PS-Refl]

t1 ▷p t1 t1 ▷⋆p t2

t1 ▷⋆p t2
[PS-Trans]

Figure 4.4: Target Parallel Reduction (Inductive Data, Reflexivity, Transitivity)

121

t1 ▷p t t1 ▷p t

0 ≡ 1
[≡]

e ▷p λx : A. e0 e′ ▷p v1 e0 ≡ v1 x

e ≡ e′
[≡ -η1]

e ▷p v0 e′ ▷p λx : A. e1 v0 x ≡ e1
e ≡ e′

[≡ -η2]

+ congruence and transitivity

Figure 4.5: Target Equivalence

Well-formed Environments ⊢ Γ

⊢ •
[G-Empty]

⊢ Γ Γ ⊢ A : ∗
⊢ Γ, x : A

[G-Ext]

⊢ Γ Γ ⊢ e1 : A Γ ⊢ e2 : A e1 ≡ e2
⊢ Γ, e1 ≡ e2

[G-ExtEq]

Well-formed Kinds Γ ⊢ κ : □

⊢ Γ

Γ ⊢ ∗ : □ [K-Star]

Well-formed Types Γ ⊢ A : ∗

⊢ Γ

Γ ⊢ Unit : ∗
[T-Unit]

⊢ Γ

Γ ⊢ N : ∗
[T-Nat]

Γ ⊢ e : N
Γ ⊢ L e : ∗

[T-List]

Γ ⊢ A : ∗ Γ, x : A ⊢ B : ∗
Γ ⊢ Πx : A.B : ∗

[T-Pi]

Figure 4.6: Target Well-formed Environements, Kinds, and Types

122
Well-typed Terms Γ ⊢ e : A

⊢ Γ x : A ∈ Γ

Γ ⊢ x : A
[E-Var]

Γ, x : A ⊢ e : B

Γ ⊢ λx : A. e : Πx : A.B
[E-Abs]

Γ, f : Πx : A.B, x : A ⊢ e : B Γ ⊢ Πx : A.B : ∗ guard(f ,x, e, { })
Γ ⊢ rec fΠx :A.B x. e : Πx : A.B

[E-Rec]

Γ ⊢ e0 : Πx : A.B Γ ⊢ e1 : A Γ ⊢ B[e1/x] : ∗
Γ ⊢ e0 e1 : B[e1/x]

[E-App]

Figure 4.7: Target Typing Rules (λ-terms)

current pattern. In [E-MatchL], we further use an equivalence assumption on
the length index: assume n ≡ z and e ≡ nil in the empty branch, and n ≡ suc m

and e ≡ :: m h t in the cons branch.
The purpose of adding these equivalences is to make the type preservation

proof of the CPS translation go through. The relevant case is when we have
a Dellina- pattern matching that inspects a pure term and returns an impure
computation. Since the branches are impure, we translate the whole construct
into a CPS computation λk. e, and distribute k to each branch. However, this
results in a type mismatch: while the translated branches have a type dependent
on the corresponding pattern, the continuation k has a type dependent on the
scrutinee. To solve this mismatch, we need to assume in each branch that the
scrutinee is equivalent to the current pattern.

The need for equivalence information motivates us to define a new formation
rule [G-ExtEq] for typing environments, which allows extension by an assump-
tion of the form e1 ≡ e2. As can be easily seen, the rule does not exclude in-
consistent assumptions like z ≡ suc z, and indeed, the assumptions introduced
by [E-MatchN] and [E-MatchL] can be inconsistent. For instance, when type
checking

pm z as x in N ret P with z → e1 | suc n → e2

123

⊢ Γ

Γ ⊢ () : Unit
[E-Unit]

⊢ Γ

Γ ⊢ z : N
[E-Zero]

Γ ⊢ e : N
Γ ⊢ suc e : N

[E-Suc]

⊢ Γ

Γ ⊢ nil : L z
[E-Nil]

Γ ⊢ e0 : N Γ ⊢ e1 : N Γ ⊢ e2 : L e0
Γ ⊢ :: e0 e1 e2 : L (suc e0)

[E-Cons]

Γ ⊢ e : N Γ, x : N ⊢ P : ∗
Γ, e ≡ z ⊢ e1 : P[z/x] Γ, n : N, e ≡ suc n ⊢ e2 : P[suc n/x]

Γ ⊢ P[e/x] : ∗
Γ ⊢ pm e as x in N ret P with z → e1 | suc n → e2 : P[e/x]

[E-MatchN]

Γ ⊢ e : L n Γ, a : N, x : L a ⊢ P : ∗
Γ, n ≡ z, e ≡ nil ⊢ e1 : P[z/a,nil/x]

Γ, m : N, h : N, t : L m, n ≡ suc m, e ≡ :: m h t ⊢ e2 : P[suc m/a, :: m h t/x]

Γ ⊢ P[n/a, e/x] : ∗
Γ ⊢ pm e as x in L a ret P with nil → e1 | :: m h t → e2 : P[n/a, e/x]

[E-MatchL]

Γ ⊢ e : A Γ ⊢ B : ∗ A ≡ B

Γ ⊢ e : B
[E-Conv]

e1 ≡ e2 ∈ Γ e1 ≡ ci a e2 ≡ cj b ci ̸= cj
Γ ⊢ e : A

[E-InCon]

Figure 4.8: Target Typing Rules (Inductive Data and Conversion)

124
we would assume z ≡ suc n in e2. With this assumption, type checking of e2

no longer makes any sense, therefore we “skip” this process via a new typing rule
[E-InCon] [99]. The rule tells us that, if Γ contains an inconsistent assumption,
we may derive any conclusion e : A. The inconsistency is defined in terms of head
constructors; specifically, we say e1 ≡ e2 is inconsistent if e1 and e2 reduce to ci a

and cj b, where ci and cj are different constructors, and a and b are sequences of
arguments. From a logical point of view, [E-InCon] can be viewed as the principle
of explosion, also known as Ex Falso Quodlibet (EFQ).

The introduction of [E-InCon] comes at the cost of giving up termination and
other metatheoretic properties (such as regularity and canonical forms). Neverthe-
less, we believe that the fragment we are interested in—namely the image of our
CPS translation—has the good properties. Intuitively, the reason is that there is
no way to use inconsistent equivalence in the source language (remember that our
equivalence is sound), and that the translation is defined in a way that it never
uses the assumed equivalence to do anything bad.

4.5 CPS Translation

Based on the idea we sketched in Section 4.3, we design a selective CPS translation
of Dellina-. Unlike ordinary CPS translations, which are defined by indution on
the structure, our selective translation is defined on the typing derivation. One
reason is that our target language features annotated abstractions, which means
we must give an appropriate type annotation to all variables introduced by the
translation. Suppose we have an application e0 e1 where all subterms are impure.
In its CPS image, we need to generate annotations for variables k, v0, and v1:

λk :?1 → ?2. e0
÷ (λv0 :?3. e1

÷ (λv1 :?4.v0 v1 k))

Since a CPS translation turns evaluation contexts in the source language into
functions in the target language, ?1, ?3, and ?4 must be (the CPS translation of)
the type of e0 e1, e0, and e1. We also know that ?2 must be (the CPS translation
of) the initial answer type of the whole application. None of these are available
from the source term e0 e1, but if we look at the derivation of this application,
namely

125

Γ ⊢ e0 : (A→B[α, β])[γ, δ] Γ ⊢ e1 : A[β, γ]

Γ ⊢ e0 e1 : B[α, δ]
(E-NDApp)

then we can obtain all the information we need to generate annotations.
The second reason we define the translation on the derivation is that we trans-

late pure and impure terms in distinct ways. Recall that we have a value trans-
lation, which applies to pure terms, and a computation translation, which applies
to impure terms. If we decide applicability of these translations using syntatic
information, we would be able to apply the value translation only to syntactically
pure terms, such as variables and functions. However, in Dellina-, we have other
forms of pure terms as well, including application and pattern matching. Then,
what will happen is that, some source terms, which are judged pure and allowed to
appear in a type, would be applied the computation translation. This would break
type preservation, since the property relies heavily on the fact that pure terms are
kept in direct style.

For these reasons, we define one CPS image for each “instance” of the typing
rules from Section 3.3. By “instance”, we mean the possible combinations of the
effect annotations of subterms: e.g., in the case of function application, each of
the function, the argument, and the body of the function can be pure or impure,
hence we define 23 = 8 different CPS images.

Note that we will use the following abbreviation throughout the translation:

Γ+
def≡ Γ where ⊢ Γ

+⇝ Γ

κ+ def≡ κ where κ ⊢ : □ +⇝ κ

A+ def≡ A where Γ ⊢ A : ∗ +⇝ A

e+
def≡ e where Γ ⊢ e : A

+⇝ e

e÷
def≡ e where Γ ⊢ e : A[α, β]

÷⇝ e

Now, let us walk through the CPS translation. The translation of typing envi-
ronments (Figure 4.9) is a mapping of the value translation +. This reflects the fact
that Dellina- is a call-by-value language, where variables are pure values. Since
pure terms are never be applied the computation translation, their type are never
doubly negated either.

126

⊢ •
(G-Empty) +⇝ •

⊢ Γ Γ ⊢ A : ∗
⊢ Γ, x : A

(G-Ext) +⇝ Γ+, x : A+

⊢ Γ

Γ ⊢ ∗ : □ (K-Star) +⇝ ∗

⊢ Γ

Γ ⊢ Unit : ∗
(T-Unit) +⇝ Unit

⊢ Γ

Γ ⊢ N : ∗
(T-Nat) +⇝ N

Γ ⊢ e : N
Γ ⊢ L e : ∗

(T-List) +⇝ L e+

Γ ⊢ A : ∗ Γ, x : A ⊢ B : ∗ Γ, x : A ⊢ ρ

Γ ⊢ Πx : A.B : ∗
(T-Pi)

+⇝ Πx : A+.B+ if ρ = ϵ

+⇝ Πx : A+. (B+ → α+) → β+ if ρ = [α, β]

Figure 4.9: CPS Translation of Environments, Kinds, and Types

127
Next, we look at the translation of kinds and types. The translation of (K-

Star), (T-Unit), and (T-Nat) is trivial. The source list type L e is converted into
the target list type L e+. We find that the index is applied the value translation
+. The applicability of + is guaranteed by the source rule (T-List), which has a
premise Γ ⊢ e : N requiring e to be a pure natural number.

Function types are translated differently depending on whether the effect anno-
tation ρ is empty or not. When ρ is empty, i.e., when the function type takes the
form Πx : A.B, we convert the type to Πx : A+.B+. The use of + on the domain A

comes from the call-by-value semantics of Dellina-. We use the same +-translation
for co-domain B as well, because the type is inhabited by functions having a pure
body. Since we translate pure terms into direct style, the post-translation term
must have a non-negated type. In contrast, when ρ is non-empty, i.e., when the
type takes the form Πx : A.B[α, β], we convert it to Πx : A+. (B+ → α+) → β+2.
While the domain is translated the same way as before, the co-domain has two
additional arrows. These arrows reflect the fact that the source type is inhabited
by functions with an impure body, which must be applied the computation trans-
lation ÷. Since ÷ introduces a new λ for receiving a continuation, the resulting
term has a doubly negated type (B+ → α+) → β+.

As stated earlier, terms are translated into two distinct forms: when e is a pure
term, we translate it into a direct-style term using +, and when e is impure, we
convert it into CPS using ÷. An implication of this design strategy is that values
are uniformly applied the +-translation. We may, however, use the ÷-translation
when we recurse on the body of functions (see the second case of (E-Abs) and
(E-Rec)). This brings the two arrows into the CPS image of impure function
types.

It is worth spending some time comparing different ways of translating an ap-
plication e0 e1 (Figure 4.11). We have eight variants in total, but all of these are
defined in a systematic way. The overall structure is a direct-style application if

2As we can see from this type, our translation forces impure functions to take in their argu-
ment first and a continuation later. This translation is called Plotkin-style [60]. A different option
would be to adopt a Fischer-style translation, where the continuation comes before the argument.
When using a fixed answer type, the latter turns an arrow type into (B+ → ⊥) → (A+ → ⊥),
which is sometimes preferred for its symmetric structure [162]. However, Fischer-style transla-
tions do not work for dependent calculi, because the co-domain B may refer to the argument
variable of type A.

128

⊢ Γ x : A ∈ Γ or x = e : A ∈ Γ

Γ ⊢ x : A
(E-Var) +⇝ x

Γ, x : A ⊢ e : B ρ

Γ ⊢ λ x : A. e : Πx : A.B ρ
(E-Abs)

+⇝ λx : A+. e+ if ρ = ϵ

+⇝ λx : A+. e÷ if ρ = [α, β]

Γ, f : Πx : A.B ρ, x : A ⊢ e : B guard(f, x, e, { })
Γ ⊢ rec fΠx :A.B ρ x. e : Πx : A.B ρ

(E-Rec)

+⇝ rec fΠx :A+.B+ x. e+ if ρ = ϵ

+⇝ rec fΠx :A+. (B+ →α+)→β+ x. e÷ if ρ = [α, β]

Figure 4.10: CPS Translation of Terms (Values)

129

Γ ⊢ e0 : (Πx : A.B τ) ρ Γ ⊢ e1 : A

Γ ⊢ B[e1/x] : ∗ ν = comp(ρ, τ [e1/x]) Γ ⊢ ν

Γ ⊢ e0 e1 : B[e1/x] ν
(E-DApp)

+⇝ e0
+ e1

+

if ρ = τ = ϵ

÷⇝ λk : (B[e1/x])
+ → (α[e1/x])

+. e0
+ e1

+ k
if ρ = ϵ, τ = [α, β]

÷⇝ λk : (B[e1/x])
+ →α+. e0

÷ (λv0 : Πx : A+.B+.k (v0 e1
+))

if ρ = [α, β], τ = ϵ

÷⇝ λk : (B[e1/x])
+ → (α[e1/x])

+. e0
÷ (λv0 : A+ → (B+ → α+) → β+.v0 e1

+ k)
if ρ = [β[e1/x], γ], τ = [α, β]

Γ ⊢ e0 : (A→B τ) ρ Γ ⊢ e1 : A σ ν = comp(ρ, σ, τ)

Γ ⊢ e0 e1 : B ν
(E-NDApp)

÷⇝ λk : B+→α+. e1
÷ (λv1 : A+.k (e0

+ v1))
if ρ = ϵ, σ = [α, β], τ = ϵ

÷⇝ λk : B+→α+. e1
÷ (λv1 : A+. e0

+ v1 k)
if ρ = ϵ, σ = [β, γ], τ = [α, β]

÷⇝ λk : B+→α+. e0
÷ (λv0 : A+ →B+. e1

+ (λv1 : A+.k (v0 v1)))
if ρ = [β, γ], σ = [α, β], τ = ϵ

÷⇝ λk : B+→α+. e0
÷ (λv0 : A+ → (B+ → α+) → β+. e1

÷ (λv1 : A+.v0 v1 k))
if ρ = [γ, δ], σ = [β, γ], τ = [α, β]

Figure 4.11: CPS Translation of Terms (Application)

130
e0 e1 is pure as a whole; otherwise the CPS image takes the form λk. e. When
recursing on the subterm ei (where i = 0, 1), we use + if it is pure and ÷ if it is im-
pure. In the latter case, we supply ei

÷ with a continuation λvi. e. The presence of
this continuation corresponds to the need of ei for a delimited context—remember
that evaluation of impure terms is only possible when they are surrounded by a
context and a reset.

Turning our attention to the use of the top-level continuation k, we find another
shared pattern: when the function’s body is pure (i.e., when τ = ϵ), the last
application takes the form k (e0 e1), whereas when the body is impure (i.e., when
τ = [α, β]), the application looks like e0 e1 k. The contrast is a natural consequence
of our selective translation on functions: in the pure case, the body of e0 must be
a direct-style term, which does not require a continuation, whereas in the impure
case, the body is a CPS computation, which does require a continuation.

Inductive data and pattern matching (Figures 4.12 – 4.14) are defined along the
same lines as application. The all-pure instances of the typing rules are translated
to a direct-style term, just like a pure application. Other instances are converted
into a CPS computation λk. e, and in the pattern matching cases, we again see two
different uses of the continuation k. Recall the semantics of a pattern matching:
it ultimately evaluates to one of the brances ei (i = 1, 2). This means, we have to
find an appropriate way to compose the translation of ei and k. Similarly to the
application cases, the right use of k is k ei

+ when ei is pure, and ei
÷ k when ei

is impure. Note that this composition has the effect of changing the return type
from P to α+ or β+, which represents the type of the answer we eventually obtain.

The translation of control operators (Figure 4.15) exhibits their semantics in a
clear and intuitive way. Since a shift construct is impure regardless of its body, the
only applicable translation is the computation translation. Observe that, when the
body e is impure, we apply e÷ to the identity function λv : B+.v. This corresponds
to the outer reset in the reduct of a shift-redex. The shift-bound continuation
k is turned into a λ-bound continuation k, which has a function type whose co-
domain is not doubly negated. This reflects the fact that continuations are pure
functions, which is guaranteed by the inner reset in the reduct of a shift-redex.

By contrast, a reset construct is always a pure term, hence the only applicable
translation is the value translation. Similarly to shift, we apply e÷ to the identity

131

⊢ Γ

Γ ⊢ () : Unit
(E-Unit) +⇝ ()

⊢ Γ

Γ ⊢ z : N
(E-Zero) +⇝ z

Γ ⊢ e : N ρ

Γ ⊢ suc e : N ρ
(E-Suc)

+⇝ suc e+ if ρ = ϵ

÷⇝ λk : N→α+. e÷ (λv : N.k (suc v)) if ρ = [α, β]

⊢ Γ

Γ ⊢ nil : L z
(E-Nil) +⇝ nil

Γ ⊢ e0 : N Γ ⊢ e1 : N ρ Γ ⊢ e2 : L e0 σ

τ = comp(ρ, σ)

Γ ⊢ :: e0 e1 e2 : (L (suc e0)) τ
(E-Cons)

+⇝ :: e0
+ e1

+ e2
+

if ρ = σ = ϵ

÷⇝ λk : L e0
+ →α+. e2

÷ (λv2 : L e0
+.k (:: e0

+ e1
+ v2))

if ρ = ϵ, σ = [α, β]

÷⇝ λk : L e0
+ →α+. e1

÷ (λv1 : N.k (:: e0
+ v1 e2

+))
if ρ = [α, β], σ = ϵ

÷⇝ λk : L e0
+ →α+. e1

÷ (λv1 : N. e1÷ (λv1 : N.k (:: e0
+ v1 v0)))

if ρ = [β, γ], σ = [α, β]

Figure 4.12: CPS Translation of Terms (Inductive Data)

132

Γ ⊢ e : N Γ, x : N ⊢ P : ∗
Γ ⊢ e1 : P[z/x] ρ[z/x] Γ, n : N ⊢ e2 : P[suc n/x] ρ[suc n/x]

Γ ⊢ P[e/x] : ∗ Γ ⊢ ρ[e/x]

Γ ⊢ pm e as x in N ret P with z → e1 | suc n → e2 : P[e/x] ρ[e/x]
(E-DMatchN)

+⇝ pm e+ as x in N ret P+ with z → e1
+ | suc n → e2

+

if ρ = ϵ

÷⇝ λk : (P[e/x])+ → (α[e/x])+.
pm e+ as x in N ret β+ with z → e1

÷ k | suc n → e2
÷ k

if ρ = [α, β]

Γ ⊢ e : N ρ Γ ⊢ P : ∗
Γ ⊢ e1 : P σ Γ, n : N ⊢ e2 : P σ τ = comp(ρ, σ)

Γ ⊢ pm e as _ in N ret P with z → e1 | suc n → e2 : P τ
(E-NDMatchN)

÷⇝ λk : P+ →α+.
e÷ (λv : N.pm v as _ in N ret α+ with z → k e1

+ | suc n → k e2
+)

if ρ = [α, β], σ = ϵ

÷⇝ λk : P+ →α+.
e÷ (λv : N.pm v as _ in N ret β+ with z → e1

÷ k | suc n → e2
÷ k)

if ρ = [β, γ], σ = [α, β]

Figure 4.13: CPS Translation of Terms (Pattern Matching on Natural Numbers)

133

Γ ⊢ e : L n Γ, a : N, x : L a ⊢ P : ∗
Γ ⊢ e1 : P[z/a, nil/x] ρ[z/a, nil/x]

Γ, m : N, h : N, t : L m ⊢ e2 : P[suc m/a, :: m h t/x] ρ[suc m/a, :: m h t/x]

Γ ⊢ P[n/a, e/x] : ∗ Γ ⊢ ρ[n/a, e/x]

Γ ⊢ pm e as x in L a ret P with nil → e1 | :: m h t → e2 : P[n/a, e/x] ρ[n/a, e/x]
(E-DMatchL)

+⇝ pm e+ as x in L a ret P+ with nil → e1
+ | :: m h t → e2

+

if ρ = ϵ

÷⇝ λk : (P[n/a, e/x])+ → (α[n/a, e/x])+.
pm e+ as x in L a ret β+ with nil → e1

÷ k | :: m h t → e2
÷ k

if ρ = [α, β]

Γ ⊢ e : (L n) ρ Γ ⊢ P : ∗
Γ ⊢ e1 : P σ Γ, m : N, h : N, t : L m ⊢ e2 : P σ τ = comp(ρ, σ)

Γ ⊢ pm e as _ in L _ ret P with nil → e1 | :: m h t → e2 : P τ
(E-NDMatchL)

÷⇝ λk : P+→α+.
e÷ (λv : N.pm v as _ in L _ ret α+ with nil → k e1

+ | :: m h t → k e2
+)

if ρ = [α, β], σ = ϵ

÷⇝ λk : P+→α+.
e÷ (λv : N.pm v as _ in L _ ret β+ with nil → e1

÷ k | :: m h t → e2
÷ k)

if ρ = [β, γ], σ = [α, β]

Figure 4.14: CPS Translation of Terms (Pattern Matching on Lists)

134

Γ, k : A→α ⊢ e : β or Γ, k : A→α ⊢ e : B[B, β]

Γ ⊢ β : ∗
Γ ⊢ α : Sk : A→α. e[A, β]

(E-Shift)

÷⇝ λk : A+ →α+. e+ if e pure

÷⇝ λk : A+ →α+. e+ (λv : B+.v) if e impure

Γ ⊢ e : A or Γ ⊢ e : B[B,A]

Γ ⊢ ⟨e⟩ : A
(E-Reset)

+⇝ e+ if e pure

+⇝ e÷ (λv : B+.v) if e impure

Γ ⊢ e : A ρ Γ ⊢ B : ∗ Γ ⊢ σ

A ≡ B ρ ≡ σ

Γ ⊢ e : B σ
(E-Conv)

+⇝ e+ if ρ = ϵ

+⇝ e÷ if ρ = [α, β]

Figure 4.15: CPS Translation of Terms (Control Opertaors and Conversion)

135
function when the body e is impure, which corresponds to running e in an empty
context.

Lastly, we have a very simple translation for the conversion rule. The CPS
image is exactly the same as the translation of the pre-conversion derivation, since
type conversion has no computational impact.

Remark on Order of Evaluation As we noted earlier, selective CPS trans-
lations do not fix the order of evaluation by themselves. This is the case in our
translation as well. Consider the translation of an application e0 e1, where e0 and
e1 are both pure, but the body of e0 is impure. In the CPS image, we will have an
application k (e0

+ e1
+), where k is called in a non-tail position. Furthermore, our

translation does not preserve the left-to-right evaluation of the source language.
For instance, if we have an impure application e0 e1, where e0 is pure but e1 is
impure, we would obtain a CPS computation of the form λk. e1

÷ (λv1. e), which
would force evaluation of e1÷ to happen before evaluation of e0+ in e.

4.6 Proof of Type Preservation

In this section, we prove that our selective CPS translation is type-preserving, that
is, well-typed Dellina- programs are translated to well-typed target programs. The
proof is staged as follows. First, we prove compositionality (Lemma 4.6.1), which
states that the translation commutes with substitution. Using compositionality, we
next prove correctness (Lemma 4.6.3), which tells us that two source expressions
related by reduction are mapped to two equivalent target expressions. Correctness
then gives us computational soundness (Lemma 4.6.4) [30], which says that equiv-
alent terms are mapped to equivalent terms. These allow us to prove the main
theorem: the translation preserves typing (Theorem 4.6.1).

The reason we cannot directly prove type preservation is that our translation
is defined on the derivation, not the syntax. This means we have to deal with the
type conversion case. Suppose we have a pure term e whose type has converted
from A to B. In the type preservation proof, we have to show e : B+, whereas
the induction hypothesis gives us e : A+. For this case to go through, we need
computational soundness, that is, whenever we have A ≡ B in the source, we have

136
A+ ≡ B+ in the target. As pointed out by Barthe et al. [23], this staging is not
possible when we use a typed equivalence, because that would require us to show
A+ : ∗ and B+ : ∗, which is exactly the type preservation statement! This is why
we use an untyped equivalence in the source and target languages. While typed
and untyped variants of equivalence are suited for different purposes, they have
proven equivalent in Pure Type Systems [81].

4.6.1 Compositionality

We begin by proving compositionality: we can either first perform substitution
and then translate the result, or first translate the expression and then perform
substitution.

Lemma 4.6.1 (Compositionality). Suppose e′ is a pure term. Then, the following
equalities hold:

1. (A[e′/x′])+ = A+[e′+/x′]

2. (e[e′/x′])+ = e+[e′+/x′]

3. (e[e′/x′])÷ = e÷[e′+/x′]

Proof. The proof is by mutual induction on the derivation of A and e. We show
some representative cases.

Case 1: (T-Unit), (T-Nat)

These cases are trivial.

Case 2: (T-List)

((L e1)[e
′/x′])+ = (L (e1[e

′/x′]))+ by substitution

= L (e1[e
′/x′])+ by translation

= L (e1
+[e′+/x′]) by IH on e1

= (L e1
+)[e′+/x′] by substitution

137
Case 3: (T-Pi) where ρ = ϵ

((Πx : A.B)[e′/x′])+ = (Πx : A[e′/x′].B[e′/x′])+ by substitution

= Πx : (A[e′/x′])+. (B[e′/x′])+ by translation

= Πx : A+[e′+/x′].B+[e′+/x′] by IH on A and B

= (Πx : A+.B+)[e′+/x′] by substitution

Case 4: (E-Var)

Sub-Case 1: e = x′

(x′[e′/x′])+ = e′+ by substitution

= x′[e′+/x′] by substitution

= x′+[e′+/x′] by translation

Sub-Case 2: e = y where y ̸= x′

(y[e′/x′])+ = y+ by substitution

= y by translation

= y[e′+/x′] by substitution

Case 5: (E-Abs) where ρ = [α, β]

((λ x : A. e)[e′/x′])+ = (λ x : A[e′/x′]. e[e′/x′])+ by substitution

= λx : (A[e′/x′])+. (e[e′/x′])+ by translation

= λx : A+[e′+/x′]. e+[e′+/x′] by IH on A and e

= (λx : A+. e+)[e′+/x′] by substitution

Case 6: (E-DApp) where ρ = [β[e1/x], γ], τ = [α, β]

138

((e0 e1)[e
′/x′])÷ = (e0[e

′/x′] e1[e
′/x′])÷ by substitution

= λk. (e0[e
′/x′])÷ (λv0.v0 (e1[e

′/x′])+ k) by translation

= λk. e0
÷[e′+/x′] (λv0.v0 e1

+[e′+/x′] k) by IH on e0 and e1

= (λk. e0
÷ (λv0.v0 e1

+ k))[e′+/x′] by substitution

Remark In a polymorphic answer type translation, the compositionality prop-
erty is stated as follows:

(e[e′/x′])÷ ≡ e÷[e′÷ A′+ idA′+/x′]

While our compositionality lemma follows directly by substitution, proving the
above statement is much more involved; in particular, it requires the [≡-Cont]

rule of Bowman et al. [34], as shown below:

(x′[e′/x′])÷ = e′÷ by substitution

≡ λα. λk. e′÷ @ α (λx.k x) by η and semantics of @

≡ λα. λk. (λx.k x) (e′÷ A′+ idA′+) by [≡-Cont]

= (λα. λk. (λx.k x) x′)[e′÷ A′+ idA′+/x′] by substitution

▷β (λα. λk.k x′)[e′÷ A′+ idA′+/x′]

= x′÷[e′÷ A′+ idA′+/x′] by translation

4.6.2 Correctness and Computational Soundness

Lemma 4.6.2 (Correctness w.r.t. Single-step Reduction).

1. If Γ ⊢ A : ∗ and A ▷p A′, then A+ ≡ A′+.

2. If Γ ⊢ e : A and e ▷p e′, then e+ ≡ e′+.

3. If Γ ⊢ e : A[α, β] and e ▷p e′, then e÷ ≡ e′÷.

139
Proof. The proof is by mutual induction on the derivation of A and e. For all
typing rules, the reflexive case (t ▷p t) is trivial, so we only show the cases where
t actually takes step.

Case 1: (T-List)

The only way the list type L e takes step is via (P-List).

(L e)+ = L e+ by translation

≡ L e′+ by IH on e

= (L e′)+ by translation

Case 2: (T-Pi)

This case can be easily proven using induction hypothesis on the subcomponents.

Case 3: (E-Var)

Sub-Case 1: x′ ▷p v′ by (P-VarDelta)

x+ = x by translation

▷δ v
+ by v+ ∈ Γ+

Case 4: (E-DApp) where ρ = ϵ, τ = [α, β]

Sub-Case 1: e0 e1 ▷p e′0 e′1 by (P-App)

(e0 e1)
÷ = λk. e0

+ e1
+ k by translation

≡ λk. e′0
+ e′1

+ k by IH on e0 and e1

= (e′0 e′1)
÷ by translation

Sub-Case 2: (λ x. e0) v1 ▷p e′0[v
′
1/x] by (P-AppBeta)

140

((λ x. e0) v1)
+ = λk. (λ x : A′. e0)

+ v1
+ k by translation

= λk. (λx. e0
÷) v1

+ k by translation

≡ λk. (λx. e′0
÷) v′1

+ k by IH on e0 and v1

▷β λk. (e
′
0
÷[v′1

+/x]) k

≡ e′0
÷[v′1

+/x] by η

= (e′0[v
′
1/x])

÷ by compositionality

Case 5: (E-Reset)

Sub-Case 1: ⟨e⟩ ▷p ⟨e′⟩ by (P-Reset)

⟨e⟩+ = e÷ (λv.v) by translation

≡ e′÷ (λv.v) by IH on e

= ⟨e′⟩+ by translation

Sub-Case 2: ⟨F[Sk. e]⟩ ▷p ⟨e′[λ x.F′[x]/k]⟩ by (P-ResetS)

Similarly to the preservation theorem, we prove this case by decomposing the
shift-reduction into smaller ones.

Sub-Sub-Case 1: (P-SApp1) where the function body, e, and e1 are all pure

((Sk. e) e1)÷ = λk′. (Sk. e)÷ (λv0.k
′ (v0 e1

+)) by translation

= λk′. (λk. e+) (λv0.k
′ (v0 e1

+)) by translation

≡ λk′. (λk. e′+) (λv0.k
′ (v0 e′1

+)) by IH on e and e′1

▷β λk
′. e′+[λv0.k

′ (v0 e′1
+)/k]

= λk′. (e′[λ v0. ⟨k′ (v0 e′1)⟩/k])+ by compositionality

= (Sk′. e′[λ v0. ⟨k′ (v0 e′1)⟩/k])÷ by translation

Sub-Sub-Case 2: (P-SApp2) where the function body and e are impure

141

(v0 (Sk. e))÷ = λk′. (Sk. e)÷ (λv1. v0
+ v1 k′) by translation

= λk′. (λk. e÷ id) (λv1. v0
+ v1 k′) by translation

≡ λk′. (λk. e′÷ id) (λv1. v
′
0
+ v1 k′) by IH on e and v0

▷β λk
′. (e′÷ id)[λv1. v

′
0
+ v1 k′/k]

◁β λk
′. (e′÷ id)[λv1. (v

′
0 v1)

÷ k′/k]

≡ λk′. e′÷[λv1. (v
′
0 v1)

÷ (λv.k′ v)/k] id by η

◁βΩ
λk′. e′÷[λv1. (v

′
0 v1)

÷ (λv. id (k′ v))/k] id

◁β λk
′. e′÷[λv1. (λk

′′. (v′0 v1)
÷ (λv.k′′ (k′ v))) id/k] id

= λk′. e′÷[λv1. (k
′ (v′0 v1))

÷ id/k] id by translation

= λk′. e′÷[(λ v1. ⟨k′ (v′0 v1)⟩)+/k] id by translation

= λk′. (e′[λ v1. ⟨k′ (v′0 v1)⟩/k])÷ id by compositionality

= (Sk′. e′[λ v1. ⟨k′ (v′0 v1)⟩/k])÷ by translation

Sub-Sub-Case 3: (P-SEmpty) where e impure

⟨Sk. e⟩+ = (Sk. e)÷ (λv.v) by translation

= (λk. e÷ (λv.v)) (λv.v) by translation

≡ (λk. e′÷ (λv.v)) (λv.v) by IH on e

▷β (e
′÷ (λv.v))[λv.v/k]

= (e′÷[λv.v/k]) (λv.v) by substitution

= (e′÷[(λ v. v)+/k]) (λv.v) by translation

= (e′[λ v. v/k])÷ (λv.v) by compositionality

= ⟨e′[λ v. v/k]⟩+ by translation

Case 6: (P-ResetV)

142

⟨v⟩+ = v+ by translation

≡ v′+ by IH on v

Lemma 4.6.3 (Correctness).

1. If Γ ⊢ A : ∗ and A ▷⋆ A′, then A+ ≡ A′+.

2. If Γ ⊢ e : A and e ▷⋆ e′, then e+ ≡ e′+.

3. If Γ ⊢ e : A[α, β] and e ▷⋆ e′, then e÷ ≡ e′÷.

Proof. The proof is by induction on the length of the reduction sequence. The
base case, where the length is zero, is trivial. The inductive case follows by the
induction hypothesis, Lemma 4.6.3, and the transitivity of equivalence.

Lemma 4.6.4 (Computational Soundness).

1. If A ≡ A′, then A+ ≡ A′+.

2. If e ≡ e′, then e+ ≡ e′+.

3. If e ≡ e′, then e÷ ≡ e′÷.

Proof. This is a direct consequence of the correctness lemma (Lemma 4.6.3). By
the definition of equivalence, we know that, when we have t1 ≡ t2, there must be
an expression t such that t1 ▷⋆ t and t2 ▷⋆ t. By correctness of the translation,
we know that t1

+ ≡ t+ (t1÷ ≡ t÷) and t2
+ ≡ t+ (t2÷ ≡ t÷). The goal follows by

symmetry and transitivity of equivalence.

4.6.3 Type Preservation

Theorem 4.6.1 (Type Preservation).

1. If ⊢ Γ, then ⊢ Γ+.

143
2. If Γ ⊢ κ : □, then Γ+ ⊢ κ+ : □.

3. If Γ ⊢ A : ∗, then Γ+ ⊢ A+ : ∗.

4. If Γ ⊢ e : A, then Γ+ ⊢ e+ : A+.

5. If Γ ⊢ e : A[α, β], then Γ+ ⊢ e÷ : (A+ →α+)→ β+.

Proof. The proof is by mutual induction on the derivation of Γ, κ, A, and e. We
show some representative cases.

Case 1: (G-Empty)

This case is trivial.

Case 2: (G-Ext)

Our goal is to show

⊢ Γ+, x : A+

By the induction hypothesis, we have

⊢ Γ+ and Γ+ ⊢ A+ : ∗

The goal easily follows by [G-Ext].

Case 3: (K-Star), (T-Unit), (T-Nat), (E-Unit), (E-Zero), (E-Nil)

These cases easily follow by the induction hypothesis on Γ.

Case 4: (T-List)

Our goal is to show

Γ+ ⊢ L e+ : ∗

By the induction hypothesis, we have

Γ+ ⊢ e+ : N

The goal immediately follows by [T-List].

Case 5: (T-Pi) where ρ = ϵ

Our goal is to show

Γ+ ⊢ Πx : A+.B+ : ∗

144
By the induction hypothesis, we have

Γ+ ⊢ A+ : ∗ and Γ+, x : A+ ⊢ B+ : ∗

which imply the goal. The case where ρ = [α, β] can be shown in a similar way,
with two more invocations of the induction hypothesis on the answer types α and
β.

Case 6: (E-Var)

Our goal is to show

Γ+ ⊢ x : A+

By the induction hypothesis, we have

⊢ Γ+

By the definition of the translation, we also know that the declaration x : A+ is in
Γ+. The goal now follows by [E-Var].

Case 7: (E-Abs) where ρ = [α, β]

Our goal is to show

Γ+ ⊢ λx : A+. e÷ : Πx : A+. (B+ →α+)→ β+

By the induction hypothesis, we have

Γ+, x : A+ ⊢ e÷ : (B+→α+)→ β+

The goal easily follows by [E-Abs].

Case 8: (E-Rec)

This case is analogous to (E-Abs), but we have to make sure that the guardedness
is preserved by the translation. Recall how the guard condition is defined: a
recursive function f is guarded if its body destructs the argument x via pattern
matching, and in each branch, the function is called only with a pattern variable
representing a recursive argument. This means, the only possible form of a guarded
recursive call is f y, where y = n when f recurses on a natural number and y = t

when f recurses on a list. Then, to show preservation of guardedness, it suffices to
show that the translation does not change the shape of the application f y. We can

145
easily see that the requirement is satisfied: if the body of f is a pure term, f y is
translated to f y via the +-translation, and otherwise, it is converted to λk. f y k.

Case 9: (E-DApp) where ρ = τ = ϵ

Our goal is to show

Γ+ ⊢ e0
+ e1

+ : (B[e1/x])
+

By the induction hypothesis, we have

Γ+ ⊢ e0
+ : Πx : A+.B+ and Γ+ ⊢ e1

+ : A+

By compositionality (Lemma 4.6.1), we know that (B[e1/x])
+ = B+[e1

+/x]. The
goal easily follows by [E-App].

Case 10: (E-NDApp) where ρ = [γ, δ], σ = [β, γ], τ = [α, β]

Our goal is to show

Γ+ ⊢ λk : B+→α+. e0
÷ (λv0 : A+ → (B+ →α+)→ β+. e1

÷ (λv1 : A+.v0 v1 k)) :

(B+ →α+)→ δ+

By the induction hypothesis, we have

Γ+ ⊢ e0
÷ : ((A+ → (B+ →α+)→ β+)→ γ+)→ δ+ and Γ+ ⊢ e1

÷ : (A+ → β+)→ γ+

Using [E-App], we can derive

Γ+, k : B+ →α+, v0 : A+ → (B+ →α+)→ β+, v1 : A+ ⊢ v0 v1 k : β+

This implies that the application of e1÷ to its continuation is well-typed, and that
the result type is γ+. Then we know that the application of e0÷ to its continuation
is also well-typed, and that the result type is δ+. Now the goal follows by [E-Abs].

Case 11: (E-Cons) where ρ = σ = τ = ϵ

Our goal is to show

Γ+ ⊢ :: e0
+ e1

+ e2
+ : (L e0)

+

By the induction hypothesis, we have

146

Γ+ ⊢ e0
+ : N, Γ+ ⊢ e1

+ : N, and Γ+ ⊢ e2
+ : L e0

+

The goal easily follows by [E-Cons].

Case 12: (E-DMatchN) where ρ = ϵ

Our goal is to show

Γ+ ⊢ pm e+ as x in N ret P+ with z → e1
+ | suc n → e2

+ : P+[e+/x]

By the induction hypothesis, we have

Γ+ ⊢ e+ : N , Γ+ ⊢ e1
+ : (P[z/x])+ , and Γ+, n : N ⊢ e2

+ : (P[suc n/x])+

By compositionality (Lemma 4.6.1), we know that (P[z/x])+ = P+[z/x] and simi-
larly (P[suc n/x])+ = P+[suc n/x]. The goal easily follows by [E-MatchN].

Case 13: (E-DMatchL) where ρ = [α, β]

Our goal is to show

Γ+ ⊢ λk : (P[n/a, e/x])+ → (α[n/a, e/x])+.

pm e+ as x in L a ret β+ with z → e1
÷ k | suc n → e2

÷ k :

((P[n/a, e/x])+ → (α[n/a, e/x])+)→ (β[n/a, e/x])+

By the induction hypothesis, we have

Γ+ ⊢ e+ : L n+ ,

Γ+ ⊢ e1
÷ : ((P[z/a, nil/x])+ → (α[z/a, nil/x])+)→ (β[z/a, nil/x])+ , and

Γ+, m : N, h : N, t : L m ⊢ e2
÷ :

((P[suc m/a, :: m h t/x])+ → (α[suc m/a, :: m h t/x])+)→ (β[suc m/a, :: m h t/x])+

Similarly to the (E-DMatchN) case, we know that (P[suc m/a, :: m h t/x])+ =

P+[suc m/a, :: m h t/x] by compositionality (Lemma 4.6.1). Our main task is to
show that the applictaion ei

÷ k (i = 1, 2) is well-typed. Let us focus our attention

147
to the first branch e1

÷ k. The induction hypothesis tells us that e1
÷ expects a

continuation whose domain depends on z and nil, while the actual continuation k

has a domain dependent on n+ and e+. So, how can we prove that the application
e1

÷ k is well-typed? The answer is to use the equivalence assumptions of the
target typing rule [E-Match]. The rule makes the equivalences n+ ≡ z and
e+ ≡ nil available for type checking, bridging the gap between the required and
actual domains of the continuation. By applying the similar reasoning to the other
branch e2

÷ k, we can show that the translated pattern matching is well-typed.

Case 14: (E-Shift) where body impure
Our goal is to show

Γ+ ⊢ λk : A+ →α+. e÷ (λv : B+.v) : (A+ →α+)→ β+

By the induction hypothesis, we have

Γ+, k : A+ →α+ ⊢ e÷ : (B+→B+)→ β+

Using [E-Abs] and [E-App], we can derive

Γ+, k : A+ →α+ ⊢ e÷ (λv : B+.v) : β+

The goal now follows by [E-Abs].

Case 15: (E-Reset) where body pure
Our goal is to show

Γ+ ⊢ e+ : A+

This immediately follows by the induction hypothesis on e.

Case 16: E-Conv where ρ = [α, β]

Our goal is to show

Γ+ ⊢ e÷ : (B+→α′+)→ β′+

By the induction hypothesis, we have

Γ+ ⊢ e÷ : (A+ →α+)→ β+

By computational soundness (Lemma 4.6.4), we obtain A+ ≡ B+, α+ ≡ α′+, and
β+ ≡ β′+. The goal now follows by [E-Conv].

148

Remark on Preservation of Guardedness If our translation was unselec-
tive, type preservation would require a weaker notion of guardedness in the target
language. To see why this is the case, consider a Dellina- recursive call f y. An
unselective translation would convert it to

λα. λk. (λα. λk.k f) (λv0. (λα. λk.k y) (λv1.v0 v1 α k))

when the function has a pure body, and to

λk. (λα. λk.k f) (λv0. (λα. λk.k y) (λv1.v0 v1 k))

when the function has an impure body. Notice that the function f is not fully
applied in either case. This means we are unable to determine from the surface
syntax whether f is called on a smaller argument.

The reason we obtain unapplied functions is that an unselective translation
turns variables, which cannot have control effects, into suspended computations.
On the other hand, if we reduce all redexes introduced by the translation (called
administrative redexes), we will obtain λα. λk. f y α k or λk. f y k, which meets
the guard condition. Based on this observation, Cong and Asai [45] recover preser-
vation of guardedness by weakening the guard condition of the target language,
which inspects CPS-translated recursive calls after administrative reductions.

4.7 Related Work

Unselective CPS Translations for Dependently Typed Languages The
first work on typed CPS translations is due to Meyer and Wand [119], who studied
a call-by-value, fixed-answer type translation of the simply typed λ-calculus. Sub-
sequent work by Milner et al. [120] lifted the result to the full Standard ML, by
extending the translation with polymorphism and undelimited control via call/cc.

In the dependent types community, CPS translations have been studied mainly
in purely theoretical settings [23, 24, 121, 34]. The only exception, which accounts
for a reasonably large language, is the work by Xi and Schürmann [175], who give
a call-by-value translation of Dependent ML. Despite the difficulties with call-by-
value translations discussed in Section 4.1, Xi and Schürmann managed to make

149
their translation type-preserving, but the result largely hinges on the restricted de-
pendency of the source language. As mentioned in Section 2.4, Dependent ML has
a separate index language, which can only express a restricted form of computa-
tions. This language design makes it possible to keep type indices intact through
the translation. A similar translation can be found in Ilik’s work on extending
predicate logic with delimited control [96]: he designs the calculus in such a way
that types may depend only on “individuals” (constants), and defines a double-
negation translation that has no effect on individuals. While these translations
greatly simplify the type preservation argument, they do not scale to full-spectrum
dependent languages, where type indices are generated by the same language as
user programs.

Selective CPS Translations for Simply Typed Languages We adopt a se-
lective CPS translation to preserve dependent types, but the original motivation
for selectively translating programs comes from the performance side. Rompf et
al. [140] support shift and reset in the Scala programming language via a se-
lective CPS translation. To evaluate the performance, they compare the running
time of continuations benchmarks with Kilim, a Java library that implements con-
tinuations via stack inspection [154]. The results show that Scala continuations
are faster than Java continuations; in certain cases the difference amounts to more
than a factor of seven. They also assess the efficiency of direct-style program-
ming with shift and reset using the famous same-fringe problem, which inspects
whether two binary trees have the same leaves in the same order. Among different
Scala implementations, the shift/reset-based one runs reasonably fast, but not
the fastest, due to the lazy semantics of a certain alternative means. On the other
hand, when running programs with a memory restriction, many non-continuation
implementations cannot even produce an answer, showing the economical advan-
tage of continuation-based approaches.

Asai and Uehara [12] implement a Rompf-like type-and-effect system for shift
and reset, and a selective CPS translation, in the OCaml language. By compar-
ing selectively and unselectively translated programs, they observed a significant
impact of selectiveness in the cases involving frequent uses of shift-captured con-
tinuations. For instance, in the N-Queen problem, which runs the same continua-

150
tion multiple times with different inputs, the selective translation showed a 20-30%
speedup. This result is due to the fact that a selective translation converts con-
tinuations into functions having a direct-style body—remember that continuations
are pure functions.

Avoiding Induction on Derivations We defined our CPS translation by in-
duction on the derivation. This design principle required us to establish equiva-
lence preservation before type preservation, which required us to adopt an untyped
equivalence. As an alternative approach, Barthe et al. [23] define a call-by-name
CPS translation of the Calculus of Constructions [50], by induction on the syntax
of the source term. To make this induction work, they give up explicitly typed
abstractions, and use domain-free abstractions λx. e instead. Thus, we no longer
need to generate type annotations for variables introduced by the translation.

In an effect-free setting, discarding type annotations has one single effect: type
checking becomes hard. In an effectful setting, on the other hand, it further breaks
uniqueness of the CPS image of syntactically equivalent terms. Recall from Section
3.2 that the function

λ f. λ g. :: 1 2 ⟨f 3 + g 4⟩

may be assigned either of the following types:

(N→N[N, L 1])→ (N→N)→ L 2 and (N→N)→ (N→N[N, L 1])→ L 2

When the function is given the former type, the derivation concludes f as an impure
function, hence its CPS image would look like:

λ f . λg. :: 1 2 (λk. (λk. f 3 k) (λv1.v1 + g 4)) (λv.v)

On the other hand, when the function is given the latter type, the derivation
concludes g as an impure function, hence we obtain:

λ f . λg. :: 1 2 (λk. (λk.g 4 k) (λv2. f 3 + v2)) (λv.v)

Obviously, these terms do not reduce to a common value. What this implies is
that computational soundness does not hold, which in turn implies the failure of
type preservation.

151
Challenges with Commutative Cuts The difficulty of CPS translating pat-
tern matching is closely related to the challenges with commutative cuts [31] (aka
commuting conversions [85]). Commutative cuts are one of the common optimiza-
tion techniques of compilers, which expose redexes hidden in nested branching
constructs (such as conditionals and pattern matching):

(* source program *)

if e1 && e2 then e3 else e4

(* desugaring *)

if (if e1 then e2 else false) then e3 else e4

(* commutative cut *)

if e1 then (if e2 then e3 else e4) else (if false then e3 else e4)

(* if-reduction *)

if e1 then (if e2 then e3 else e4) else e4

Given the source program, we first desugar the && operator, obtaining a program
that contains nested if expressions. We next apply a commutative cut, i.e., we
move the outer if-context to the branches e2 and false. Then, we can see that the
resulting program has a redex if false ..., which was not present in the source
program. Thus, commutative cuts help us reduce runtime reductions.

Interestingly, what is happening in this example is exactly what our CPS trans-
lation does for pattern matching with impure branches, that is, both transforma-
tions distribute the surroundings of a branching construct to its branches. This
means commutative cuts suffer from the same typing issue with the CPS trans-
lation of pattern matching: in a dependently typed setting, the copied context
would expect a term of type P(e1), whereas the branches e3 and e4 have types
P(true) and P(false), respectively. As a solution, Sozeau [153] proposes to type
check the resulting branches with assumed equality proofs on type indices, which
essentially play the same role as the equivalence assumptions in our target typing
rule of pattern matching.

152
Remark on Lafont-Streicher-Reus CPS As Petrolo points out [133], stan-
dard CPS translations comprise a notion of values in order to make evaluation
order explicit. On the other hand, there is a variant of CPS translation, called
the Lafont-Streicher-Reus translation [109], that is based on the notion of contin-
uations. The continuation-oriented nature of the LSR translation gives us several
nice properties that a standard CPS translation lacks: e.g., it validates the full
η-reduction. The translation is also said to be well-suited for dependent calculi
[132], as it simplifies the proof of type preservation. This is not a surprising re-
sult, because all the difficulties with dependent CPS comes from the treatment of
values—recall the discussion from Section 4.1.

153

Chapter 5

The Dellina Language

In the preceding chapters, we saw how to deal with delimited continuations and
dependent types in a restricted language Dellina-. Now we extend the language
with advanced features, and thus obtain the full language Dellina. The features to
be discussed include polymorphism and type operators (Section 5.1), a hierarchy
of universes (Section 5.2), user-defined inductive types (Section 5.3), and local
definitions via dependent let (Section 5.4). These are all essential ingredients in
the mainstream dependently typed languages, but they have not yet been formally
studied in combination with control effects. To show the practical impact of our
language, we build an evaluator for a small object language (Section 5.5), which
uses dependent types to ensure well-typedness of programs and control operators
to simulate efficient exception raising.

5.1 Polymorphism and Type Operators

Barendregt’s lambda cube has three axes: polymorphism, type operators, and de-
pendency. In Dellina-, we partly supported the last feature by including a primitive
constant L that forms a dependent type. The goal of this section is to fully sup-
port all the three features, making our language as expressive as the Calculus of
Constructions (CC).

For simplicity, we will exclude primitive inductive types (Unit, N, and L n) and
recursive functions from the language, hence the resulting language is essentially
a shift/reset-extension of CC.

154

Environments Γ ::= • | Γ, x : A | Γ, α : κ
Kinds κ ::= ∗ | Πx : A. κ | Πα : κ. κ
Type-level Values V ::= α | λ x : A.B | λα : κ.B | Πx : A.B ρ | Πα : κ.B ρ
Types A ::= V | A e | A B
Term-level Values v ::= x | λ x : A. e | λα : κ. e
Terms e ::= v | e e | e A | Sk : A→α. e | ⟨e⟩

Figure 5.1: Syntax of CC + shift/reset

5.1.1 Specification

5.1.1.1 Syntax

In Figure 5.1, we present the updated syntax. Readers familiar with PTS might
find that the presentation is rather non-standard, in that kinds, types, terms are
defined as separate syntactic categories. We make this distinction because we
would like to be explicit about which category can have control effects and which
cannot. As Barthe et al. [23] show, the two presentations are equivalent.

Let us go through the syntactic categories one by one. Typing environments
have a new extension form Γ, α : κ, which adds a type variable α and its kind κ.
This extension is used when e.g. type checking the body of a type abstraction.

In the definition of kinds, we find functional kinds Πx : A. κ and Πα : κ. κ′

quantifying over term and type variables. These kinds represent the type of type-
level functions λ x : A.B and λα : κ.B, respectively. Notice that we do not have
impure functional kinds, since the type language does not include control operators.

Having type-level functions means being able to compute at the level of types.
This gives rise to the notion of type-level values and computations1. The former,
which we evoke using the metavariable V, consist of variables, abstractions, and
(pure and impure) function types. Non-value types include two forms of appli-
cation, differing in whether the argument is a term or a type. Note that value
types may have non-value types and terms as their subcomponents: for instance,
Πx : A. (B C) is classified as a value. Note also that the kind of polymorphism
supported here is impredicative, since we do not restrict the domain of type ab-

1What we call type-level values/computations should not be confused with value/computation
types from the CBPV literature, which denote the type of pure/impure terms.

155
Evaluation Contexts E, F

E ::= [] | E e | E A | v E | V E | ⟨E⟩
F ::= [] | F e | F A | v F | V F

Reduction Rules e ▷ e′

(λ x : A.B) v ▷β B[v/x]

(λα : κ.A) V ▷β A[V/α]

(λ x : A. e) v ▷β e[v/x]

(λα : κ. e) V ▷β e[V/α]

⟨F[Sk : A→α. e]⟩ ▷S ⟨e[λ x : ⟨F[x]⟩. /k]⟩
⟨v⟩ ▷R v

Figure 5.2: Evaluation of CC + shift/reset

straction to monomorphic (Πα-free) types.
Lastly, we extend terms with type abstraction and instantiation constructs. We

classify type abstraction λα : ∗. e as a value, just like ordinary term abstraction.
This is in contrast to ML-style polymorphism, where type abstraction is a non-
value and runtime evaluation goes under the binder [67].

5.1.1.2 Reduction

We next extend evaluation contexts and reduction rules so that types may also
participate in computation (Figure 5.2). The main change is that context holes
can now be plugged with a type, and β-reduction can also result in a type. As
we can see from the figure, both type-level application and type instantiation are
evaluated in a call-by-value manner: we reduce the argument to either a term-level
value v or a type-level value V, and then perform substitution.

5.1.1.3 Typing

Typing rules for the new constructs can be obtained by making trivial modifications
to the Dellina- rules for variables, function types, abstractions, and application.
Among the rules in Figures 5.3 and 5.4, (T-App) tells us that an application of a

156

Well-formed Environments ⊢ Γ

⊢ Γ Γ ⊢ κ : □
⊢ Γ, α : κ

(G-ExtT)

Well-formed Kinds Γ ⊢ κ : □

Γ ⊢ A : ∗ Γ, x : A ⊢ κ : □
Γ ⊢ Πx : A. κ : □ (K-Pi)

Γ ⊢ κ : □ Γ, α : κ ⊢ κ′ : □
Γ ⊢ Πα : κ. κ′ : □ (K-PiK)

Well-formed Types Γ ⊢ A : κ

⊢ Γ α : κ ∈ Γ

Γ ⊢ α : κ
(T-Var)

Γ ⊢ A : ∗ Γ, x : A ⊢ B : ∗
Γ ⊢ λ x : A.B : ∗

(T-Abs)
Γ ⊢ κ : □ Γ, α : κ ⊢ B : ∗

Γ ⊢ λα : κ.B : ∗
(T-AbsK)

Γ ⊢ A : Πx : A′. κ Γ ⊢ e : A′ Γ ⊢ κ[e/x] : □
Γ ⊢ A e : κ[e/x]

(T-App)

Γ ⊢ A : Πα : κ. κ′ Γ ⊢ B : κ Γ ⊢ κ′[B/α] : □
Γ ⊢ A B : κ′[B/α]

(T-Inst)

Γ ⊢ κ : □ Γ, α : κ ⊢ B : ∗ Γ, α : κ ⊢ ρ

Γ ⊢ Πα : κ.B ρ : ∗
(T-PiK)

Γ ⊢ A : κ Γ ⊢ κ′ : □ κ ≡ κ′

Γ ⊢ A : κ′ (T-Conv)

Figure 5.3: Typing Rules for Polymorphic Types and Type Operators

157
Well-typed Terms Γ ⊢ e : A ρ

Γ, α : κ ⊢ e : B ρ

Γ ⊢ λα : κ. e : Πα : κ.B ρ
(E-AbsK)

Γ ⊢ e : (Πα : κ.B σ) ρ Γ ⊢ A : κ

Γ ⊢ B[A/α] : ∗ Γ ⊢ σ[A/α] τ = comp(ρ, σ[A/α])

Γ ⊢ e A : B[A/α] τ
(E-Inst)

Figure 5.4: Typing Rules for Polymorphic Functions and Type Instantiation

type A to a term e is valid only if the term is pure. We also have a well-formedness
certificate of the result kind κ[e/x], which we need for proving regularity. Similar
premises can be found in (T-Inst) and (E-Inst), which account for type instanti-
ation. Unlike Dellina-, we now have types whose kind is not just a constant kind ∗,
hence we incorporate a conversion rule (T-Conv) for kind casting, making more
type-level computations type check.

5.1.2 Metatheory

In this subsection, we examine the metatheoretic properties of the extended frag-
ment. As we saw, extension by polymorphism and type operators gives rise to
substitution that closes off type variables, hence we must restate all substitution-
related properties. For instance, the substitution lemma is extended with the
following clauses, assuming Γ ⊢ V : κ:

3. If ⊢ Γ, α : κ, Γ′, then ⊢ Γ, Γ′[V/α].

4. If Γ, α : κ, Γ′ ⊢ t : T ρ, then Γ, Γ′[V/α] ⊢ t[V/α] : T[V/α] ρ[V/α].

Using this extended lemma, we can prove the type instantiation case of the
preservation theorem, just as we did for term-level application:

Proof.

158
Case 1: (T-Inst)

Sub-Case 1: (λα : κ0.A) V ▷p A′[V′/α]

Our goal is to show

Γ ⊢ A′[V′/α] : κ′[V/α]

By the induction hypothesis, we have

Γ ⊢ λα : κ′
0.A

′ : Πα : κ. κ′ , Γ ⊢ V′ : κ , and Γ ⊢ κ[V′/α] : □

We also have the following facts:

1. Πα : κ. κ′ ≡ Πα : κ′
0. κ1 (by inversion for λ)

2. Γ, α : κ′
0 ⊢ A : κ1 (by inversion for λ)

3. κ ≡ κ′
0 and κ′ ≡ κ1 (by item 1 and injectivity of Π (Lemma 3.4.6))

4. There is a subderivation of Γ ⊢ κ′
0 : □ (by item 2 and Lemma 3.4.10)

By items 3, 4, and (E-Conv), we can derive Γ ⊢ V′ : κ′
0. Then, by item 2 and

the substitution lemma (Lemma 5.4.4), we obtain

Γ ⊢ A′[V′/α] : κ1[V
′/α]

Item 2 and Lemma 3.4.7 further give us κ′[V′/α] ≡ κ1[V
′/α]. These imply

Γ ⊢ A′[V′/α] : κ′[V′/α]

Now, Lemma 3.4.2 tells us that κ′[V/α] ▷p κ′[V′/α]. Using these facts, and
the well-formedness premises of the result type, and (E-Conv), we can derive
Γ ⊢ A′[V′/α] : κ′[V/α] as desired.

5.1.3 CPS Translation

In Figure 5.5, we present the CPS translation for the polymorphism and type
operators fragment. There is nothing surprising in the translation, but it is worth
noting that a type-level application (A e or A B) is never translated into CPS,

159

⊢ Γ Γ ⊢ κ : □
⊢ Γ, α : κ

(G-ExtT) +⇝ Γ+, α : κ+

Γ ⊢ A : ∗ Γ, x : A ⊢ κ : □
Γ ⊢ Πx : A. κ : □ (K-Pi) +⇝ Πx : A+. κ+

Γ ⊢ κ : □ Γ, α : κ ⊢ κ′ : □
Γ ⊢ Πα : κ. κ′ : □ (K-PiK) +⇝ Πα : κ+. κ′+

⊢ Γ α : κ ∈ Γ

Γ ⊢ α : κ
(T-Var) +⇝ α

Γ ⊢ A : ∗ Γ, x : A ⊢ B : ∗
Γ ⊢ λ x : A.B : ∗

(T-Abs) +⇝ λx : A+.B+

Γ ⊢ κ : □ Γ, α : κ ⊢ B : ∗
Γ ⊢ λα : κ.B : ∗

(T-AbsK) +⇝ λα : κ+.B+

Γ ⊢ A : Πx : A′. κ Γ ⊢ e : A′ Γ ⊢ κ[e/x] : □
Γ ⊢ A e : κ[e/x]

(T-App) +⇝ A+ e+

Γ ⊢ A : Πα : κ. κ′ Γ ⊢ B : κ Γ ⊢ κ′[B/α] : □
Γ ⊢ A B : κ′[B/α]

(T-Inst) +⇝ A+ B+

Γ ⊢ κ : □ Γ, α : κ ⊢ B : ∗ Γ, α : κ ⊢ ρ

Γ ⊢ Πα : κ.B ρ : ∗
(T-PiK)

+⇝ Πα : κ+.B+ if ρ = ϵ

+⇝ Πα : κ+. (B+ → α+) → β+ if ρ = [α, β]

Γ ⊢ A : κ Γ ⊢ κ′ : □ κ ≡ κ′

Γ ⊢ A : κ′ (T-Conv) +⇝ A+

Figure 5.5: CPS Translation for Polymorphic Types and Type Operators

160

Γ, α : κ ⊢ e : B ρ

Γ ⊢ λα : κ. e : Πα : κ.B ρ
(E-AbsK)

+⇝ λα : κ+. e+ if ρ = ϵ

+⇝ λα : κ+. e÷ if ρ = [α′, β]

Γ ⊢ e : Πα : κ.B σ ρ Γ ⊢ A : κ

Γ ⊢ B[A/α] : ∗ Γ ⊢ ρ[A/α] τ = comp(ρ, σ[A/α])

Γ ⊢ e A : B[A/α] τ
(E-Inst)

+⇝ e+ A+

if ρ = σ = ϵ

÷⇝ λk : B+[A+/α]→α′+. e÷ (λv : Πα : κ+.B+.k (v A+))
if ρ = ϵ, σ = [α′, β]

÷⇝ λk : B+[A+/α]→α′+. e+ A+ k
if ρ = [α′, β], σ = ϵ

÷⇝ λk : B+[A+/α]→α′+[A+/α]. e÷ (λv : Πα : κ+.B+. v A+ k)
if ρ = [β, γ], σ = [α′, β]

Figure 5.6: CPS Translation for Polymorphic Functions and Type Instantiation

161
because all its constituents (function, body of function, and argument) are pure
expressions.

Similarly to the substitution lemma discussed above, we extend the composi-
tionality lemma with several additional cases. Note that we need the first item
because substitution now operates on kinds as well.

1. (κ[e′/x′])+ = κ+[e′+/x′]

2. (κ[A′/α])+ = κ+[A′+/α]

3. (A[A′/α])+ = A+[A′+/α]

4. (e[A′/α])+ = e+[A′+/α]

5. (e[A′/α])÷ = e÷[A′+/α]

This allows us to prove computational soundness of the new β-reduction (λα. t) A ▷

t[A/α]. Here is the proof of the case where t is an impure term e and the β-redex
is derived by (E-Inst):

Proof.

((λα. e) V)÷ = λk. (λα. e)+ V+ k by translation

= λk. (λα. e÷) V+ k by translation

▷β λk. (e
÷[V+/α]) k

≡ e÷[V+/α] by η

= (e[V/α])÷ by compositionality

5.1.4 Remark on Polymorphically Typed Shift and Reset

Asai and Kameyama [10] study shift and reset in the presence of let-polymorphism2.
It is well-known that naïve combination of polymorphism and control effects is un-

2A polymorphic let expression let x = e1 in e2 allows using the variable x in different contexts.
For instance, let f = λx. x in if f true then f 1 else f 2 is well-typed in a language featuring
let-polymorphism; notice that the type of f is instantiated to bool → bool in the first call and
int → int in the second and third calls.

162
sound: we can easily build a backtracking function that behaves monomorphically
but is wrongly given a polymorphic type [91]. A popular approach to recovering
soundness is to impose a value restriction [169], that is, we restrict the definition
of a let-bound variable to a value. Asai and Kameyama, on the other hand, use a
more generous purity restriction, which restricts definitions to pure terms. The re-
sulting calculus is sound, and enjoys other properties such as existence of principal
types.

As an extension, Asai and Kameyama further consider a shift/reset-calculus
with impredicative polymorphism à la Girard’s System F [84]. They give two
variants of their calculus: one with the standard notion of polymorphism, and the
other with an ML-like treatment of type abstraction. As noted above, the two
variants differ in the reduction semantics, hence their CPS translations are also
different, but both of them have proven type- and meaning-preserving [10].

Biernacka et al. [28] prove the normalization property of System F extended
with shift and reset. Normalization of calculi with control is often proved by
defining a CPS translation into a normalizing language and showing preservation
of reduction and typing, as in the work by Harper and Lillibridge [92] and Asai and
Kameyama [10]. Biernacka et al. take a different approach: they refine Girard’s
reducibility method [84] by defining reducibility predicates on evaluation contexts.
Intuitively, the predicates tell us that an context is “good” if it yields a good
expression when plugged with a good value.

5.2 Prop, Set, and Universe Hierarchy

We next enrich our language with an infinite hierarchy of sorts. So far, we have
been dealing with two kinds: ∗, which is the type of types, and □, which is the
type of ∗. The sort hierarchy is a generalization of this “type-of” relation, allowing
us to discuss the type of □ and any other expressions at a higher level.

When incorporating sorts, we must decide which sorts are predicative, and
which are not. As shown by Girard [84], this is a quite delicate issue; in particular,
allowing impredicative sorts at non-bottom levels (as in System U [84]) results in
an inconsistent calculus, where one can prove a type-theoretic variant of Russell’s
paradox (aka Girard’s paradox) [48].

163
Values v,V ::= Set | Prop | Typei | x | λ x : A. e | Πx : A.B ρ
Expressions s,A, e ::= v | e e | Sk : A→α. e | ⟨e⟩

Figure 5.7: Collapsed Syntax

We equip Dellina with a sort hierarchy in the style of Calculus of Inductive
Constructions (CIC) [168]. This extension makes everything look like an element
of the term language, where we have application, pattern matching, and all sorts
of interesting computations. However, there is one proviso: control operators are
available only at the bottom level. We do not allow type-level control effects be-
cause types are generally erased after the type checking phase; if types had control
effects, the erasure would fail to preserve the behavior of the source program. As it
turns out, even with the restricted use of control operators, we need to be careful
about the “answer sort” of impure terms in order to obtain a type-preserving CPS
translation.

5.2.1 Specification

5.2.1.1 Syntax

In languages featuring a sort hierarchy, we usually do not distinguish between types
and terms. Therefore, we switch our syntax to a collapsed one (Figure 5.7), where
sorts, Π-types, and λ-terms are all defined in one single category. We have two
kinds of bottom sorts, Prop and Set. As in Coq, Prop is the type of propositions
(e.g., 0 = 0), which are inhabited by proofs, whereas Set is the type of datatypes
(e.g., N), which are inhabited by computations. The two sorts differ in their
predicativity: the former is impredicative, while the latter is predicative. Higher
sorts, also called universes, take the form Typei, where i ranges over non-zero
natural numbers. These are all predicative, which is a mandatory design strategy
for maintaining consistency. As a convention, we will write S to mean the set of
sorts and universes, that is, S = {Prop, Set,Typei}.

5.2.1.2 Subtyping

In the presence of a universe hierarchy, one sometimes want to regard a term of
type Typei as being of type Typej for any j > i. That is, we wish universes to be

164

A ≡ B

A ⪯ B
(⪯-≡)

A ⪯ B B ⪯ C

A ⪯ C
(⪯-Trans)

Typei ⪯ Typei+1
(⪯-Cum)

A1 ≡ A2 B1 ⪯ B2

Πx : A1.B1 ⪯ Πx : A2.B2
(⪯-Pi)

Figure 5.8: Subtyping Rules

not only stratified, but also cumulative. To account for cumulativity, we replace
our equivalence-based convertibility with a subtyping-based one. In Figure 5.8,
we present four subtyping rules, which are borrowed from the Extended Calculus
of Constructions of Luo [114]. The central idea of the subtyping relation is cap-
tured by (⪯-Cum), which tells us that inhabitants of Typei are also inhabitants of
Typei+1. The relation also includes the equivalence relation we have been using so
far, i.e., equivalent types are the subtype of each other (see rule (⪯-≡)).

Rule (⪯-Pi) lifts the subtyping relation to function types. It might be a good
idea to first look at the subtyping relation of non-dependent arrow types: we
say A1 → B1 ⪯ A2 → B2 when A2 ⪯ A1 and B1 ⪯ B2. The definition tells
us that function types are contravariant in their domain, and covariant in their
co-domain3.

Now, if we look at (⪯-Pi), we see that the two domains A1 and A2 are required
to be equivalent. As Luo [114] points out, making domains contravariant does not
break metatheoretic properties, but it allows certain terms to have multiple types:
for instance, the identity function λ x : Type1. x may have types Type1 →Typei,
Prop→Typei, and Set→Typei for any i ≥ 1.

Notice that (⪯-Pi) does not account for function types with effect annotations.
The reason is that cumulativity is available only in higher universes Typei, whose
inhabitants are free from control effects. In other words, although we have refined
the notion of convertibility in terms of subtyping, type casting of bottom-level
terms is still done with reagrd to equivalence. What this implies is that, when we

3As a simple example showing why the domain must be contravariant, consider f1 = λx : int. 1
and f2 = λx : N. 1. Using f1 in a context demanding a N-receiving function is always safe: e.g.,
we can put f1 into the hole of [.] 2. However, it is unsafe to use f2 in a context demanding a
int-receiving: e.g., we cannot put f2 into the hole of [.] (−1). This means, we may cast int → N
to N → N, but not the other way around.

165

⊢ Γ

Γ ⊢ Prop : Type1
(Prop)

⊢ Γ

Γ ⊢ Set : Type1
(Set)

⊢ Γ

Γ ⊢ Typei : Typei+1
(Type)

Γ ⊢ A : s Γ, x : A ⊢ B : Prop

Γ, x : A ⊢ ρ : (s′,Prop) s ∈ S s′ ∈ {Prop, Set}
Γ ⊢ Πx : A.B ρ : Prop

(PiProp)

Γ ⊢ A : s Γ, x : A ⊢ B : Set

Γ, x : A ⊢ ρ : (s′, Set) s, s′ ∈ {Prop, Set}
Γ ⊢ Πx : A.B ρ : Set

(PiSet)

Γ ⊢ A : Typei Γ, x : A ⊢ B : Typei
Γ ⊢ Πx : A.B : Typei

(PiType)

Figure 5.9: Typing Rules of Sorts and Function Types

have a bottom-level term whose type has been casted from A to B via A ⪯ B, the
last rule used to derive the subtyping relation must be (⪯-≡).

5.2.1.3 Typing

We now extend our type system. First, we add three axioms that account for the
stratification of sorts (Figure 5.9). (Prop) and (Set) tell us that Prop and Set

are inhabitants of Type1. Universes Typei reside in Typei+1, as stated by (Type).
Following the PTS terminology, we call e an s-term and A an s-type when Γ ⊢ e :

A ρ and Γ ⊢ A : s.
In the same figure, we define rules for function types, which characterize the

three sorts as either predicative or impredicative. In (PiProp), the domain A

resides in an arbitrary sort s, which means A may include the type being formed in

166

Γ, x : A ⊢ e : B ρ Γ ⊢ Πx : A.B ρ : s s ∈ S

Γ ⊢ λ x : A. e : Πx : A.B ρ
(Abs)

Γ ⊢ e0 : (A→B τ) ρ Γ ⊢ e1 : A σ

ν = comp(ρ, σ, τ) Γ ⊢ B : Prop or Γ ⊢ B : S

Γ ⊢ e0 e1 : B ν
(NDApp)

Γ, k : A→α ⊢ e : β or Γ, k : A→α ⊢ e : B[B, β]

Γ ⊢ A : s Γ ⊢ α : s′ Γ ⊢ β : s s, s′ ∈ {Prop, Set}
Γ ⊢ Sk : A→α. e : A[α, β]

(Shift)

Γ ⊢ e : A ρ Γ ⊢ A : s Γ ⊢ ρ : (s′, s)

Γ ⊢ B : s Γ ⊢ σ : (s′, s)

A ⪯ B ρ ⪯ σ

Γ ⊢ e : B σ
(Conv)

Figure 5.10: Typing Rules of Shift and Conversion Rules

the conclusion. In (PiSet), A is less flexible about its universe level: it must reside
in Prop or Set, which cannot contain the function type we are forming. Similarly,
(PiType) requires that the domain A lives in the same level as the co-domain B.
Note that the rule allows building a type where A resides in some lower universe,
thanks to the (⪯-Cum) rule. If we did not have the subtyping rules, we would
have to tweak (PiType) to allow functions across universe levels, which would
make the rule less elegant.

Shifting our attention to the effect annotations in (PiProp) and (PiSet), we
find a new form of judgment Γ, x : A ⊢ ρ : (s′, s), associated with a requirement
on s′. These premises state that, when ρ is a non-empty annotation [α, β], the
final answer type β must reside in s, i.e., the same sort as B, while the initial
answer type α may live in a different sort s (but at the same level). Note that
the judgment trivially holds when ρ is empty. As we will see in Section 5.2.3, the
constraints on the sort of answer types is necessary for making the CPS translation
type-preserving.

167
Figure 5.10 includes a refined version of the typing rules for abstraction, non-

dependent application, shift, and type conversion. In (Abs), we see an extra
premise Γ ⊢ Πx : A.B ρ : s, stating that the type to be given to the abstraction
is well-formed. We need this presmise because not all combinations of A and B

are valid: e.g., when A = Type1 and B = Set, we have Γ, x : Type1 ⊢ N : Set, but
the type Πx : Type1. Set of the function λ x : Type1.N violates the predicativity of
Set. We also find that the name of the typing rule lacks the “T-” or “E-” prefix we
had before. What this means is that we may use (Abs) for abstractions receiving
and returning expressions at any universe level. However, the effect annotation ρ

must be empty when e is not a Prop- or Set-term4. We make similar modifications
to rules for variables and application. Furthermore, in (NDApp), which derives
a non-dependent application, we require that the result type is either a Prop-type
or a Set-type. The reason is that having an impure argument in non-term-level
application results in invalid dependency. This design principle is already present
in the type system from the previous section: remember that type-level application
A e has one single rule that requires a pure e.

We next look at (Shift) and (Conv). The former rule introduces control
effects, hence we restrict the universe of answer types along the same lines as we
do in (PiProp) and (PiSet). The conversion rule allows casting the type of e
from A to B if A is a subtype of B. The additional premises on the original type
and annotation are used to ensure that casting does not change their universe,
which would break the restriction imposed by rules for function types and shift

constructs.

5.2.2 Metatheory

We have seen that the introduction of a sort hierarchy has the following impacts
on the type system:

1. New axioms for sorts, like (Prop);

2. Extra premises in the existing rules, such as (Abs) and (Shift); and

4The purity of non-term-level functions is guaranteed by the well-formedness of Πx : A.B ρ:
if ρ = [α, β], the function type must be derived by (Pi-Prop) or (Pi-Set), which ensure that B
and β reside in the same, bottom-level sort.

168
3. Subtyping-based convertibility

Axioms derive an atomic expression, hence the metatheoretic properties triv-
ially scale to these rules. The additional premises require some refinement to the
statement of theorems as well as the proofs. For instance, to incorporate the uni-
verse requirement of (Shift), we have to modify the regularity statement in the
following way:

Theorem 5.2.1 (Regularity).

1. If Γ ⊢ t : T, then there exists some s ∈ S such that Γ ⊢ T : s.

2. If Γ ⊢ e : A[α, β], then there exists some s, s′ ∈ {Prop, Set} such that Γ ⊢
A : s, Γ ⊢ α : s′, and Γ ⊢ β : s.

The theorem has a separate clause where the subject e is an impure term. Recall
that, in Dellina-, there is only one single kind ∗, and regularity simply states that
the types A, α, and β are well-formed. Now, the theorem states that the three
types reside in the bottom sort, and in particular, A and β live in the same sort.

The well-formedness premise of (Abs) requires some modification to the preser-
vation proof, as shown below:

Proof.

Case 1: (Abs)

Our goal is to show

Γ ⊢ λ x : A′. e′ : Πx : A.B ρ

As before, we have

Γ, x : A ⊢ e′ : B ρ

by the induction hypothesis, from which we can derive

Γ, x : A′ ⊢ e′ : B ρ

using Lemma 3.4.10, the induction hypothesis, and Lemma 3.4.12. The next step
is to apply (Abs), but since the rule now requires well-formedness of the resulting
function type, we must show

169

Γ ⊢ Πx : A′.B ρ : s

This is however trivial, since the derivation of the pre-reduction abstraction λ x :

A. e has a well-formedness premise Πx : A.B ρ, and the induction hypothesis on
this premise gives us what we need. Thus we obtain

Γ ⊢ λ x : A′. e′ : Πx : A′.B ρ

and the proof is completed by (Conv). Note that the last step, application of
(Conv), has been simplified thanks to the well-formedness premise of the original
type.

The new notion of convertibility requires some care when proving the progress
theorem. Recall the discussion from Section 3.4.6: to prove progress, we need the
canonical forms lemma, which holds only if type casting preserves the shape of the
original type. Since we now use the subtyping relation to cast types, we must show
that it never relates two types having distinct head constructors. It is not hard to
see that this is the case. As we have no inductive types, the only head constructor
of the language is Π. The subtyping relation C ⪯ Πx : A.B may be derived by
either (⪯-≡) or (⪯-Pi): in the former case, C must reduce to a function type, and
in the latter case, C must itself be a function type. Therefore, when we have a
value v : Πx : A.B derived by (Conv), we know that the pre-conversion type must
be convertible with a function type, i.e., the induction hypothesis applies.

When incorporating user-defined inductive types, on the other hand, we must
be careful of their interaction with subtyping. We will provide some more details
in Section 5.3.1.

5.2.3 CPS Translation

In Figure 5.11, we present the CPS translation of sorts and function types. These
expressions have no computation translation, because they are free from control
effects. The value and computation translations of Prop- and Set-terms remain the
same as before.

170

⊢ Γ

Γ ⊢ Prop : Type1
(Prop) +⇝ Prop

⊢ Γ

Γ ⊢ Set : Type1
(Set) +⇝ Set

⊢ Γ

Γ ⊢ Typei : Typei+1
(Type) +⇝ Typei

Γ ⊢ A : s Γ, x : A ⊢ B : Prop

Γ, x : A ⊢ ρ : (s′,Prop) s, s′ ∈ S

Γ ⊢ Πx : A.B ρ : Prop
(PiProp)

+⇝ Πx : A+.B+ if ρ = ϵ

+⇝ Πx : A+. (B+ → α+) → β+ if ρ = [α, β]

Γ ⊢ A : s Γ, x : A ⊢ B : Set

Γ, x : A ⊢ ρ : (s′, Set) s, s′ ∈ {Prop, Set}
Γ ⊢ Πx : A.B ρ : Set

(PiSet)

+⇝ Πx : A+.B+ if ρ = ϵ

+⇝ Πx : A+. (B+ → α+) → β+ if ρ = [α, β]

Γ ⊢ A : Typei Γ, x : A ⊢ B : Typei
Γ ⊢ Πx : A.B : Typei

(PiType) +⇝ Πx : A+.B+

Figure 5.11: CPS Translation of Sorts and Function Types

171
The main work is to establish the type preservation property. First, since con-

version uses subtyping, we must show that the translation preserves the subtyping
relation:

Lemma 5.2.1 (Preservation of Subtyping). If A ⪯ B, then A+ ⪯ B+.

Proof. The proof is by induction on the derivation of A ⪯ B.

Case 1: (⪯-Cum)

This case is trivial, since Typei is simply mapped to Typei by the translation.

Case 2: (⪯-Trans)

This case follows by the induction hypothesis.

Case 3: (⪯-≡)

This case can be proved in the same way as the computational soundness lemma
(Lemma 4.6.4).

Case 4: (⪯-Pi)

This case follows by the induction hypothesis.

The type preservation proof is mostly straightforward, but we would like to
show one case that deal with function types, because the proof relies on the sort
requirements in the source typing rules.

Proof.

Case 1: (PiSet) where ρ = [α, β]

Our goal is to show

Γ+ ⊢ Πx : A+. (B+ → α+) → β+ : Set

By the induction hypothesis, we have

Γ+ ⊢ A+ : s , Γ+, x : A+ ⊢ B+ : Set ,

Γ+, x : A+ ⊢ α+ : s′ , and Γ+, x : A+ ⊢ β+ : Set

172
where s, s′ ∈ {Prop,Set}. Using either [PiProp] or [PiSet], we can derive
Γ+, x : A+ ⊢ B+→α+ : s′. Then, using [PiSet], we obtain Γ+, x : A+ ⊢ (B+ →
α+) → β+ : Set. The goal follows by one more application of [PiSet].

Note that the application of the target rule [PiSet] works because the source
rule (PiSet) requires β : Set. If β : Prop, we would obtain (B+ → α+) →
β+ : Prop, because the translation has turned the ultimate consequence into
β+ : Prop. This would break the type preservation statement.

5.2.4 Remarks

PTS with Delimited Control In their unpublished work, Boutillier and Her-
belin [31] extend PTS with shift and reset. Unlike Dellina, their calculus allows
control effects at any level, and has one single rule for function application where
the argument is a pure term. What we found interesting is the formation rule of
impure function types:

Γ ⊢ A : p Γ, x : A ⊢ B : r Γ, x : A ⊢ α : s1 Γ, x : A ⊢ β : s2

(p, r, s) ∈ R (r, s1, q) ∈ R (q, s2, o) ∈ R (p, o, s) ∈ R
Γ ⊢ Πx : A.B[α, β] : s

The rule has four premises on the sorts of types A, B, α, and β. The notation
(p, r, s) ∈ R means (i) it is legal to form a function type whose domain and co-
domain reside in sorts p and r, respectively; and (ii) the resulting funtion type
resides in sort s5. Hence, the latter three premises serve as the well-formedness
certificates of B → α, (B → α) → β, and Πx : A. (B → α) → β. Now, we can
see that the premises are a generalization of Γ, x : A ⊢ ρ : (s′,Prop/Set)) and
s′ ∈ {Prop, Set} in rules (Pi-Prop) and (Pi-Set). That is, the premises ensure
well-formedness of the CPS counterpart of the function type. Unfortunately, it
is unclear what properties their calculus enjoys, and whether their translation
preserves typing.

5The rules (PiProp), (PiSet), and (PiType) ensure r = s for any well-formed Dellina
function type. This is one of the requirements for a PTS to be persistent [22].

173
Different Formulations of Universes The formulation of the Typei hierarchy
presented here is called Russell-style universes, where a universe is the type of some
type. An alternative choice is Tarski-style universes, where a universe is a type
accompanied by an “interpretation” that allows viewing its inhabitants as types.
More precisely, Tarski-style universes are introduced by the following rules:

⊢ Γ

Γ ⊢ Typei : Type
(Typei)

Γ ⊢ A : Typei
Γ ⊢ Ti(A) : Type

(Ti)

The first rule states that any sort Typei is a type, whereas the second rule says
that any term A of type Typei can be used as a type. We can view Typei as a code
for types and Ti() as a decoding function [130].

If we incorporate Tarski-style universes into Dellina, we must make sure that
we will never use effectful terms as types. This can be done by requiring a pure
derivation in the premise of the (Ti) rule.

The two formulations of universes have their own pros and cons. Russell-style
universes are easy to use, but they are not compatible with elimination rules of
universe-polymorphic inductive types (which we do not support in Dellina) [116].
Tarski-style universes are more formal and enjoy nice properties when combined
with inductive types, but the presentation is less intuitive.

Type-returning CPS Translation In Dellina, we only handle continuations
that return a term-level expression, but there are situations where type-returning
continuations would be useful. As Swamy et al. [157] show, Dijkstra monads [63]
help us reason about effectful programs in dependently typed languages. Intu-
itively, Dijkstra monads express the behavior of a program by relating its pre- and
post-conditions. Recently, Ahman et al. [1] found that it is possible to generate
Dijkstra monads from user-defined monads via a CPS translation. The idea is to
turn a computation into a predicate transformer: for instance, a state monad of
type s → a∗s is translated to a function of type s → (s∗a → Type) → Type, which
takes in an input state and a post-condition predicate, and returns a pre-condition.
Observe that the answer type of the CPS translation is Type, which stands for Prop
or Set of Dellina. This is because pre- and post-conditions are type-returning func-
tions. The CPS translation makes it possible to add new effects without manually
specifying their Dijkstra-counterparts, solving one issue left open in the earlier

174
Telescopes ∆ ::= () | (x : A)∆
Expression Lists e ::= () | e e
Signatures Ψ ::= • | Ψ, Ind(D : A, {ci : Ci})
Values V, v ::= ... | D e | C e | c v
Expressions s,A, e ::= ... | ci ei

| pm e as x in D a ret P with {ci yi→ ei}

Figure 5.12: Syntax of Inductive Datatypes

version of the F⋆ language [156]. On the other hand, since the answer type is a
sort rather than a type, it is unclear what the logical interpretation of such a CPS
translation would be.

5.3 Inductive Datatypes

With Prop, Set, and universes at hand, we are now ready to extend the language
with user-defined inductive datatypes. This is a key feature to get the most of
dependent types, because building correct-by-definition programs often requires
fully-customized datatypes, which encode the exact specification of user data. In-
ductive data are manipulated by a generalized form of pattern matching that
supports large elimination. This generalization lets us have non-term branches,
making type-level computation as rich as term-level computation. The feature
also comes with an interesting observation: when CPS translating a large elim-
ination construct, selectiveness and the purity restriction again help us avoid a
difficulty noticed by others [24].

5.3.1 Specification

5.3.1.1 Syntax

To accommodate inductive datatypes, we extend the syntax with several new cat-
egories (Figure 5.12). Among them, a telescope is a list of variable-type associ-
ations (x : A), which represent argument types of datatype constants and con-
structors. Unlike typing environments, telescopes are represented as cons-lists,
and each A may depend on preceding variables. Telescopes are inhabited by ex-
pression lists e, which represent sequences of arguments to type constants and

175
constructors. As an example, the three-element list 1 2 (:: 0 3 nil), which is a
valid argument sequence for the ::-constructor of Dellina-, is an inhabitant of the
telescope (m : N)(h : N)(t : L m).

We will use a telescope metavariable ∆ both as a sequence of binding and as
a sequence of variables. Here is a list of notational abbreviations found in the
reduction and typing rules below; suppose ∆ = (x1 : A1)(x2 : A2)...(xn : An) and
e = e1 e2 ... en:

Γ, ∆
def≡ Γ, x1 : A1, x2 : A2, ..., xn : An

Π∆.B
def≡ Πx1 : A1.Πx2 : A2. ...Πxn : An.B

e ∆
def≡ e x1 x2 ... xn

e[e/∆]
def≡ ((e[e1/x1])[e2/x2])...[en/xn]

A signature Ψ is a sequence of inductive definitions. Each inductive definition
is a pair of the form Ind(D : A, {ci : Ci}), where D is a datatype constant, A is
the arity (type) of D, ci is the i’th constructor of D, and Ci is the type of ci. For
instance, the definition of natural numbers and indexed lists looks like:

Natural Numbers
Ind(N : Set, {z : N; suc : Πn : N.N})

Indexed Lists

Ind(L : Πa : N. Set, {nil : L z; :: : Π (m : N, h : N, t : L m). L (suc m)})

In general, an arity is a function type of the form Π∆. s, where ∆ can be empty.
Each ai : Ai in ∆ represents the i’th index of the datatype6, and the conclusion s

tells us in which universe the datatype resides. A constructor type is also a function

6For simplicity, we treat all arguments to type constants as indices, but in dependently typed
languages, arguments are often classified into two separate sets: parameters and indices. The
difference is that parameters are fixed in the conclusion of all constructor types, while indices can
vary [68]. Consider the polymorphic vector type Vec A n, which has two constructors nilv : Vec A z
and ::v : Π (m : N, x : A, xs : Vec A m).Vec A (suc m). Here, A is a parameter, because both
constructor types have a conclusion of the form Vec A n, whereas n is an index, since it is
instantiated to z in the nilv case and suc m in the ::v case. Note that uniformity of parameters is
not mandatory in Agda; we refer the interested reader to Cockx [41] for details.

176
Evaluation Contexts E, F

E ::= ... | c v E e | pm E as x in D a ret P with {ci yi→ ei}
F ::= ... | c v F e | pm F as x in D a ret P with {ci yi→ ei}

Reduction Rules e ▷ e′

Γ ⊢ pm ci v as x in D a ret P with {ci yi→ ei} ▷ι ei[v/yi]

Figure 5.13: Reduction of Inductive Data

type Π∆i.D ui, where ui are a sequence of indices specific to the i’th constructor.
Thus, a single inductive definition in fact brings a family of types D ui into the
language.

Expressions are extended with type constant application, data constructor ap-
plication, and a general form of pattern matching. Following Sjöberg et al. [151],
we require both type constants and constructors to be fully applied, in order to
simplify the proof of the cannonical forms lemma. A pattern matching construct
now takes the form

pm e as x in D a ret P with {ci yi→ ei}

As before, the construct tells us that we are matching e against patterns ci yi, whose
return clauses are specified by ei. The variable x is a placeholder for the scrutinee,
which may appear in the return type P. The type D a tells us that e resides in
the type family D u. Since the indices u vary by constructor, we generalize it to
a sequence of variables a when scrutinizing an expression. Note that the variables
are allowed to occur free in P.

5.3.1.2 Reduction and Subtyping

We next define runtime evaluation of inductive data (Figure 5.13). Given a con-
structor application c e, we evaluate the arguments e one by one, from left to
right. When all arguments have reduced to values v, we can perform ι-reduction,
by substituting v for pattern variables yi in branch ei.

With the new reduction rules, we can discuss equivalence between inductive
data and their types, and lift it to a subtyping relation via the (⪯-≡) rule. The

177
Telescopes Γ ⊢ ∆

⊢ Γ

Γ ⊢ ()
(T-Empty)

Γ ⊢ A : s Γ, x : A ⊢ ∆

Γ ⊢ (x : A)∆
(T-Ext)

Expression Lists Γ ⊢ e : ∆ ρ

⊢ Γ

Γ ⊢ () : ()
(L-Empty)

Γ ⊢ e : A Γ ⊢ e : ∆[e/x] ρ[e/x]

Γ ⊢ ∆[e/x] Γ ⊢ ρ[e/x] : (s, s′) s, s′ ∈ {Prop, Set}
Γ ⊢ e e : (x : A)∆ ρ

(L-DExt)

Γ ⊢ e : A ρ Γ ⊢ e : ∆ σ τ = comp(ρ, σ)

Γ ⊢ e e : (x : A)∆ τ
(L-NDExt)

Figure 5.14: Well-formed Telescopes and Expression Lists

reader might further expect a (⪯-Pi)-like rule, which directly gives us a subtyping
relation between datatypes of the form D e. However, we are not going to add
such a rule, because it would break fundamental properties such as preservation
and canonicity [115]. The problem stems from the incompatibility between the
present formulation of universes and the reduction rule of inductive data. To avoid
these unfortunate consequences, we restrict ourselves to use only equivalence when
reasoning about convertibility of datatypes.

5.3.1.3 Typing

Inductive datatypes are equipped with somewhat complex typing rules. Let us
begin by telescope typing (Figure 5.14). Telescopes are typed with regard to an
environment Γ. When consing a new binding x : A, we check that A is well-formed
under Γ, and the telescope ∆ to be extended is well-formed under Γ, x : A. From
this typing rule, we can see that extending a telescope has the effect of closing free

178
variables.

The judgment Γ ⊢ e : ∆ ρ for expression lists carries an optional effect annota-
tion, representing how evaluation of e changes the answer type. We find that there
are two extension rules. The first one, (L-DExt), is for dependent extension. Ob-
serve that the top-most element e is used to close off the variable x in the telescope
∆. This substitution happens in our list-consing example, repeated below:

1 2 (:: 0 3 nil) : (m : N)(h : N)(t : L m)

The third element :: 0 3 nil has type (L m)[1/m], which depends on the first element
1. Since we do not allow dependency on impure terms, rule (L-DExt) imposes
a purity requirement on the newly added e, and requires well-formedness of the
post-substitution telescope ∆[e/x] as well as effect annotation ρ[e/x].

The other extension rule, (L-NDExt), is for non-dependent extension. Since
no type-level substitution of e takes place, e is allowed to have a non-empty effect
annotation ρ, but we require that ρ composes with the effect σ of e. By repeatedly
extending e in this way, we can guanratee that any well-typed expression list
satisfies the chaining rule we described in Section 2.1.4, that is:

1. When ei is not the last impure argument, αi = βj, where ej is the closest
impure argument following ei.

2. The initial answer type α of the whole list is αi, where ei is the last impure
argument.

3. The final answer type β of the whole list is βi, where ei is the first impure
argument.

We next elaborate signature extension (Figure 5.15). When declaring a new
datatype D, we first check that the arity Π∆. s is a well-formed function type. This
type checking is done in an empty environment, but we implicitly allow ∆ to refer
to previously declared inductive types in Ψ. We similarly check well-formedness
of each constructor type Π∆i.D ui, with the assumption that D : Π∆. s. One
important thing is that a constructor type can never be an impure function type,
in other words, it cannot take the form Π∆i.D ui [α, β]. This is the case even if
the type resides in Prop or Set. The reason is that constructors are constants, not

179
Signatures ⊢ Ψ

⊢ •
(S-Empty)

⊢ Ψ • ⊢ Π∆. s : s′ s, s′ ∈ S (•, D : Π∆. s ⊢ Π∆i.D ui : s)i=1...k

D, ci fresh safe(D,∆i) no-rec-dep(∆i)

⊢ Ψ, Ind(D : Π∆. s, {ci : Π∆i.D ui})
(S-Ext)

Figure 5.15: Well-formed Signatures

functions. More specifically, an application of a constructor c to values v is always
a pure value c v, while an application of a function λ x : A. e to a value v can reduce
to an effectful computation e[v/x].

The second line of (S-Ext) has three requirements on the names and con-
structor types. The freshness condition simply requires that D and ci are not used
by the previously defined datatypes in Ψ. The safety condition safe(D,∆i) is a
slightly stronger version of the strict positivity condition [51]. Strict positivity re-
quires that, for every functional Bi in ∆i, D does not appear in the premise of Bi.
For instance, when Bi = Πx : B1.B2, D should not appear in B1. This condition
is mandatory for the language to be logically consistent: if we allowed negative
occurrences of D, we can easily construct a non-terminating program without us-
ing recursion7. Our safety condition extends strict positivity with the following
clause: when Bi = Πx : B1.B2[α, β], D does not appear in B1, B2, and α. We
need this extra restriction because the CPS translation does not preserve strict
positivity8. Recall that we translate an impure function type Πx : B1.B2[α, β] to

7Here is a classic example:

(* a non-strictly positive datatype *)

type D = Bad : (D -> D) -> D

(* omega : D -> D *)

let omega (Bad f) = f (Bad f) in

(* this runs forever! *)

omega (Bad omega)
8If our translation was unselective or call-by-name, and do not wish to sacrifice consistency of

180
Πx : B1

+. (B2
+ →α+)→ β+. In the CPS image, the positive occurrences of B2

and α have turned into negative ones, which means we have to give up either the
guarantee that every Dellina inductive type has a CPS counterpart, or the consis-
tency of the target language (that is, we turn off positivity check to make the CPS
image acceptable).

The last condition no-rec-dep(∆i) ensures that no type in ∆i depends on the
recursive arguments of the constructor.

We will assume that there is a top-level, well-formed signature Ψ0 containing
all definitions used in the user program, and keep it implicit in most typing rules.

Having seen rules for declaring datatypes, we now look at rules for constructing
and destructing data (Figure 5.16). The formation rule of inductive datatypes,
(Data), is a generalization of (T-List) from Section 3.3. When D is a datatype
constant of type Π∆. s, and e is an expression list inhabiting the telescope ∆, we
can form a datatype D e. Note that all arguments in e must be free from control
effects, since they appear in the type we are building. We also need the premise ⊢ Γ

when e is empty, otherwise we would not be able to prove environment regularity.
Constructor application has two rules. The first one (ConstrP) derives a pure

datum: it requires a list of pure arguments e, and uses those arguments to close off
the free variables in the result type D ui. The second rule (ConstrI) derives an
impure datum: it accepts an impure expression list, as long as its impure elements
appear in a non-dependent position of the constructor type. Dependency on a
constructor argument can occur in two places: the type of later arguments, and
the result type of the whole constructor application. Well-formedness of argument
types are guaranteed by the well-typedness precondition of e; remember that de-
pendent extension is only allowed when the expression to be added is pure. To
make sure that the result type is also well-formed, we check that substitution of
all pure expressions in e closes off all free variables in ui. In the typing rule, this
requirement is written as Γ ⊢ D ui[e/∆i]p : s, where the substitution operation

the target language, we need more restrictions in the source language to maintain type preserva-
tion. For instance, Cong and Asai [45], who define an unselective, call-by-value CPS translation
for a Dellina-like language, prohibit occurrences of D in the co-domain of pure function types.
The reason is that their translation converts Πx : B1.B2 into Πx : B1

+.Πα : ∗. (B2
+ →α)→α,

where B2
+ occurs negatively. Call-by-name translations behave even worse: they insert double

negation into domains as well, which means any recursive definition is turned into a non-strictily
positive one.

181

Expressions Γ ⊢ e : A ρ

⊢ Γ if e = () D : Π∆. s ∈ Ψ0 Γ ⊢ e : ∆

Γ ⊢ D e : ∗
(Data)

Ind(D : Π∆. s, {ci : Π∆i.D ui}) ∈ Ψ0

Γ ⊢ e : ∆i Γ ⊢ D ui[e/∆i] : s

Γ ⊢ ci e : D ui[e/∆i]
(ConstrP)

Ind(D : Π∆. s, {ci : Π∆i.D ui}) ∈ Ψ0

Γ ⊢ e : ∆i ρ Γ ⊢ D ui[e/∆i]p : s s ∈ {Prop, Set}
Γ ⊢ ci e : D ui[e/∆i]p ρ

(ConstrI)

Γ ⊢ e : D u Ind(D : Π∆. s, {ci : Π∆i.D ui}) ∈ Ψ0

Γ, ∆, x : D ∆ ⊢ P : s′ elim-ok(s, s′)

(Γ, ∆i ⊢ ei : P[ui/∆, ci yi/x] ρ[ui/∆, ci yi/x])i=1...k

Γ ⊢ P[u/∆, e/x] : s′ Γ ⊢ ρ[u/∆, e/x]

Γ ⊢ pm e as x in D ∆ ret P with {ci ∆i→ ei} : P[u/∆, e/x] ρ[u/∆, e/x]
(DMatch)

Γ ⊢ e : D u ρ Ind(D : Π∆. s, {ci : Π∆i.D ui}) ∈ Ψ0

Γ ⊢ P : s′ elim-ok(s, s′) s, s′ ∈ {Prop, Set}
(Γ, ∆i ⊢ ei : P σ)i=1...k τ = comp(ρ, σ)

Γ ⊢ pm e as x in D ∆ ret P with {ci ∆i→ ei} : P τ
(NDMatch)

Figure 5.16: Typing Rules for Inductive Data

182
replaces all free variables yj in ∆i by the corresponding ej when ej is pure (the p-
subscript means that the operation is substitution of pure terms). The last premise
s ∈ {Prop, Set} ensures that impure data are only present in the bottom-level.

Rules for pattern matching are essentially a generalization of those for Dellina-
pattern matching. In (DMatch), where the scrutinee is pure, the return type P

and effect annotation ρ may depend on indices u and the scrutinee e. In (ND-

Match), we do not allow such dependency. What is new here is that, the type D u

of the scrutinee e, as well as the type P of the branches ei, may reside in arbitrary
universe levels s and s′. However, not every combination of s and s′ is allowed in
the language; they must be related by the elim-ok(_,_) predicate defined below:

• elim-ok(Prop,Prop)

• elim-ok(s, s′) where s ∈ {Set,Typei} and s′ ∈ S

We find that elimination from Set and Typei can result in an expression at any
universe level, but elimination from Prop is only allowed when the branches are
Prop-terms. The reason comes from the different nature of the three universes:
while we distinguish two inhabitants of the same datatype, we identify all inhabi-
tants of the same proposition, since all we care about proofs is whether they exist
or not. If we allowed elimination from Prop to other universes, we would be able
to use a proof differently depending on how it looks like. What this means is that
it is no longer safe to erase proofs during program extraction of Coq [112], and in
the presence of classical axioms, we would further run into logical inconsistency
[48].

5.3.2 Metatheory

The metatheory of inductive datatypes is slightly more involved than that of the
λ-calculus, because we have multi-ary constructors. We first refine the substitution
lemma in order to handle a sequence of variables:

Lemma 5.3.1 (Substitution). Suppose Γ ⊢ v : ∆. Then, the following hold.

1. If ⊢ Γ, ∆, Γ′, then ⊢ Γ, Γ′[v/∆].

183
2. If Γ, ∆, Γ′ ⊢ t : T ρ, then Γ, Γ′[v/∆] ⊢ t[v/∆] : T[v/∆] ρ[v/∆].

We next extend the regularity lemma with an additional clause for expres-
sion lists. The statement easily follows by the extension rules and the induction
hypothesis.

Lemma 5.3.2 (Regularity). If Γ ⊢ e : ∆ ρ, then for each ei ∈ e, there exist some
Ai and ρi satisfying either of the following:

• Γ ⊢ ei : Ai and Γ ⊢ Ai : s

• Γ ⊢ ei : Ai ρi, Γ ⊢ Ai : s, Γ ⊢ ρi : (s
′, s), and s, s′ ∈ {Prop, Set}

Then, we can prove type soundness by generalizing the datatypes cases of the
Dellina- proofs.

5.3.3 CPS Translation

Compared to the formalization of the source language, it is easier to scale the CPS
translation to the datatype fragment. Let us go through the definition in Figures
5.17 – 5.18. Telescopes are translated the same way as typing environments: we
simply map the value translation to all types. On the other hand, we cannot define
a translation for expression lists, because they may contain impure terms, in which
case the translation is not a simple mapping of + and ÷.

Inductive datatypes D are converted into target datatypes D that receive the
same number of indices and have the same number of constructors. The type of
indices and constructor arguments are however different in general: they are all
applied the value translation.

The translation of a constructor application ci e generalizes that of Dellina-
indexed lists :: e0 e1 e2. Since the number of the arguments is not fixed, we can no
longer list all possible variants of the translation, but we still have a simple recipe
that accounts for the general case. When all arguments are pure, we translate the
application to ci e+. When e has at least one impure term, we define the CPS
image as a computation starting with λk. The body of this function is a sequence
of applications ei1

÷ (λvi1 . ei2
÷ (λvi2)), where ei1 , ei2 ... are impure arguments in

e. After mapping the ÷-translation to every impure argument, we return the value

184

⊢ Γ

Γ ⊢ ()
(T-Empty) +⇝ ()

Γ ⊢ A : s Γ, x : A ⊢ ∆

Γ ⊢ (x : A)∆
(T-Ext) +⇝ (x : A+)∆+

⊢ •
(S-Empty) +⇝ {}

⊢ Ψ • ⊢ Π∆. s : s′ s, s′ ∈ S (•, D : Π∆. s ⊢ Π∆i.D ui : s)i=1...k

⊢ Ψ, Ind(D : Π∆. s, {ci : Π∆i.D ui})
(S-Ext)

+⇝ Ψ+, Ind(D : Π∆+. s+, {ci : Π∆i
+.D ui+})

⊢ Γ D : Π∆. s ∈ Ψ0 Γ ⊢ e : ∆

Γ ⊢ D e : s
(Data) +⇝ D e+

⊢ Γ if e = () Ind(D : Π∆. s, {ci : Π∆i.D ui}) ∈ Ψ0

Γ ⊢ e : ∆i Γ ⊢ D ui[e/∆i] : s

Γ ⊢ ci e : D ui[e/∆i]
(ConstrP) +⇝ ci e+

⊢ Γ if e = () Ind(D : Π∆. s, {ci : Π∆i.D ui}) ∈ Ψ0

Γ ⊢ e : ∆i ρ Γ ⊢ D ui[e/∆i]p : s s ∈ {Prop, Set}
Γ ⊢ ci e : D ui[e/∆i]p ρ

(ConstrI)

÷⇝ λk : (D u[e/∆i]p)
+ →α+.

ei1
÷ (λvi1 : Bi1

+. ei2
÷ (λvi2 : Bi2

+. ... k (ci cpsarg(e))))

if ρ = [α, β]

Figure 5.17: CPS Translation of Signatures and Inductive Data

185

Γ ⊢ e : D u Ind(D : Π∆. s, {ci : Π∆i.D ui}) ∈ Ψ0

Γ, ∆, x : D ∆ ⊢ P : s′ elim-ok(s, s′)

(Γ, ∆i ⊢ ei : P[ui/∆, ci yi/x] ρ[ui/∆, ci yi/x])i=1...k

Γ ⊢ P[u/∆, e/x] : s′ Γ ⊢ ρ[u/∆, e/x]

Γ ⊢ pm e as x in D ∆ ret P with {ci ∆i→ ei} : P[u/∆, e/x] ρ[u/∆, e/x]
(DMatch)

+⇝ pm e+ as x in D ∆ ret P+ with {ci ∆i→ ei
+}

if ρ = ϵ

÷⇝ λk : (P[u/∆, e/x])+ → (α[u/∆, e/x])+.
pm e+ as x in D ∆ ret β+ with {ci ∆i → ei

÷ k}
if ρ = [α, β]

Γ ⊢ e : D u ρ Ind(D : Π∆. s, {ci : Π∆i.D ui}) ∈ Ψ0

Γ ⊢ P : s′ elim-ok(s, s′) s, s′ ∈ {Prop, Set}
(Γ, ∆i ⊢ ei : P σ)i=1...k τ = comp(ρ, σ)

Γ ⊢ pm e as x in D ∆ ret P with {ci ∆i→ ei} : P τ
(NDMatch)

÷⇝ λk : P+ →α+.
e÷ (λv : D u+.pm v as _ in D ∆ ret α+ with {ci ∆i→k ei

+})
if ρ = [α, β], σ = ϵ

÷⇝ λk : P+ →α+.
e÷ (λv : D u+.pm v as _ in D ∆ ret β+ with {ci ∆i→ ei

÷ k})
if ρ = [β, γ], σ = [α, β]

Figure 5.18: CPS Translation of Inductive Data

186
ci cpsarg(e) to the continuation k. Here, the cpsarg() function turns a constructor
argument into its CPS value. When the argument is pure, the function gives us a
+-translated argument. Otherwise, it returns a variable vi, which comes from the
CPS pattern ei

÷ (λvi. e). For instance, if e = e1 e2 e3, where e1 and e3 are pure
but e2 is impure, cpsarg(e) = e1

+ v2 e3
+.

We now show that the CPS translation preserves typing. First, we check the
ι-reduction case of the computational soundness property.

Proof. Suppose we reduce a pattern matching construct in the following way:

pm ci v as x in D a ret P with {ci yi→ ei} ▷p ei[v/yi]

where the branches ei are impure terms that change the answer type from α to β.

(pm ci v as x in D a ret P with {ci yi→ ei})+

= λk.pm ci v+ as x in D a ret β+ with {ci yi → ei
÷ k} by translation

▷ι λk. (ei
÷ k)[v+/yi]

≡ ei
÷[v+/yi] by η

= (ei[v/yi])
÷ by compositionality

Thanks to the purity restriction, as well as the safety condition, the type preser-
vation property of the CPS translation scales to the datatype fragment. Before
presenting the proof, let us draw the reader’s attention to two typing rules of the
target language (Figure 5.19), which differ from their Dellina counterpart. In (S-

Ext), we find that the safety condition safe(D,∆i) has been replaced by the strict
positivity condition str-pos(D,∆i). This is because we have no impure function
type in the target language. In (DMatch), we see that type checking of branches
ei is done with a sequence of equivalence assumptions u ≡ ui about indices, as
well as an assumption e ≡ ci yi about the scrutinee. As we saw earlier, these
assumptions are necessary for the CPS translation to be type-preserving.

With these new rules in mind, we prove the type preservation property. The
statement now has the following additional clauses accounting for signatures and

187

⊢ Ψ • ⊢ Π∆. s : s′ s, s′ ∈ S (•, D : Π∆. s ⊢ Π∆i.D ui : s)i=1...k

D, ci fresh str-pos(D,∆i) no-rec-dep(∆i)

⊢ Ψ, Ind(D : Π∆. ∗, {ci : Π∆i.D ui})
[S-Ext]

Γ ⊢ e : D u Ind(D : Π∆. s, {ci : Π∆i.D ui}) ∈ Ψ0

Γ, ∆, x : D ∆ ⊢ P : s′ elim-ok(s, s′)

(Γ, ∆i, u ≡ ui, e ≡ ci yi ⊢ ei : P[ui/∆, ci yi/x])i=1...k

Γ ⊢ pm e as x in D ∆ ret P with {ci ∆i→ ei} : P[u/∆, e/x]
[DMatch]

Figure 5.19: Target Signature Extension and Pattern Matching

telescopes:

1. If ⊢ Ψ, then ⊢ Ψ+.

2. If Γ ⊢ ∆, then Γ+ ⊢ ∆+.

Proof. We show three key cases: signature extension, constructor application, and
pattern matching.

Case 1: (S-Ext)

Our goal is to show

⊢ Ψ+, Ind(D : Π∆+. s+, {ci : Π∆i
+.D ui+})

By the induction hypothesis, we have

⊢ Ψ+ , • ⊢ Π∆+. s+ : s′+ , and (•, D : Π∆+. s+ ⊢ Π∆i
+.D ui+ : s+)i=1...k

What remains to be shown is:

1. s+, s′+ ∈ Set

2. D, ci fresh

188
3. str-pos(D,∆i

+)

4. no-rec-dep(∆i
+)

Items 1, 2, 4 are trivially satisfied. Item 3 is guaranteed by the safety condition
of Dellina: if ∆ has an impure function type Πx : B1.B2[α, β], ∆+ will have
Πx : B1

+. (B2
+ →α+)→ β+, but we know that D does not appear in B1

+, B2
+,

or α+.

Case 2: (ConstrI) where ρ = [α, β]

Our goal is to show

Γ+ ⊢ λk : D ui+[e+/∆i]p →α+.

ei1
÷ (λvi1 : Bi1

+. ei2
÷ (λvi2 : Bi2

+. ... k (ci cpsarg(e)))) :

(D ui+[e/∆i]p→α+)→ β+

It suffices to show that the last application k (ci cpsarg(ei)) is well-typed. By the
source typing rule (ConstrI), we know that only pure arguments epi ’s in e are
substituted into the result type D ui; for all impure ei1 , ei2 , ... in ei, it must be the case
that the variables yi1 , yi2 , ... ∈ ∆i do not occur free in D ui. This means, the result
type of ci cpsarg(e) only depends on epi

+; it can never contain variables vi1 ,vi2 , ...

introduced by the translation. Thus we conclude that the last application is type
safe. Well-typedness of other applications follows by the induction hypothesis on
impure arguments.

Case 3:
(DMatch) where ρ = [α, β]

Our goal is to show

λk : (P[u/∆, e/x])+ → (α[u/∆, e/x])+.

pm e+ as x in D ∆ ret β+ with {ci ∆i→ ei
÷ k}

has type

((P[u/∆, e/x])+ → (α[u/∆, e/x])+)→ (β[u/∆, e/x])+

189
It suffices to show that the application ei

÷ k is well-typed. By compositionality, we
know that (P[u/∆, e/x])+ = P+[u/∆+, e+/x]. Analogously to the (E-DMatchL)

case from Section 4.6, ei÷ demands a continuation whose domain depends on u+

and e+, while the domain of k depends on ∆ and ci ∆i. Here the equivalence
assumptions of the target typing rule come to the rescue: with u+ ≡ ∆ and
v ≡ ci ∆i, we can conclude that the application ei

÷ k is type-safe. The rest of the
proof is completely straightforward.

5.3.4 Encoding of Σ Types

Using dependent function types and inductive types, we can encode strong Σ types.
For instance, the following pair defines a variant of Σ type that can express the
existence of a datum x satisfying some predicate P:

Ind(Sigma : ΠA : Set. (A→Prop)→Prop,

{exist : ΠA : Set.ΠP : (A→Prop).Πx : A.P x→ Sigma A P})

The first and second projections are simply functions that destruct pairs con-
structed via exist:

fst
def≡

λA : Set. λP : A→Prop. λ e : Sigma A P.

pm e as _ in Sigma A P ret A with exist A P a b→ a

snd
def≡

λA : Set. λP : A→Prop. λ e : Sigma A P.

pm e as x in Sigma A P ret P (fst A P x) with exist A P a b→ b

5.3.5 Remark on Large Elimination and CPS Translation

As reported by Barthe and Uustalu [24], it is not possible to CPS convert large
elimination using a double negation translation. To see the reason, let us consider
the following elimination construct:

pm e as x in N ret Set with z→N | suc n→B

190
The reduction rule of pattern matching tells us that, to eliminate e, we first

evaluate it to a constructor application, and then choose the right branch according
to the constructor we obtain. This means, if we unselectively translate terms, we
must have an application e÷ (λv. e) representing evaluation of e. Since the value
of e is represented as v, we must analyze v and return either N or B. Therefore, a
natural candidate of e would be pm v as x in N ret Set with z→N | suc n→B.
However, this would make e÷ (λv. e) ill-typed: while e÷ expects a continuation
returning ⊥, it is applied to a continuation returning Set.

This failure example should be no surprise, though, because the double negation
translation is inherently designed for bottom-level terms: since ⊥ means logical
absurdity, it has type Prop, hence its inhabitants are Prop-terms. Given this fact,
the reader may wonder if Bowman et al.’s translation, where the answer type is
polymorphic but is fixed to ∗-type, fails in the same way. Interestingly, the answer
is no, if we restrict large elimination to scrutinize a pure term. Specifically, we can
translate the above pattern matching to the following well-formed type:

pm e÷ N idN as x in N ret Set with z→N | suc n→B

We find that the translation is almost the same as that of (DMatch) with pure
branches; the only difference is that we are scrutinizing e÷ N idN instead of e+. In
essence, the translation presumes that we can evaluate the source term e indepen-
dent of the rest of the computation, i.e., analyzing its head and choosing a branch.
This does not limit the applicability of the translation if the source language has
no type dependent on impure terms; the purity of e ensures that we can locally
evaluate it in an empty context. From this point of view, the double negation
translation can be understood as giving e÷ “too much access” to the continuation.

5.4 Local Definitions

The last feature we would like to discuss is local definitions [143], which we incor-
porate by extending the language with the let expressions. let expressions are
not only useful for programming, but also indispensable for compilation, since they
help us express control flow while avoiding code duplication. However, this exten-
sion is not as trivial as one would expect; it requires a global modification to the

191
reduction rules, as well as careful analysis of metatheoretic properties. The reason
is that, in a dependently typed language, the binding information introduced by
let can be used at the level of types. For instance, when f is a L 3-accepting
function, we can make the program let x = 3 : N in f (mk-lst x) type check by
identifying x with 3. In this section, we show what restriction we need to support
dependent let, and what challenges it brings into the language.

5.4.1 Specification

5.4.1.1 Syntax and Reduction

To support local definitions, we extend expressions with a new binding construct
let x = e : A in e, and a new environment extension Γ, x = e : A (Figure 5.20). In
the latter construct, we require that x is Γ-fresh [143], i.e., it must not be available
in the current environment Γ.

Definitions are associated with two reduction rules δ and ζ. The latter is the
standard rule for the let expression. The former replaces a let-bound variable with
its definition, which must be a value. Since definitions are accummulated in typing
environments, δ-rule must refer to Γ. Therefore, we replace the binary reduction
relation e ▷ e′ with a trinary one Γ ⊢ e ▷ e′, and use the new relation in all the
reduction rules.

Parallel reduction is also parametrized by a typing environment, and this
change gives rise to reduction of typing environments. Specifically, reduction of
environments happens in (P-VarDelta), which reduces a variable to the pararell-
reduct of its definition. This makes the reduction genuinely parallel, but since the
definition is not a subterm of the variable, we can only obtain the reduct by reduc-
ing the environment, which means we must make the reduction relation inductive
on the derivation. The definition of environment reduction is simple; we just
parallel-reduce types A and definitions e.

5.4.1.2 Typing

The best way to understand the power of local definitions is to study their typing
rules, which we present in Figure 5.21. Rule (G-ExtDef) allows extending an
environment with a definition x = e : A when e is a pure term. The purity

192

Syntax
Environments Γ ::= ... | Γ, x = e : A
Expressions s,A, e ::= ... | let x = e : A in e

Evaluation Contexts E, F

E ::= ... | let x = E : A in e

F ::= ... | let x = F : A in e

Reduction Rules Γ ⊢ e ▷ e′

Γ ⊢ x ▷δ v if x = v : A ∈ Γ

Γ ⊢ let x = v : A in e ▷ζ e[v/x]

Parallel Reduction Γ ⊢ e ▷p e′

Γ1, x = v : A, Γ2 ▷p Γ′1, x = v′ : A′, Γ′2
Γ1, x = v : A, Γ2 ⊢ x ▷p v′

(P-VarDelta)

Γ ⊢ e1 ▷p e′1 Γ ⊢ A ▷p A′ Γ, x = e1 : A ⊢ e2 ▷p e′2
Γ ⊢ let x = e1 : A in e2 ▷p let x = e′1 : A in e′2

(P-Let)

Γ ⊢ v1 ▷p v′1 Γ, x = v1 : A ⊢ e2 ▷p e′2
Γ ⊢ let x = v1 : A in e2 ▷p e′2[v

′
1/x]

(P-LetZeta)

Γ ▷p Γ
(P-G-Refl)

Γ ▷p Γ′ A ▷p A′

Γ, x : A ▷p Γ′, x : A′ (P-G-Ext)

Γ ▷p Γ′ e ▷p e′ A ▷p A′

Γ, x = e : A ▷p Γ′, x = e′ : A′ (P-G-ExtDef)

Figure 5.20: Syntax and Reduction of Definitions

193

Well-formed Environments ⊢ Γ

⊢ Γ Γ ⊢ e : A Γ ⊢ A : ∗
⊢ Γ, x = e : A

(ExtDef)

Well-typed Expressions Γ ⊢ e : A ρ

⊢ Γ x : A ∈ Γ or x = e : A ∈ Γ

Γ ⊢ x : A
(Var)

Γ ⊢ e1 : A Γ, x = e1 : A ⊢ e2 : B ρ

Γ ⊢ B[e1/x] : s s ∈ S Γ ⊢ ρ[e1/x]

Γ ⊢ let x = e1 : A in e2 : B[e1/x] ρ[e1/x]
(DLet)

Γ ⊢ e1 : A ρ Γ, x : A ⊢ e2 : B σ

Γ ⊢ B : s s ∈ {Prop, Set} Γ ⊢ σ τ = comp(ρ, σ)

Γ ⊢ let x = e1 : A in e2 : B τ
(NDLet)

Figure 5.21: Typing Rules for Definitions

194
restriction comes from the fact that Dellina is call-by-value: recall that definitions
are used in δ-reduction, which happens only when the term part of the definition
is a pure value. In fact, when e is a non-value, the extension is redundant, since
it can never be used during type checking. However, we do not restrict extension
to the form x = v : A in order to keep the typing rule of let simple. The new
environment extension necessitates a slight modification to (Var), so that we may
refer to let-bound variables.

Similarly to application and pattern matching, the let expression has two typing
rules (DLet) and (NDLet). In the former, the result type B[e1/x] depends on
the term part of the definition x = e1 : A, hence we check the purity of e1, as well
as the well-formedness of the result type and effect annotation. What we should
pay attention to is the premise Γ, x = e1 : A ⊢ e2 : B ρ. Unlike (Abs), where
we tyoe check the body with a binding x : A, we type check e2 with a definition
x = e1 : A. This allows us to replace the occurrences of x in B and ρ with e when
e1 is a value.

The difference in the typing environment used in let and λ implies that we
may have let x = e1 : A in e2 well-typed without having (λ x : A. e2) e1 well-typed.
Consider the following term, where mk-lst : Πx : N. L x:

let x = z : N in :: z 1 (mk-lst x)

When type checking the body :: z 1 (mk-lst x), we find that the third argument
to the ::-constructor has type L x, while the constructor expects a term of type
L z because its first argument is z. The body is however well-typed because we
have a definition x = z : N in the typing environment, and we can use it to replace
the variable x in L x by z via δ-reduction. If we build a similar term using a λ,
namely (λ x : N. :: z 1 (mk-lst x)) z, the body of λ is not well-typed since x can be
an arbitrary value9.

By contrast, the non-dependent variant of let, which we derive by (NDLet),
does not use the definition in an interesting way. As e1 is an impure term, the
variable x bound to it can be replaced by any value, which means we may only

9This difference has been used to argue the superiority of administrative normal form (ANF)
[77] over CPS as an intermediate representation of compilers for dependently typed languages
[33]. ANF makes control flow explicit by let-binding all intermediate results. In a dependently
typed setting, this means we can make an ANF translation type preserving without the [T-Cont]
rule, which turns a continuation λ into a let.

195
use the variable x at the level of terms. Therefore, in (NDLet), we type check e2

with the binding x : A, without binding x to some specific term. We then check the
well-formedness of the result type B and the effect annotation σ in the unextended
environment Γ, ensuring that there is no type referring to x.

5.4.2 Metatheory

Local definitions require considerable effort to scale the metatheory of the lan-
guage. The main changes are again observed in those properties that deal with
substitution: we must make sure that let-bound variables are replaced by (the
reduct of) their definition, not by an arbitrary value.

Lemma 5.4.1 (Substitution of Values and Parallel Reduction). If Γ, x = v :

A, Γ′ ⊢ t ▷p t′, then Γ, Γ′[v/x] ⊢ t[v/x] ▷p t′[v/x].

Proof. The proof is by induction on the derivation of Γ, x = v : A, Γ′ ⊢ t ▷p t′.

Case 1: (P-VarDelta)

Sub-Case 1: t = x

Our goal is to show

Γ, Γ′[v/x] ⊢ x[v/x] ▷p v[v/x]

This is trivial because x cannot occur free in v.

Sub-Case 2: t = y where y ̸= x and y = u : B ∈ Γ, Γ′

Our goal is to show

Γ, Γ′[v/x] ⊢ y[v/x] ▷p u′[v/x]

If y = u : B ∈ Γ, the proof is easy, since neither u or u′ refers to variable x. That
is, we have y[v/x] = y ▷p u

′ = u′[v/x]. If y = u : B ∈ Γ′, the induction hypothesis on
the environment implies u[v/x] ▷p u′[v/x], which gives us y[v/x] = y ▷p u

′[v/x] as
desired. Note that we would get stuck in this case if the reduction did not recurse
on the environment (that is, if the premise of (P-VarDelta) was Γ ⊢ v ▷p v′).

196
Using these lemmas, we can prove the confluence theorem, by simultaneous

induction on the derivation of Γ ⊢ t ▷p t1 and Γ ⊢ t ▷p t2.
We next extend the preservation proof to cases involving local definitions. This

requires some refinements to auxiriary lemmas:

Lemma 5.4.2 (Weakening). Suppose Γ ⊢ e : A, Γ ⊢ A : ∗, and x /∈ Γ, Γ′. Then,
the following hold.

1. If ⊢ Γ, Γ′, then ⊢ Γ, x = e : A, Γ′.

2. If Γ, Γ′ ⊢ t : T ρ, then Γ, x = e : A, Γ′ ⊢ t : T ρ.

Lemma 5.4.3 (Environment Conversion).

1. If ⊢ Γ, x = v : A, Γ′ and Γ ⊢ v ≡ v′, then ⊢ Γ, x = v′ : A, Γ′.

2. If Γ, x = v : A, Γ′ ⊢ e : A ρ and Γ ⊢ v ≡ v′, then Γ, x = v′ : A, Γ′ ⊢ e : A ρ.

Lemma 5.4.4 (Substitution). Suppose Γ ⊢ v ▷p v′ and Γ ⊢ v′ : A. Then, the
following hold.

1. If ⊢ Γ, x = v : A, Γ′, then ⊢ Γ, Γ′[v′/x].

2. If Γ, x = v : A, Γ′ ⊢ t : T ρ, then Γ, Γ′[v′/x] ⊢ t[v′/x] : T[v′/x] ρ[v′/x].

Observe that the substitution lemma assumes that the reduct v′ of v has the
same type as v. Without this assumption, the lemma would require the preserva-
tion theorem, making the two proofs circular.

The new cases of the preservation theorem can be proved as follows:

Proof.

Case 1: (Var)

The only way where a variable takes step is via (P-VarDelta). Suppose we have
Γ, x = v : A, Γ′ ⊢ x ▷p v′. Our goal is to show

Γ, x = v : A, Γ′ ⊢ v′ : A

By the induction hypothesis, we have Γ ⊢ v′ : A. The goal easily follows by
weakening (Lemma 5.4.2).

197
Case 2: (DLet)

Sub-Case 1: Γ ⊢ let x = e1 : A in e2 ▷p let x = e′1 : A
′ in e′2 by (P-Let)

Our goal is to show

Γ ⊢ let x = e′1 : A
′ in e′2 : B[e1/x] ρ[e1/x]

By the induction hypothesis, we have

Γ, x = e1 : A ⊢ e′2 : B , Γ, x = e1 : A ⊢ B[e′1/x] : s , and Γ, x = e1 : A ⊢ ρ[e′1/x]

By environment conversion (Lemma 5.4.3), we can replace all occurrences of x =

e1 : A with x = e′1 : A
′, and derive

Γ ⊢ let x = e′1 : A
′ in e′2 : B[e

′
1/x] ρ[e

′
1/x]

The goal now follows by (Conv).

Sub-Case 2: Γ ⊢ let x = v1 : A in e2 ▷p e′2[v
′
1/x] by (P-LetZeta)

Our goal is to show

Γ ⊢ e′2[v
′
1/x] : B[v

′
1/x] ρ[v1/x]

By the induction hypothesis, we have

Γ ⊢ v′1 : A , Γ, x = v1 : A ⊢ e′2 : B ρ ,

Γ, x = v1 : A ⊢ B[v′1/x] : s , and Γ, x = v1 : A ⊢ ρ[v′1/x] : (s, s
′)

By the substitution lemma, we obtain

Γ ⊢ e′2[v
′
1/x] : B[v

′
1/x] ρ[v

′
1/x]

The goal follows by (DLet) and (Conv).

5.4.3 CPS Translation

The CPS translation of local definitions (Figure 5.22) can be easily defined follow-
ing the recipe we have been using so far. In the translation of (ExtDef), the term

198

⊢ Γ Γ ⊢ e : A Γ ⊢ A : ∗
⊢ Γ, x = e : A

(G-ExtDef) +⇝ Γ+, x = e1
+ : A+

Γ ⊢ e1 : A Γ, x = e1 : A ⊢ e2 : B ρ

Γ ⊢ B[e1/x] : s s ∈ S Γ ⊢ ρ[e1/x]

Γ ⊢ let x = e1 : A in e2 : B[e1/x] ρ[e1/x]
(DLet)

+⇝ let x = e1
+ : A+ in e2

+

if ρ = ϵ

÷⇝ λk : (B[e1/x])
+ → (α[e1/x])

+. let x = e1
+ : A+ in e2

÷ k
if ρ = [α, β]

Γ ⊢ e1 : A ρ Γ, x : A ⊢ e2 : B σ

Γ ⊢ B : s s ∈ {Prop, Set} Γ ⊢ σ τ = comp(ρ, σ)

Γ ⊢ let x = e1 : A in e2 : B τ
(NDLet)

÷⇝ λk : B+→α+. e1
÷ (λx : A+.k e2

+)
if ρ = [α, β], σ = ϵ

÷⇝ λk : (B[e1/x])
+ → (α[e1/x])

+. let x = e1
+ : A+ in e2

÷ k
if ρ = [β, γ], σ = [α, β]

Figure 5.22: CPS Translation of Definitions

199
e1 is applied the value translation because it is pure. let expressions are translated
similarly to pattern matching. The reader will find that the first translation of
(NDLet) turns let into a λ, which amounts to turning a uniquely determined x

into a general variable. If we allowed reference to x from B in this case, we would
run into the issues discussed in Section 4.1.

Thanks to the purity restriction, we can easily show that the extended trans-
lation satisfies desired properties. First, we show the δ/ζ-reduction cases of the
computational soundness proof:

Proof.

Case 1: (Var)

Sub-Case 1: Γ, x = v : A, Γ′ ⊢ x ▷p v′ by (Var)

x+ = x by translation

▷δ v
′+

Case 2: (DLet)

Sub-Case 1: let x = v1 in e2 ▷p e2[v
′
1/x] by (P-LetZeta)

(let x = v1 in e2)
÷ = λk. let x = v1

+ in e2
÷ k by translation

≡ λk. let x = v′1
+ in e′2

÷ k by IH on v1 and e2

▷ζ λk. (e
′
2
÷ k)[v′1

+/x]

= λk. (e′2
÷[v′1

+/x]) k by substitution

≡ e′2
÷[v′1

+/x] by η

= (e′2[v
′
1/x])

÷ by translation

Next, we show the let case of the type preservation proof.

200
Proof.

Case 1: (E-DLet) where ρ = [α, β]

Our goal is to show

Γ+ ⊢ λk : (B[e1/x])
+ → (α[e1/x])

+. let x = e1
+ : A+ in e2

÷ k :

((B[e1/x])
+ → (α[e1/x])

+)→ (β[e1/x])
+

By the induction hypothesis, we have

Γ+ ⊢ e1
+ : A+ and Γ+ ⊢ e2

÷ : ((B[e1/x])
+ → (α[e1/x])

+)→ (β[e1/x])
+

Using [App], we can derive

Γ+, k : (B[e1/x])
+ → (α[e1/x])

+ ⊢ e2
÷ k : (β[e1/x])

+

The goal now follows by [DLet] and [Abs].

5.5 Example

With inductive datatypes and type-level computations at hand, we can now im-
plement more interesting programs. In this section, we build a type-safe evaluator
supporting efficient exception handling, using shift, reset, and dependent types
in a meaningful way.

As we saw in Section 1.1, dependent types are able to express specifications
of data in a precise manner. A well-known application of this ability is type-safe
representation of user-defined languages [4]. Let us define a small object language
LBN, which consists of booleans and numbers. To represent LBN types and terms,
we declare two datatypes Ty and Tm as follows:

Ind(Ty : Set, {bool : Ty; num : Ty})

Ind(Tm : Ty→ Set,

{bl : B→Tm bool; nm : N→Tm num; ... ; div : Tm num→Tm num→Tm num})

201
Notice that the type of LBN terms is indexed by an LBN type. The index ensures
that the term language produces only well-typed terms: e.g., we can construct
div (nm 4) (nm 2) but not div (nm 4) (bl true).

We next define a language Ans, which serves as the target language of the
evaluation function:

Ind(Ans : Ty→ Set, {val : Π t : Ty. interpTy t→Ans t; error : Π t : Ty.Ans t})

As the definition suggests, answers consist of values and errors. The datatype Ans

is again indexed by an LBN type, which is passed explicitly as an argument to the
constructors. In the val case, we have a second argument representing the value
returned by the evaluator (strictly speaking, the auxiriary function used in the
evaluator), which has type interpTy t. Here, interpTy is a function that turns LBN

types into Dellina types:

interpTy
def≡ λ t : Ty. pm t as _ in Ty ret Set with bool→B | num→N

The pattern matching construct is an instance of large elimination, since it inspects
a Dellina term (of type Ty) and returns a Dellina type (of type Set).

Now, we are ready to define the evaluation function eval. To simplify the top-
level call, we use an auxiriary function eval′ to implement the actual behavior:

eval′
def≡

rec fΠt:Ty.Ty→Tm t→ interpTy t[Ans t,Ans t] t. λ t
′ : Ty. λ e : Tm t.

pm e as _ in Tm t ret (interpTy t) with

bl b→Sk : (B→Ans t′). k b

| nm n→Sk : (N→Ans t′). k n

| ...

| div e1 e2→ pm f num t′ e2 as _ in N ret N with

z→Sk : (N→Ans t′). error t′

| suc n→ ...

eval
def≡ λ t : Ty. λ e : Tm t. ⟨val (eval′ t t e)⟩

202
The eval′ function takes in three arguments: two LBN types t, t′ and an LBN term
e. Among the first two arguments, t is the type index of e (i.e., the argument
at each recursive call), whereas t′ is the type index of the top-level argument. In
the bl branch, the evaluator returns b, which is a Dellina boolean of type B10 (we
again have a redundant shift for typing reasons). The nm branch is computed in
a similar way; the difference is that the returned value is a Dellina natural number.
What is interesting is the div branch: when we find a division by zero, we raise an
error via the shift operator. The captured continuation k is a computation that
builds a value, i.e., it takes the form val F. In the exception case, we want to finish
the entire computation immediately, hence we discard the continuation and return
error t′ to the top-level.

Looking at the type annotation of f, we can see that the evaluator eval preserves
types. That is, when given a top-level term of type Tm t, it either produces a value
of type Ans t, or returns an error of the same type Ans t.

As we saw in Section 1.2, exception handling is also possible in a pure lan-
guage, if we write the whole evaluator in CPS. However, programming in CPS
is less convenient, and the resulting program is less efficient than the original
one. Furthermore, since our evaluator is dependently typed, we would need non-
standard axioms (like [T-Cont] of Bowman et al. [34]) to make the CPS evaluator
well-typed. Therefore, the Dellina program above is preferable from both practical
and theoretical perspectives.

10Since eval′ returns a meta-language value instead of a user-defined datum, we say that the
function is written in the tagless-final style [36].

203

Chapter 6

Call-by-name Dellina-

So far, we have been discussing the interaction between dependent types and de-
limited control in a call-by-value setting. The reason we chose this evaluation
strategy comes from the fact that the behavior of effectful computations is easier
to understand when they are eagarly evaluated. For instance, when we have a
function λ x : N. x + x, we know that the two x’s always denote the same value, re-
gardless of the purity of the actual argument. This is not the case in a call-by-name
language, where variables are replaced by a possibly effectful computation.

On the other hand, some researchers claim that dependently typed calculi are
inherently call-by-name [97, 132]. The argument intuitively makes sense, because
dependent constructs—such as application and pattern matching—have a type
dependent on their subterm, which is not necessarily a value. This means, the
typing rules are defined under the assumption that substitution of computations
are always safe. When this assumption does not hold, as in Dellina, we have to
manually check well-formedness of result types, by means of an additional typing
premise.

Given this fact, the reader might ask: if we switch to a call-by-name semantics,
couldn’t we have a simpler type system and soundness proofs? It turns out that
this is not quite the case if we want to allow all purely dependent types. Also, the
language specification would be complicated by the semantical difference between
call-by-name functions and continuations.

In this chapter, we present Dellinan, a call-by-name variant of Dellina-. Unfor-
tunately, we have not yet been able to prove its metatheoretic properties, nor have

204
we established a type preservation proof of the CPS translation. However, we still
think it worth showing the preliminary specification of the language; in particular,
by comparing call-by-value/call-by-name effects in a dependently typed setting,
we can achieve a clearer view of values and computations.

6.1 Syntax

We present the syntax of Dellinan in Figure 6.1. There are two major changes in
the definition of typing environments. First, when we extend an environment with
a new variable x, we add its type A together with an effect annotation ρ. This
reflects the fact that variables are potentially effectful computations in a call-by-
name language.

The second change in the environment definition is the new extension form for
continuation variables k. This comes from a design decision specific to Dellinan:
we distinguish between λ-bound variables and shift-bound variables. The dis-
tinction is commonly adopted to languages with call-by-name delimited control
[27, 102, 159], and plays a key role in the CPS translation. Note that extension of
a continuation variable never comes with an effect annotation, because they denote
functions (but not call-by-name functions, as we discuss in Section 6.2).

Shifting our attention to the type language, we find that function types now
take the form Πx : A ρ.B σ, which has an annotation ρ representing the control
effect of the argument. This change can be understood along the same line as our
refinement to environment extension; in particular, it captures the fact that call-
by-name β-reduction takes place before evaluating the argument to a pure value.
Correspondingly, in the definition of terms, we see that abstractions have been
refined to λ x : A ρ. e, sharing the same binding construction with function types.

Computations now include variables x, but only those bound by a λ. shift-
bound variables can only be used via the new construct k ↪→ e, which throws a
term e to a continuation variable k. This allows us to incorporate the value-
accepting nature of continuations into the semantics of the language. Note that,
while we cannot return a continuation by writing Sk : A→α. k, we can still do the
same thing by η-expanding the continuation, namely by writing Sk : A→α. λ x :

A. k ↪→ x.

205

Environments Γ ::= • | Γ, x : A ρ | Γ, k :k A
Kinds κ ::= ∗ | □
Types A, α ::= Unit | N | L e | Πx : A ρ.B σ
Effects ρ ::= ϵ | [α, β]
Values v ::= λ x : A ρ. e | rec fΠx :A ρ.B σ x. e

| () | z | suc e | nil | :: e e e
Terms e ::= v | x | e e

| pm e as x in N ret P with z → e | suc n → e
| pm e as x in L a ret P with nil → e | :: m h t → e
| Sk : A→α. e | k ↪→ e | ⟨e⟩

Figure 6.1: Call-by-name Syntax

As a final remark, we explicitly define the set of values v, which is generally
missing in call-by-name languages. The reason is that the elimination rule of reset
applies only to value-surrounding reset. Note that values include any inductive
data, regardless of whether constructor arguments are values or not.

6.2 Evaluation, Reduction, and Equivalence

6.2.1 Runtime Evaluation

As we did for Dellina-, we give two sets of reduction rules: one for runtime, and
the other for type-checking time. In Figures 6.2 – 6.3, we present evaluation
contexts and reduction rules. The latter are basically a call-by-name version of
Dellina- reduction rules, where the occurrences of values (except for the one in
reset) are replaced by computations. There is however one major change in the
shift-reduction rule. Recall that the Dellina reduction rule was defined as follows:

⟨F[Sk : A→α. e]⟩ ▷S ⟨e[λ x : A. ⟨F[x]⟩/k]⟩

The rule substitutes a function λ x : A. ⟨F[x]⟩ for k, and in the body e, any oc-
currence of k e′ reduces to ⟨F[v′]⟩ assuming that e′ ▷⋆ v′. On the other hand, in
Dellinan, shift-reduction is defined in the following way:

206

Evaluation Contexts E, F

E ::= [] | E e

| pm E as x in N ret P with z → e | suc n → e

| pm E as x in L a ret P with nil → e | :: m h t → e

| ⟨E⟩
F ::= [] | F e

| pm F as x in N ret P with z → e | suc n → e

| pm F as x in L a ret P with nil → e | :: m h t → e

Plugging Function plug F e = e′

plug [] e
def≡ e

plug (F e1) e
def≡ plug F (e e1)

plug (pm F as _ in N ret P with

z → e1 | suc n → e2) e

def≡
plug F (pm e as _ in N ret P with

z → e1 | suc n → e2)

plug (pm F as _ in L _ ret P with

nil → e1 | :: m h t → e2) e

def≡
plug F (pm e as _ in L _ ret P with

nil → e1 | :: m h t → e2)

Figure 6.2: Call-by-name Evaluation Contexts

207

Reduction Rules e ▷ e′

(λ x : A. e) e1 ▷β e[e1/x]

(rec fΠx :A ρ.B σ x. e) e1 ▷µ e[rec fΠx :A ρ.B σ x. e/f, e1/x]

pm z as x in N ret P with

z → e1 | suc n → e2
▷ι e1

pm suc e as x in N ret P with

z → e1 | suc n → e2
▷ι e2[e/n]

pm nil as x in L a ret P with

nil → e1 | :: m h t → e2
▷ι e1

pm :: e0 e1 e2 as x in L a ret P with

nil → e′1 | :: m h t → e′2
▷ι e′2[e0/m, e1/h, e2/t]

⟨F[Sk : A→α. e]⟩ ▷S ⟨e[k ⇒ F]⟩
⟨v⟩ ▷R v

Single-step Evaluation

e ▷ e′

E[e] ▷ E[e′]
(R-Eval)

e ▷⋆ e
(RS-Refl)

e0 ▷ e1 e1 ▷⋆ e2
e0 ▷⋆ e2

(RS-Trans)

Figure 6.3: Call-by-name Runtime Reduction Rules

208

Unit[k ⇒ F]
def≡ Unit

N[k ⇒ F]
def≡ N

(L e)[k ⇒ F]
def≡ L (e[k ⇒ F])

(Πx : A ρ.B σ)[k ⇒ F]
def≡ Πx : A[k ⇒ F] ρ[k ⇒ F].B[k ⇒ F] σ[k ⇒ F]

x[k ⇒ F]
def≡ x

(λ x : A. e)[k ⇒ F]
def≡ λ x : A[k ⇒ F]. e[k ⇒ F]

(rec fΠx :A ρ.B σ x. e)[k ⇒ F]
def≡ rec f(Πx :A ρ.B σ)[k⇒F] x. e[k ⇒ F]

(e0 e1)[k ⇒ F]
def≡ e0[k ⇒ F] e1[k ⇒ F]

(pm e as x in N ret P with z →
e1 | suc n → e2)[k ⇒ F]

def≡
pm e[k ⇒ F] as x in N ret P[k ⇒ F] with z →

e1[k ⇒ F] | suc n → e2[k ⇒ F]

(pm e as x in L a ret P with nil →
e1 | :: m h t → e2)[k ⇒ F]

def≡
pm e[k ⇒ F] as x in L a ret P[k ⇒ F] with nil →

e1[k ⇒ F] | :: m h t → e2[k ⇒ F]

(Sk′ : A→α. e)[k ⇒ F]
def≡ Sk′ : A→α[k ⇒ F]. e[k ⇒ F] where k′ ̸∈ {k} ∪ FV (F)

(k ↪→ e)[k ⇒ F]
def≡ ⟨F[e[k ⇒ F]]⟩

(k′ ↪→ e)[k ⇒ F]
def≡ k′ ↪→ e[k ⇒ F] where k′ ̸∈ {k} ∪ FV (F)

⟨e⟩[k ⇒ F]
def≡ ⟨e[k ⇒ F]⟩

Figure 6.4: Context Substitution

209

⟨F[Sk : A→α. e]⟩ ▷S ⟨e[k ⇒ F]⟩

The rule does not directly substitute a function for k. Instead, it uses a special
substitution operation e[k ⇒ F], which is defined in Figure 6.4. Intuitively, e[k ⇒ F]

turns every occurrences of k ↪→ e′ into ⟨F[e′]⟩. The result of the substitution is
equivalent to β-reducing (k e′)[λ x : A. ⟨F[x]⟩/k], hence the reader might think that
we could simply adopt the Dellina reduction rule. However, the rule does not apply
to a call-by-name language, because we use a distinct syntax form for continuation
application; put differently, we do not have terms of the form k e.

6.2.2 Parallel Reduction and Equivalence

In Figures 6.5 - 6.8, we define parallel reduction, which we use to build the notion
of equivalence (Figure 6.9). The control-free fragment of the rules is the same as
the ones defined for the target language of Dellina- CPS translation. Among the
rest of the rules, (P-ResetS) recurses on the evaluation context F, necessiating
parallel reduction on evaluation contexts.

Remark As Kameyama and Tanaka [102] point out, η-equivalence is not com-
patible with the semantics of reset in a call-by-name language. Here is a simple
example showing this incompatibility:

⟨e⟩ ≡η ⟨λ x : A. e x⟩ ▷R λ x : A. e x ≡η e

Since call-by-name η-expansion applies to non-values, we can turn a possibly ef-
fectful e into a function λ x : A. e x. Now, the reset is wrapping around a value,
hence we may remove it via the ▷R-rule. This reduction results in an η-expanded
function, which can be converted back into e via η. What this means is that, if
we incorporate η-equivalence, reset becomes totally useless on higher-order com-
putations.

210

t ▷p t
(P-Refl)

e ▷p e′

L e ▷p L e′
(P-List)

A ▷p A′ ρ ▷p ρ′ B ▷p B′ σ ▷p σ′

Πx : A ρ.B σ ▷p Πx : A′ ρ′.B′ σ′ (P-Pi)

A ▷p A′ ρ ▷p ρ′ e ▷p e′

λ x : A ρ. e ▷p λ x : A′ ρ′. e′
(P-Abs)

Πx : A ρ.B σ ▷p Πx : A′ ρ′.B′ σ′ e ▷p e′

rec fΠx :A ρ.B σ x. e ▷p rec fΠx :A′ ρ′.B′ σ′ x. e′
(P-Rec)

e0 ▷p e′0 e1 ▷p e′1
e0 e1 ▷p e′0 e′1

(P-App)

e0 ▷p e′0 e1 ▷p e′1
(λ x : A ρ. e0) e1 ▷p e′0[e

′
1/x]

(P-AppBeta)

Πx : A ρ.B σ ▷p Πx : A′ ρ′.B′ σ′

e0 ▷p e′0 e1 ▷p e′1
(rec fΠx :A ρ.B σ x. e0) e1 ▷p e′0[rec fΠx :A′ ρ′.B′ σ′ x. e′0/f, e

′
1/x]

(P-AppMu)

Figure 6.5: Call-by-name Parallel Reduction (Types and λ-terms)

211

e ▷p e′

suc e ▷p suc e′
(P-Suc)

e0 ▷p e′0 e1 ▷p e′1 e2 ▷p e′2
:: e0 e1 e2 ▷p :: e′0 e′1 e′2

(P-Cons)

e ▷p e′ P ▷p P′ e1 ▷p e′1 e2 ▷p e′2
pm e as x in N ret P with z → e1 | suc n → e2 ▷p

pm e′ as x in N ret P′ with z → e′1 | suc n → e′2

(P-MatchN)

e1 ▷p e′1
pm z as x in N ret P with z → e1 | suc n → e2 ▷p e′1

(P-MatchZero)

e ▷p e′ e2 ▷p e′2
pm suc e as x in N ret P with z → e1 | suc n → e2 ▷p e′2[e

′/n]
(P-MatchSuc)

e ▷p e′ P ▷p P′ e1 ▷p e′1 e2 ▷p e′2
pm e as x in L a ret P with nil → e1 | :: m h t → e2 ▷p

pm e′ as x in L a ret P′ with nil → e′1 | :: m h t → e′2

(P-MatchL)

e1 ▷p e′1
pm nil as x in L a ret P with nil → e1 | :: m h t → e2 ▷p e′1

(P-MatchNil)

e0 ▷p e′0 e1 ▷p e′1 e2 ▷p e′2 e3 ▷p e′3
pm :: e0 e1 e2 as x in L a ret P with nil → e1 | :: m h t → e2 ▷p

e′3[e
′
0/m, e′1/h, e

′
2/t]

(P-MatchCons)

Figure 6.6: Call-by-name Parallel Reduction (Inductive Data)

212

A ▷p A′ α ▷p α′ e ▷p e′

Sk : A→α. e ▷p Sk : A′ →α′. e′
(P-Shift)

e ▷p e′

k ↪→ e ▷p k ↪→ e′
(P-Throw)

e ▷p e′

⟨e⟩ ▷p ⟨e′⟩
(P-Reset)

A ▷p A′ F ▷p F′ e ▷p e′

⟨F[Sk : A→α. e]⟩ ▷p ⟨e′[k ⇒ F′]⟩
(P-ResetS)

v ▷p v′

⟨v⟩ ▷p v′
(P-ResetV)

F ▷p F
(P-FRefl)

F ▷p F′ e1 ▷p e′1
F e1 ▷p F′ e′1

(P-FApp)

F ▷p F′ P ▷p P′ e1 ▷p e′1 e2 ▷p e′2
pm F as x in N ret P with z → e1 | suc n → e2 ▷p

pm F′ as x in N ret P′ with z → e′1 | suc n → e′2

(P-FMatchN)

F ▷p F′ P ▷p P′ e1 ▷p e′1 e2 ▷p e′2
pm F as x in N ret P with nil → e1 | :: m h t → e2 ▷p

pm F′ as x in N ret P′ with nil → e′1 | :: m h t → e′2

(P-FMatchL)

Figure 6.7: Call-by-name Parallel Reduction (Control Operators and Evaluation
Contexts)

213

t ▷⋆p t
(PS-Refl)

t0 ▷p t1 t1 ▷⋆p t2

t0 ▷⋆p t2
(PS-Trans)

F ▷⋆p F
(PS-FRefl)

F0 ▷p F1 F1 ▷⋆p F2

F0 ▷⋆p F2
(PS-FTrans)

Figure 6.8: Call-by-name Parallel Reduction (Reflexivity and Transitivity)

t0 ▷⋆p t t1 ▷⋆p t

t1 ≡ t2
(≡)

Figure 6.9: Call-by-name Equivalence

6.3 Typing

Now we have reached the most delicate part of the language: typing rules. The call-
by-name type system shares one key principle with the call-by-value one, namely
the three restrictions on type dependency. However, since certain subterms are not
eagerly evaluated under the call-by-name strategy, not every typing rule is trivially
derived from its call-by-value counterpart. This section is devoted to demistify the
interaction between dependent types and call-by-name control effects, focusing on
the asymmetry in the rules for dependent constructions, as well as the meaning of
continuation application.

Environments, Kinds, and Types Let us begin with rules for typing environ-
ments (Figure 6.10). As we saw in Section 6.1, extension by an ordinary variable
x comes with effect information ρ, therefore we check well-formedness of ρ in rule
(G-Ext). The other extension rule, (G-ExtCont), adds a continuation variable
k. Notice that the associated type is required to be of the form A→α. This type
communicates the following facts:

1. k receives a pure argument

2. k has a pure body

3. k is a non-dependent function

214

Well-formed Environments ⊢ Γ

⊢ •
(G-Empty)

⊢ Γ Γ ⊢ A : ∗ Γ ⊢ ρ

⊢ Γ, x : A ρ
(G-Ext)

⊢ Γ Γ ⊢ A→α : ∗
⊢ Γ, k :k A→α

(G-ExtCont)

Well-formed Types Γ ⊢ A : ∗

⊢ Γ

Γ ⊢ Unit : ∗
(T-Unit)

⊢ Γ

Γ ⊢ N : ∗
(T-Nat)

Γ ⊢ e : N
Γ ⊢ L e : ∗

(T-List)

Γ ⊢ A : ∗ Γ ⊢ ρ

Γ, x : A ρ ⊢ B : ∗ Γ, x : A ρ ⊢ σ

Γ ⊢ Πx : A ρ.B σ : ∗
(T-Pi)

Figure 6.10: Call-by-name Environments, Kinds, and Types

215
The latter two should sound familiar to the reader: continuations have a reset

operator surrounding their body, and they must have a non-dependent function
type to guarantee well-formedness of the initial answer type. The first item, on
the other hand, might come as a surprise: since our language is call-by-name,
and since continuations are functions, shouldn’t k accept an impure argument as
well? It turns out that this argument is not quite right in Dellinan. Evaluation
contexts are functions, but they are not call-by-name functions. Recall that, in
the definition of evaluation contexts E, each occurrence of E tells us which subterm
we must reduce to a value during the evaluation of the whole term. That is, the
hole of contexts is supposed to be plugged with a pure value, not by a potentially
effectful computation. What this suggests is that evaluation contexts are call-
by-value functions. The value-accepting nature of continuations is explicit in the
existing type systems for call-by-name shift and reset as well: they all assign a
pure function type to continuations, even if they do not employ a purity distinction
in other typing rules.

The rest of the rules in Figure 6.10 are for kinds and types. There is no major
change from Dellina- rules from Section 3.3; the only difference is that (T-Pi)

additionaly checks well-formedness of the argument effect annotation ρ.

λ-terms Figure 6.11 shows typing rules for λ-terms. Variables may be concluded
as being impure, depending on whether the effect annotation ρ is empty or not.
Abstractions and recursive functions are pure values, but they may receive effectful
computations. Notice that, in the premise of (E-Rec), the variable f carries no
effect annotation, since it represents a function.

The most interesting rule in this figure is (E-DApp). Unlike Dellina-, the
call-by-name language has one single rule for application, which accounts for the
dependent case. By taking a closer look at the rule, we find that it does not impose
a purity restriction on the argument e1. The relaxation comes from the fact that
a call-by-name language allows replacing a variable by an impure computation. In
other words, the substitution B[e1/x] makes sense even if e1 is not a pure term.
This is not the case in a call-by-value language; indeed, we equipped Dellina- with
two application rules exactly to avoid substitution of impure computations.

We must however make sure that the post-substitution type is well-formed.

216
Well-typed Terms Γ ⊢ e : A ρ

⊢ Γ x : A ρ ∈ Γ

Γ ⊢ x : A ρ
(E-Var)

Γ, x : A ρ ⊢ e : B σ

Γ ⊢ λ x : A ρ. e : Πx : A ρ.B σ
(E-Abs)

Γ, f : Πx : A ρ.B σ, x : A ρ ⊢ e : B σ

Γ ⊢ Πx : A ρ.B σ : ∗ guard(f, x, e, { })
Γ ⊢ rec fΠx :A ρ.B σ x. e : Πx : A ρ.B σ

(E-Rec)

Γ ⊢ e0 : Πx : A σ.B τ ρ Γ ⊢ e1 : A σ

Γ ⊢ B[e1/x] : ∗ ν = comp(ρ, τ [e1/x]) Γ ⊢ ν

Γ ⊢ e0 e1 : B[e1/x] ν
(E-DApp)

Figure 6.11: Call-by-name Typing Rules (λ-terms)

That is, the term it depends on may contain e1 but is a pure term as a whole. The
latter condition, which we check via the well-formedness premise Γ ⊢ B[e1/x] : ∗,
is satisfied when x is surrounded by a reset, or it appears as a subterm that needs
not be evaluated, or it does not show up at all. That is, when B is one of the
following:

L ⟨x⟩ L (suc x) L ((λ a. λ b. a) z (λ c. x)) L ((λ a. λ b. a) z x) L z

the rule admits an impure e1, since substitution of e1 for x results in a pure index
(note that constructor application to impure terms is pure under the call-by-name
semantics). However, when B is one of the following:

L x L ((λ a. x) z) L (pm x as y in N ret P with z → z | suc n → suc z)

the rule only admits a pure e1, since otherwise the list index would be impure.
If we incorporated the rules (E-DApp) and (E-NDApp) from Dellina- (with

217

⊢ Γ

Γ ⊢ () : Unit
(E-Unit)

⊢ Γ

Γ ⊢ z : N
(E-Zero)

Γ ⊢ e : N
Γ ⊢ suc e : N

(E-Suc)

⊢ Γ

Γ ⊢ nil : L z
(E-Nil)

Γ ⊢ e0 : N Γ ⊢ e1 : N Γ ⊢ e2 : L e0
Γ ⊢ :: e0 e1 e2 : L (suc e0)

(E-Cons)

Figure 6.12: Call-by-name Typing Rules (Inductive Data)

some modifications to effect annotations), and only allowed pure arguments in
the dependent case, we would not need the well-formedness presmise of the result
type, because the call-by-name variant of the substitution lemma can be stated for
computations, not just values. However, this would rule out too many dependent
applications that are actually safe, i.e., those involving substitution of an impure
argument but resulting in a well-formed type. Since we would like to make our
type system as generous as possible, we do not restrict argument effects but keep
the well-formedness premise instead.

Putting dependency aside, there is another change in the application rule. Ob-
serve that the effect composition operator takes in the annotation of the function
(ρ) as well as that of the function’s body (τ), but not the annotation of the argu-
ment (σ). This reflects the call-by-name evaluation of application: arguments are
evaluated after β-reduction, and hence their effect is included in the effect τ of the
function’s body. As a consequence, an application is classified as pure when the
function and its body are pure but the argument is impure.

Inductive Data The rules for inductive data (Figure 6.12) are also worth spend-
ing some time on. As stated earlier, a Dellinan inductive datum is always a value,
even if the arguments to the constructor are non-values. This means any con-
structor application has an empty effect annotation in its typing derivation. Then,
how can we make the evaluation of constructor arguments happen? The answer is
by destructing data via pattern matching and then using the pattern variables in

218
the branches. In a call-by-name language, pattern variables may represent impure
computations, and correspondingly, constructor types may carry effect annotations
of their arguments. This broadens the scope of types we can assign to constructors,
but it also makes construction of inductive data less flexible. In particular, if a
constructor is declared as receiving a pure argument, it can never be applied to an
impure argument, and vise versa.

In Dellinan, we define natural numbers and lists as entirely pure datatypes, that
is, the constructors suc and :: only accept pure arguments. With this definition,
we cannot write things like suc (Sk : N→N. z). If we wish to make this datum
well-typed, we must modify (E-Suc) in the following way:

Γ ⊢ e : N[N,N]
Γ ⊢ suc e : N

(E-Suc)

But this time, we are unable to write suc z, which is far more natural as an
inhabitant of type N.

It is instructive to note that we may define lists as data consisting of impure
elements, if we replace (E-Cons) by a different rule. However, in that case, the
control effect of all elements must be uniform: i.e., we cannot build a list like the
following one:

[Sk : N→N. z; Sk : N→B. ()]

Pattern Matching We saw that, in Dellinan, we have one elimination rule
of function types, which derives a dependent application. Then, by analogy, the
reader might expect that we have one elimination rule for each datatype, which de-
rives a dependent pattern matching. However, we found that call-by-name pattern
matching must be equipped with two separate rules, each accounting for dependent
and non-dependent cases.

The asymmetry between application and pattern matching originates from our
earlier observation that call-by-name inductive data are always pure. Suppose all
we have for pattern matching on natural numbers was the following dependent
rule:

219

Γ ⊢ e : N Γ, x : N ⊢ P : ∗
Γ ⊢ e1 : P[z/x] ρ[z/x] Γ, n : N ⊢ e2 : P[suc n/x] ρ[suc n/x]

Γ ⊢ pm e as x in N ret P with z → e1 | suc n → e2 : P[e/x] ρ[e/x]
(E-DMatchN)

Γ ⊢ e : N ρ Γ ⊢ P : ∗
Γ ⊢ e1 : P σ Γ, n : N ⊢ e2 : P σ τ = comp(ρ, σ)

Γ ⊢ pm e as _ in N ret P with z → e1 | suc n → e2 : P τ
(E-NDMatchN)

Γ ⊢ e : L n Γ, a : N, x : L a ⊢ P : ∗
Γ ⊢ e1 : P[z/a, nil/x] ρ[z/a, nil/x]

Γ, m : N, h : N, t : L m ⊢ e2 : P[suc m/a, :: m h t/x] ρ[suc m/a, :: m h t/x]

Γ ⊢ pm e as x in L a ret P with nil → e1 | :: m h t → e2 : P[n/a, e/x] ρ[n/a, e/x]
(E-DMatchL)

Γ ⊢ e : (L n) ρ Γ ⊢ P : ∗
Γ ⊢ e1 : P σ Γ, m : N, h : N, t : L m ⊢ e2 : P σ τ = comp(ρ, σ)

Γ ⊢ pm e as _ in L _ ret P with nil → e1 | :: m h t → e2 : P τ
(E-NDMatchL)

Figure 6.13: Call-by-name Typing Rules (Pattern Matching)

220

Γ ⊢ e : N ρ Γ, x : N ρ ⊢ P : ∗

Γ ⊢ e1 : P[z/x] τ [z/x] Γ, n : N ⊢ e2 : P[suc n/x] τ [suc n/x]

Γ ⊢ P[e/x] : ∗ τ = comp(ρ,P[e/x]) Γ ⊢ τ

Γ ⊢ pm e as x in N ret P with z → e1 | suc n → e2 : P[e/x] τ
(E-DMatchN)

We see that the scrutinee e and its placeholder x has the same effect annotation.
This perfectly makes sense, because we will eventually replace any reference to x

from P with e in the conclusion. We then find that the variable x is replaced by the
patterns z and suc m in the two branches. These patterns have a fixed purity, since
call-by-name inductive data are uniformly pure. Now we see a problem: when e is
an impure term, substitution of patterns is not type-safe. The mismatch seems to
suggest that dependent pattern matching is inherently defined on pure data.

With this in mind, let us look at the actual rules for pattern matching (Figure
6.13). In the dependent rule (E-DMatchN), we have a pure scrutinee e, and
a pure placeholder x. Compared to the call-by-value variant of the rule, it lacks
the well-formed premise of the result type P[e/x], but it is not needed because
call-by-name languages admit substitution of computations, and we know e is a
pure term. In the non-dependent rule (E-NDMatchN), the scrutinee is impure,
therefore we require the predictate P to be closed under environment Γ. The rules
for pattern matching on lists can be understood in a similar way.

Control Operators and Conversion Lastly, we look at the rules for control
operators and conversion (Figure 6.14). The rules for shift and reset remain
unchanged from the call-by-value language, but we now have additional rules for
continuation application. We have two rules for this language construct, differing
in the purity of the argument e. When e is pure, we type k ↪→ e just like an ordinary,
non-dependent application, hence the result type is α. Note that the result type
does not depend on e because continuations are non-dependent functions. When e

is impure, we see that its initial answer type coincides with the return type α of k,
and that the result type of this application is the final answer type β of e. These
answer types tell us what a throwing construct k ↪→ e does for us: it evaluates the

221

Γ, k : A→α ⊢ e : β or Γ, k : A→α ⊢ e : B[B, β]

Γ ⊢ β : ∗
Γ ⊢ Sk : A→α. e : A[α, β]

(E-Shift)

k :k A→α ∈ Γ Γ ⊢ e : A

Γ ⊢ k ↪→ e : α
(E-ThrowP)

k :k A→α ∈ Γ Γ ⊢ e : A[α, β]

Γ ⊢ k ↪→ e : β
(E-ThrowI)

Γ ⊢ e : A or Γ ⊢ e : B[B,A]

Γ ⊢ ⟨e⟩ : A
(E-Reset)

Γ ⊢ e : A ρ Γ ⊢ B : ∗ Γ ⊢ σ

A ≡ B ρ ≡ σ

Γ ⊢ e : B σ
(E-Conv)

Figure 6.14: Call-by-name Typing Rules (Control Constructs and Conversion)

222
argument e in the context k. In terms of CPS, the computation can be described as
running e÷ (of type (A+ → α+) → β+) with a continuation k (of type A+→α+).
This shows the semantic difference between function and continuation application:
the former suspends evaluation of arguments, whereas the latter forces it.

Pure Evaluation Contexts In Dellinan, we have an extra set of typing rules
for pure evaluation contexts. The need for these rules originates from the way we
eliminate a shift-redex. Unlike the call-by-value rule, which replaces the contin-
uation variable k with a function λ x : A. ⟨F[x]⟩, the call-by-name rule replaces k

with a pure evaluation context F, which is not a Dellinan term. Now, recall that
the preservation property requires a substitution lemma. Since we may replace
variables only with objects of the correct type, we need rules for reasoning about
the type of pure contexts.

The context typing rules, presented in Figure 6.15, are built on the rules of
Biernacka and Biernacki [27], with some refinements for accommodating type de-
pendency and the fine-grained purity distinction. The first rule is simple: an empty
context has a pure, non-dependent function type, where the input and output types
are the same. The second rule builds a context for evaluating the function part of
an application, where the function has a pure body. It would be helpful to recall
the following facts:

• Extending F to F e means evaluating an extra application before going on
with F.

• The initial answer type of a term is determined by the final answer type of
later computation.

Back to (F-AppP), we see that the return type of the extended context F e remains
unchanged. The reason is that the application has no control effects, that is,
evaluating this extra application does not affect the type of the context required
by later computation. On the other hand, the hole type has changed from B[e/x]

to Πx : A ρ.B, because the context now accepts a function.
The third rule is yet another typing rule for the application context, but this

time the function has an impure body. Observe that the type α in the conclusion’s
hole type comes from the return type of F, meaning that the hole of F must be

223

Well-typed Pure Contexts Γ ⊢ F : A→α

Γ ⊢ A : ∗
Γ ⊢ [] : A→A

(F-Hole)

Γ ⊢ e : A ρ Γ ⊢ F : B[e/x]→α

Γ ⊢ F e : (Πx : A ρ.B)→α
(F-AppP)

Γ ⊢ e : A ρ Γ ⊢ F : B[e/x]→α[e/x] Γ, x : A ρ ⊢ β : ∗
Γ ⊢ F e : (Πx : A ρ.B[α, β])→ β[e/x]

(F-AppI)

Γ ⊢ F : P→α Γ ⊢ e1 : P Γ, n : N ⊢ e2 : P

Γ ⊢ pm F as _ in N ret P with z → e1 | suc n → e2 : N→α
(F-MatchNP)

Γ ⊢ F : P→α Γ ⊢ e1 : P[α, β] Γ, n : N ⊢ e2 : P[α, β]

Γ ⊢ pm F as _ in N ret P with z → e1 | suc n → e2 : N→ β
(F-MatchNI)

Γ ⊢ F : P→α Γ ⊢ n : N
Γ ⊢ e1 : P Γ, m : N, h : N, t : L m ⊢ e2 : P

Γ ⊢ pm F as _ in L _ ret P with nil → e1 | :: m h t → e2 : L n→α
(F-MatchLP)

Γ ⊢ F : P→α Γ ⊢ n : N
Γ ⊢ e1 : P[α, β] Γ, m : N, h : N, t : L m ⊢ e2 : P[α, β]

Γ ⊢ pm F as _ in L _ ret P with nil → e1 | :: m h t → e2 : L n→ β
(F-MatchLI)

Γ ⊢ F : A→α Γ ⊢ A′ : ∗ Γ ⊢ α′ : ∗ A ≡ A′ α ≡ α′

Γ ⊢ F : A′ →α′ (F-Conv)

Figure 6.15: Call-by-name Typed Pure Contexts

224
filled in with a function whose body requires an α-returning context. Notice also
that the return type of the new context is updated to β[e/x], representing what
we obtain after the application. This means, if we want to evaluate a term before
the impure application to e, it must be something that requires a β[e/x]-returning
context.

Analogously to application, pattern matching contexts are given two rules,
which differ in the purity of the branches. By taking a closer look at the conclu-
sions, we find that all rules have a dummy symbol _ representing the scrutinee
and the index. This means, the rules derive a context that forms a non-dependent
pattern matching.

It would be interesting to see what happens if we try to define a dependent
variant of (F-MatchNP). The rule builds a context that performs an additional
pattern matching on the given number before computing F. Since the return type
α depends on the number to be analyzed, the extended context will have type
Πx : N. α. However, in Dellinan, this is not a valid type for contexts, because we
do not allow dependent continuations. Indeed, the dependent rule would require
F to be well-formed under an extended environment Γ, x : N, as shown below:

Γ, x : N ⊢ F : P→α Γ ⊢ e1 : P[z/x] Γ, n : N ⊢ e2 : P[suc n/x]

Γ ⊢ pm F as x in N ret P with z → e1 | suc n → e2 : Πx : N. α
(F-DMatchNP)

The last rule is the conversion rule for contexts. As in the conversion rule
for terms, we require the new input and output types to be well-formed, and be
equivalent to the old ones.

6.4 CPS Translation

In this section, we study how to CPS translate Dellinan. The translation is es-
sentially a selective version of Kameyama and Tanaka’s call-by-name translation
[102]. As we will see shortly, the call-by-name translation yields more suspended
computations at the level of terms, as well as arrows at the level of types, both of
which come from the lazy semantics of the source language. Note that the trans-
lation targets the same language as the call-by-value translation; the reader may
revisit Section 4.4 for specifications.

225

⊢ •
(G-Empty) +⇝ •

⊢ Γ Γ ⊢ A : ∗ Γ ⊢ ρ

⊢ Γ, x : A ρ
(G-Ext)

+⇝ Γ+, x : A+ if ρ = ϵ

+⇝ Γ+, x : (A+ → α+) → β+ if ρ = [α, β]

⊢ Γ Γ ⊢ A→α : ∗
⊢ Γ, k :k A→α

(G-ExtCont) +⇝ Γ+, k : A+ →α+

Figure 6.16: CPS Translation of Typing Environments

Let us first look at the translation of environments (Figure 6.16). The rule
(G-Ext), which extends an environment with an ordinary variable x, has two
distinct CPS images depending on the presence of the effect annotation ρ. When
ρ is empty, the translation behaves the same as the call-by-value variant, that
is, it maps x to a target variable x of type A+. When ρ is a pair [α, β], the
translation gives x a type of the form (A+ → α+) → β+. This means, when x

represents an effectful computation—which requires a context to be evaluated—in
the source, x represents a suspended computation—which requires a continuation
to be evaluated—in the target. In contrast, the rule (G-ExtCont), which extends
an environment with a continuation variable k, has one unique CPS image k of
type A+ →α+. The reason we do not defer evaluation of k is that any source
continuation k is a pure function.

Having seen the translation of (G-Ext), it would be fairly easy to figure out
what is happening in the translation of kinds and types (Figure 6.17). The only
change is in the translation of function types: it has four instead of two different
images, since both the domain and co-domain may have an effect annotation.

The translation of variables and functions is also straightforward; the only thing
worth noting is that variables have two CPS images: a direct-style variable for pure
x, and a suspended computation for impure x.

226

Γ ⊢ A : ∗ Γ ⊢ ρ

Γ, x : A ⊢ B : ∗ Γ, x : A ⊢ σ

Γ ⊢ Πx : A ρ.B σ : ∗
(T-Pi)

+⇝ Πx : A+.B+

if ρ = σ = ϵ

+⇝ Πx : A+. (B+ → α+) → β+

if ρ = ϵ, σ = [α, β]

+⇝ Πx : (A+ → α+) → β+.B+

if ρ = [α, β], σ = ϵ

+⇝ Πx : (A+ → α+) → β+. (B+ → γ+) → δ+

if ρ = [α, β], σ = [γ, δ]

⊢ Γ x : A ρ ∈ Γ

Γ ⊢ x : A ρ
(E-Var)

+⇝ x if ρ = ϵ

÷⇝ λk : A+ →α+.x k if ρ = [α, β]

Γ, x : A ρ ⊢ e : B σ

Γ ⊢ λ x : A ρ. e : Πx : A ρ.B σ
(E-Abs)

+⇝ λx : A+. e+ if ρ = σ = ϵ

+⇝ λx : A+. e÷ if ρ = ϵ, σ = [α, β]

+⇝ λx : (A+ → α+) → β+. e+ if ρ = [α, β], σ = ϵ

+⇝ λx : (A+ → α+) → β+. e÷ if ρ = [α, β], σ = [γ, δ]

Figure 6.17: CPS Translation of Types, Variables, and Abstractions

227

Γ ⊢ e0 : Πx : A σ.B τ ρ Γ ⊢ e1 : A σ

Γ ⊢ B[e1/x] : ∗ ν = comp(ρ, τ [e1/x]) Γ ⊢ ν

Γ ⊢ e0 e1 : B[e1/x] ν
(E-DApp)

+⇝ e0
+ e1

+

if ρ = σ = τ = ϵ

÷⇝ λk : (B[e1/x])
+ → (α[e1/x])

+. e0
+ e1

+ k
if ρ = σ = ϵ, τ = [α, β]

+⇝ e0
+ e1

÷

if ρ = τ = ϵ, σ = [α, β]

÷⇝ λk : (B[e1/x])
+ → (α[e1/x])

+. e0
+ e1

÷ k
if ρ = ϵ, σ = [β[e1/x], γ], τ = [α, β]

÷⇝ λk : (B[e1/x])
+ →α+. e0

÷ (λv0 : Πx : A+.B+.k (v0 e1
+))

if ρ = [α, β], σ = τ = ϵ

÷⇝ λk : (B[e1/x])
+ → (α[e1/x])

+. e0
÷ (λv0 : A+ → (B+ → α+) → β+.v0 e1

+ k)
if ρ = [β[e1/x], γ], σ = ϵ, τ = [α, β]

÷⇝ λk : (B[e1/x])
+ →α+. e0

÷ (λv0 : A+ →B+.k (v0 e1
÷))

if ρ = [β, γ], σ = [α, β], τ = ϵ

÷⇝ λk : (B[e1/x])
+ → (α[e1/x])

+. e0
÷ (λv0 : A+ → (B+ → α+) → β+.v0 e1

÷ k)
if ρ = [γ, δ], σ = [β[e1/x], γ], τ = [α, β]

Figure 6.18: CPS Translation of Application

228

⊢ Γ

Γ ⊢ () : Unit
(E-Unit) +⇝ ()

⊢ Γ

Γ ⊢ z : N
(E-Zero) +⇝ z

Γ ⊢ e : N
Γ ⊢ suc e : N

(E-Suc) +⇝ suc e+

⊢ Γ

Γ ⊢ nil : L z
(E-Nil) +⇝ nil

Γ ⊢ e0 : N Γ ⊢ e1 : N Γ ⊢ e2 : L e0
Γ ⊢ :: e0 e1 e2 : L (suc e0)

(E-Cons) +⇝ :: e0
+ e1

+ e2
+

k :k A→α ∈ Γ Γ ⊢ e : A

Γ ⊢ k ↪→ e : α
(E-ThrowP) ÷⇝ λk : A+ →α+.k e+

k :k A→α ∈ Γ Γ ⊢ e : A[α, β]

Γ ⊢ k ↪→ e : β
(E-ThrowI) ÷⇝ λk : A+→α+. e÷ k

Figure 6.19: CPS Translation of Inductive Data and Throwing Constructs

As in Dellina-, a function application has eight CPS images as before (Figure
6.18). What is different from the call-by-value translation is that, in the cases
where the argument e1 is impure, we have an application of the form e0 e1

÷,
instead of the continuation-passing pattern e1

÷ (λv1. e), reflecting the call-by-
name semantics of the source language. The application e0 e1

÷ is guaranteed to
be type-safe, because the function e0 in these cases must have a type of the form
Πx : (A+ → α+) → β+.B. Note that we now have two cases where the translation
yields a direct-style term: when all subterms are pure, and when only e1 is impure.

Inductive data (Figure 6.19) are uniformly applied the value translation. This
is because we have fixed the purity of constructor arguments. Pattern matching
is translated exactly the same as in Dellina-, therefore we omit the rules for this
construct.

229

Γ ⊢ A : ∗
Γ ⊢ [] : A→A

(F-Hole) +⇝ λv : A+.v

Γ ⊢ e : A ρ Γ ⊢ F : B[e/x]→α

Γ ⊢ F e : (Πx : A ρ.B)→α
(F-AppP)

+⇝ λv0 : Πx : A+.B+. F+ (v0 e+)
if ρ = ϵ

+⇝ λv0 : Πx : (A+ → γ+) → δ+.B+. F+ (v0 e÷)
if ρ = [γ, δ]

Γ ⊢ e : A ρ Γ ⊢ F : B[e/x]→α[e/x]

Γ, x : A ρ ⊢ β : ∗
Γ ⊢ F e : (Πx : A ρ.B[α, β])→ β[e/x]

(F-AppI)

+⇝ λv0 : Πx : A+. (B+ → α+) → β+.v0 e+ F+

if ρ = ϵ

+⇝ λv0 : Πx : (A+ → γ+) → δ+. (B+ → α+) → β+.v0 e÷ F+

if ρ = [γ, δ]

Figure 6.20: CPS Translation of Pure Evaluation Contexts (Hole and Application)

The translation of throwing constructs k ↪→ e clearly shows what they do for
us in the source language. When e is pure, k ↪→ e is equivalent to running the rest
of the computation with the value of e. If e is impure, k ↪→ e means running the
computation e in the surrounding context. Other control constructs are translated
the same way as before.

Lastly, we have translation of evaluation contexts (Figures 6.20 – 6.21). An
empty context is trivially mapped to an identity function. An application context
F e has four CPS images, each representing a possible continuation for e0

÷ in the
CPS images of the application e0 e (where e0 is impure). Similarly, the translation
of a pattern matching context is exactly what follows e÷ in the translation of a

230

Γ ⊢ F : P→α Γ ⊢ e1 : P Γ, n : N ⊢ e2 : P

Γ ⊢ pm F as _ in N ret P with z → e1 | suc n → e2 : N→α
(F-MatchNP)

+⇝ λv : N.pm v as _ in N ret P+ with z → F+ e1
+ | suc n → F+ e2

+

Γ ⊢ F : P→α Γ ⊢ e1 : P[α, β] Γ, n : N ⊢ e2 : P[α, β]

Γ ⊢ pm F as _ in N ret P with z → e1 | suc n → e2 : N→ β
(F-MatchNI)

+⇝ λv : N.pm v as _ in N ret P+ with z → e1
÷ F+ | suc n → e2

÷ F+

Γ ⊢ F : P→α Γ ⊢ n : N
Γ ⊢ e1 : P Γ, m : N, h : N, t : L m ⊢ e2 : P

Γ ⊢ pm F as _ in L _ ret P with nil → e1 | :: m h t → e2 : L n→α
(F-MatchLP)

+⇝ λv : L n+.pm v as _ in L _ ret P+ with nil → F+ e1
+ | :: m h t → F+ e2

+

Γ ⊢ F : P→α Γ ⊢ n : N
Γ ⊢ e1 : P[α, β]Γ, m : N, h : N, t : L m ⊢ e2 : P[α, β]

Γ ⊢ pm F as _ in L _ ret P with nil → e1 | :: m h t → e2 : L n→ β
(F-MatchLI)

+⇝ λv : L n+.pm v as _ in L _ ret P+ with nil → e1
÷ F+ | :: m h t → e2

÷ F+

Figure 6.21: CPS Translation of Pure Evaluation Contexts (Pattern Matching)

231
pattern matching construct with an impure scrutinee.

232

Chapter 7

Logical Understanding of Dellina

In the previous chapters, we have described Dellina mainly from a computational
perspective. But programming is not all we can do with dependently typed lan-
guages; the real power of such languages comes from their ability to prove theorems.
Then, would our language, Dellina, serve as a proof assistant? Also, what does
it mean to prove theorems with delimited control, and does its presence affect
provability?

We claim that we can build proofs by writing programs in Dellina, but not all
Dellina programs are proofs. In particular, we argue that impure terms should
not be understood as proofs, because their meaning depends on the surrounding
context. The distinction between proofs and non-proofs also gives rise to the
conjecture that shift and reset cannot prove things beyond intuitionistic logic.

7.1 Logical vs. Non-logical Objects

Recall from Section 1.1 that a typing judgment

Γ ⊢ e : A

can be understood as: e is a proof of proposition A under the assumptions in
environment Γ.

In Dellina, we have two kinds of typing judgments, namely

Γ ⊢ e : A and Γ ⊢ e : A[α, β]

233
Among these judgments, the first one, which we use for pure terms, consists of
the same components as the standard typing judgment. On the other hand, the
second one, which we use for impure terms, carries two additional types α and β,
describing the control effects involved in the evaluation of e.

Computationally, the pure judgment tells us that, e is a possibly non-value term
of type A, and if it terminates, it evaluates to a value of the same type A (since
Dellina enjoys the preservation property). Note that evaluation of e can be done
in an arbitrary context, because a pure term can never access its surroundings.

On the other hand, the impure judgment says, e is a computation that has
type A, and when it is surrounded by a delimited context returning α, it gives
us back a value of type β, which serves as the result of the whole reset clause
surrounding e. This time, evaluation of e requires a particular kind of delimited
and meta contexts, and e itself does not have a value.

So the question is: what is the logical interpretation of impure terms? Through
the lens of the Curry-Howard correspondence, we could view the impure judgment
as saying: when we put e into an A-accepting context that proves α, we obtain a
proof of β. The mention to the context is something unique to impure terms, and
it is not clear how we may encode this in a standard logic. The same problem arises
when interpreting types: we know that a pure function type Πx : A.B corresponds
to universal quantifiction ∀x ∈ A.B, but it is not obvious how we should interpret
an impure function type Πx : A.B[α, β].

The above discussion motivates us to treat impure expressions differently from
pure ones. That is, we divide types into two classes: propositions and non-
propositions, and terms also into two classes: proofs and non-proofs. The clas-
sification is defined as follows, using a notion of completely pure expressions :

Definition 7.1.1 (Completely Pure Expressions). An expression t is completely
pure when it does not contain occurrences of Πx : A.B[α, β].

Definition 7.1.2 (Propositions and Proofs).

• A type A is a proposition when (i) Γ ⊢ A : Prop for some Γ; and (ii) A is
completely pure.

• A term e is a proof when (i) Γ ⊢ e : A; (ii) e is completely pure; and (iii) A

is a proposition.

234
For the reader’s enjoyment, below are some examples of proofs/non-proofs and

propositions/non-propositions (suppose a and A are completely pure, and a : A :

Prop):

Propositions Non-propositions
A→A A→A[A,A]

0 = 1 0 = Sk : N→N. 1

Proofs Non-proofs
λ x : A. x λ x : A.Sk : A→A. a

⟨Sk : A→A. a⟩ λ f : A→A[A,A]. ⟨f a⟩

7.2 Intuitionistic vs. Classical Logic

Having established the notion of propositions/non-propositions and proofs/non-
proofs, we next discuss what we can and cannot prove in Dellina. In particular,
we would like to answer the question “Is Dellina intuitionistic or classical?”

7.2.1 Intuitionistic and Classical Logic

Let us first make it clear how intuitionistic and classical logics differ from each
other. In intuitionistic logic, provability is understood as existence of proofs. That
is, to affirm a proposition P , we must actually build a proof of P , and to deny
a proposition P , we must build a proof of ¬P , by deriving a contradiction from
the assumption that P is true. For certain propositions, like the famous halting
problem, we cannot build a proof of either P or ¬P . In such a case, we say P is
neither true nor false.

Intuitionistic logic is also called constructive logic, because every proved propo-
sition has an evidence directly stating that the proposition is indeed true. The
constructiveness is nicely captured by the following properties:

Proposition 7.2.1 (Disjunction and Existence Properties).

1. If A ∨B, then either A or B holds.

2. If ∃x.A(x), then there is some t such that A(t) holds.

235
The first clause tells us that, if we know that A∨B is the case, then we must know
which of A and B holds. Similarly, the second clause states that, if we know there
is some x satisfying A(x), then there must be some t witnessing this fact.

In classical logic, on the other hand, provability is understood as impossibility
of refutation. That is, we can prove P is true by deriving a contradiction from the
assumption ¬P . The proof-by-contradiction approach is possible because classical
logic admits double-negation elimination (DNE), namely the proposition ¬¬P →
P . Using DNE, we can also derive the proposition A∨¬A, which is known as the
law of excluded middle (LEM). This means every proposition is either true or false
in classical logic. For this reason, classical logic is described as the “god’s view” of
the world.

Proofs that use DNE are obviously non-constructive, since all they tell us is
“it is not the case that P does not hold.” Indeed, DNE allows us to prove LEM
without showing which of the two disjuncts is actually true. In this sense, classical
logic is weaker than intuitionistic logic, even if we have more axioms and are able
to prove more theorems.

Intuitionistic and classical logics are connected by double negation translations
[106], which convert a given classical proof of P into an intuitionistic proof of
¬¬P . The post-translation proposition is classically equivalent to the original
one, because we have DNE, but it is intuitionistically weaker, because the positive
assersion has been turned into the denial of a denial.

7.2.2 Undelimited Control is Classical

The earliest study on the logical meaning of control operators dates back to 1990,
when Griffin [88] incorporated undelimited control into the Curry-Howard picture.
Griffin discovered that Felleisen’s C operator [72] can be given a type corresponding
to DNE. This means incorporating the C operator into a calculus turns the under-
lying logic into a classical one. For instance, we can prove LEM in the following
way:

Ck : ¬(A ∨ ¬A). k (inj2 (λ a : A. k (inj1 a)))

The term first asserts that A is not true, but when provided a term a witnessing A,

236
it discards the context and asserts instead that A is true1. This somewhat cheating
behavior relies on the backtracking ability of C.

Griffin also studied CPS translations that erase the C operator. He showed
that CPS translations that use a fixed answer type play the same role as double
negation translations, i.e., they convert classical programs into intuitionistic ones.
Later, Murthy [124] claimed that CPS translations are not just double-negation
translations, but they must be understood as Friedman’s A-translation [79]. This
refined view allows us to extract more information from classical proofs, such as
what value an effectful program aborts with.

7.2.3 Delimited Control is Intuitionistic

Compared to undelimited control, the logical interpretation of delimited control
is a rather subtle matter. The complication comes from the presence of answer
types: undelimited continuations do not return, hence any continuation is given a
negated type ¬A, whereas delimited continuations return and compose, therefore
their return type can be an arbitrary (and usually non-empty) type. This means
the correspondence between continuations and refutations—and equivalently, CPS
and double negation—is lost in calculi with delimited control.

We conjecture that shift and reset do not allow proving classical theorems.
The conjecture relies on our distinction between logical and non-logical objects.
First, it is easy to see that if a type A is inhabited by a term e in the pure λ-calculus,
then it must be the case that A is inhabited by e in the shift/reset-calculus as
well, since we can derive Γ ⊢ e : A using the pure variant of the typing rules.
What is challenging is the opposite argument: we must show that, if a proposition
A is inhabited by a proof e, where e may use shift and reset, then A is inhabited
by some term e′ which does not use shift and reset. In other words, we want
to show that any proposition in Dellina can be proved without using the control
operators.

How can we prove the above statement? Our idea is to use the selective CPS
translation. Formally, we are going to prove the following proposition:

Proposition 7.2.2. If A is a proposition, then A+ ≡ A.

1Wadler [167] has a nice, intuitive story illustrating what is happening in the above proof.

237
The intuition is as follows. Suppose we have e : A in Dellina, where e is a proof

and A is a proposition. Since only pure terms can ever be a proof, we know that e
must be pure. Therefore, we may apply the value translation to e, and thus erase
all the uses of the control operators. By the type preservation theorem (Theorem
4.6.1), we further know that e+ : A+. Now, if A+ represents the same proposition
as A, that means e+ serves as an intuitionistic proof of A.

Unfortunately, we have not yet been able to actually prove the theorem, but the
plan is to prove the theorem by induction on the derivation of A. The interesting
cases are when A is a syntactic construct that refers to a term, say A = A′ e

derived by (DApp). By the definition of propositions, A′ must be a proposition,
and e must be a completely pure term. The induction hypothesis on the former
gives us A′+ = A′. To take a step further, we need the fact that e+ ≡ e. This
means, we must simultaneously prove the following proposition:

Proposition 7.2.3. If e is a completely pure term, then e+ ≡ e.

The statement is again proved by induction on the derivation. The challenging
case is when e = ⟨e′⟩ derived by (Reset). If e′ is pure, the proof is easy, since
⟨e′⟩+ = e′+. If e′ is impure, on the other hand, it is not clear how we can proceed:
the proposition only accounts for pure terms, which means we cannot assume
anything about e′. As future work, we intend to seek for a way to make this case
go through, and show that our conjecture is indeed true.

Conjecture 7.2.1 (Logical Interpretation of Dellina). Dellina is an intuitionistic
calculus.

7.3 Related Work

Restricted Delimited Control Proves Non-intuitionistic Theorems Ilik
[96] studies an extension of predicate logic with a weaker variant of shift and
reset, which do not change answer types2. The restricted control effects make
Ilik’s calculus closer to an ordinary logical system. Specifically, he uses a typing

2Strictly speaking, he further restricts answer types to be Σo
1-formulae, i.e., types that have

no universal quantification. It is known that intuitionistic and classical provability coincide in
this fragment, and thus any classical proof in this fragment computes evidence [124].

238
judgment of the form Γ ⊢α e : A, where α is an optional annotation that stands
for the fixed answer type when present. The absence of answer-type modification
also unnecessiates impure function types, which have no logical counterpart. Fur-
thermore, in Ilik’s calculus, the typing rule of shift looks like double negation
elimination, as shown below:

Γ, k : A → α ⊢α e : α

Γ ⊢α Sk. e : A
(Shift)

Using this typing rule, Ilik shows that the following term inhabits Double-
Negation Shift (DNS), which is not provable in intuitionistic logic:

λ a. λ b. ⟨b (λx.Sk. a x k)⟩ : (∀x.¬¬A(x)) → ¬¬∀x.A(x)

The proof uses a form of classical reasoning: we first prove a x k : ⊥ under the
assumption k : ¬A(x), and then derive A(x) using (Shift). However, the calculus
remains intuitionistic, as it enjoys the disjunction and existence properties:

Proposition 7.3.1.

1. If • ⊢ e : A ∨B, then either • ⊢ a : A for some a, or • ⊢ b : B for some b.

2. If • ⊢ e : Σx : A.B, then • ⊢ p : B(t) for some p and t.

Notice that the subject e in the two clauses is a pure term, as the effect annotation
is empty. This means Ilik restricts proof terms to pure terms, although he does
not explicitly commit himself to this view.

Given the above proof term, we would naturally wonder if we can prove DNS
in Dellina. The answer is no, because Ilik’s proof term would be given a non-
proposition type. Observe that the term applies a λ-bound variable b to a function
whose body is a shift construct. Since shift is impure, the function has an impure
function type _→A(x)[⊥,⊥]. From the use of b, we also know that the domain
of b must be convertible with this function type. This implies that the type of the
whole term has an impure function type as its subcomponent, that is, it is not a
proposition. Therefore, Ilik’s proof term is not classified as proof in Dellina.

Full Delimited Control Only Proves Intuitionistic Theorems Shan [146]
proves in his manuscript that the simply typed λ-calculus with the full, ATM-
allowing shift and reset corresponds to intuitionistic logic. Similarly to us, Shan

239
builds a shift/reset-calculus that discriminates pure terms from impure ones, and
observes that the pure fragment covers the effect-free λ-calculus. He then defines
a selective CPS translation, as well as its inverse translation (−+ and −÷), and
proves the following proposition:

Proposition 7.3.2.

1. If Γ+ ⊢ e : A+ is derivable in the pure λ-calculus, then Γ ⊢ e−+ : A is
derivable in the shift/reset-calculus, and (e−+)+ is β/η-equivalent to e.

2. If Γ+ ⊢ e : (A+ → α+) → β+ is derivable in the pure λ-calculus, then
Γ ⊢ e−÷ : A[α, β] is derivable in the shift/reset-calculus, and (e−÷)÷ is
β/η-equivalent to e.

The proposition essentially states that any pure λ-term of a CPS type has a possibly
effectful counterpart in the shift/reset-calculus. From this fact, Shan concludes
that the CPS translation covers all intuitionistic reasoning, and hence the logical
interpretation of shift and reset is intuitionistic logic.

Our incomplete proof of Conjecture 7.2.1 is inspired by Shan’s work, but our
use of the CPS translation is different. Whereas Shan uses the translation to show
that shift and reset prove all intuitionistic theorems, we use it to show that they
do not prove non-intuitionistic theorems. In our view, Shan’s proof lacks the latter
argument, and thus is insufficient to conclude that his calculus is intuitionistic.

Intuitionistic Polarity Zeilberger [176] studies the full shift and reset in
terms of polarity. Polarity is a notion from linear logic, and induces a perfect
symmetry between values and continuations when integrated into a calculus. Tra-
ditionally, polarity has been used to understand different embeddings of classical
logic into intuitionistic logic. This means polarized logic only accounts for compu-
tations in double-negation-based CPS, where control flow is fully explicit and con-
tinuations are abortive. Zeilberger relaxes these restrictions by replacing negation
with arrows whose conclusion is a positive type, which are inhabited by observ-
able data. Thus, he obtains an intuitionistic notion of polarity, or equivalently, a
double-negation interpretation of intuitionistic logic. An interesting fact is that,
when dealing with shift and reset in polarized logic, impure function types can

240
be represented using ordinary logical connectives. This is because polarized logic
already has facilities for expressing answer types and their modification.

Expressiveness of Classical Control Operators We saw in Section 7.2 that
Felleisen’s C operator has a type representing double-negation elimination. It is
also well-known that call/cc can be assigned a type that corresponds to Pierce’s
law ((A → B) → A) → A. These laws are commonly used to turn an intuitionistic
system into a classical one, but they are not equivalent: DNE proves Pierce’s law,
but not the other way around [7]. Interestingly, the relative logical expressive-
ness of these laws coincides with the relative computational expressiveness of their
inhabitants: C can express call/cc, but not vice versa [73]. Based on this ob-
servation, Ariola and Herbelin [7] investigate a variety of classical logics and their
corresponding calculi. For instance, the computational content of minimal classical
logic, which admits Pierce’s law but not EFQ, is the λµ-calculus of Parigot [131].

241

Chapter 8

Conclusion and Perspectives

“Stories never really end. They can go on and on and on. It’s just that
sometimes, at a certain point, one stops telling them.”

Mary Norton, The Borrowers

This thesis introduced Dellina, a dependently typed language with the shift

and reset operators. Our motivation was to concisely implement sophisticated
behaviors while maintaining safety guarantees. Past work has shown that the key
to combining control operators and dependent types is to disallow types dependent
on effectful terms. We observed that unconstrained use of shift and reset further
gives rise to dependent continuations and dependently used continuations, which
bring open answer types into typing judgments.

By restricting the three kinds of problematic dependency, we obtained our first
language Dellina-, which has the indexed list type as the sole source of dependency.
We showed that Dellina- enjoys type soundness, and has a type-preserving CPS
translation. In particular, the latter result relies heavily on the purity restriction
on type dependency, as well as the selective nature of the translation.

We then showed that our design principle scales to a richer language, by ex-
tending Dellina- with polymorphism, universes, and inductive datatypes. To show
the usefulness of the extended language Dellina, we presented a type-safe eval-
uator supporting efficient exception handling, where both control operators and
dependent types are used in a non-trivial manner.

As our result suggests the possibility of extending proof assistants with shift

242
and reset, we also addressed the question of what it means to use these operators
to prove theorems. Although there seems to be no single answer to the question,
we proposed to view pure types/terms as propositions/proofs, and impure ones as
non-logical objects. The restriction turned out to limit the use of delimited control
in proofs, leading to the conjecture that shift and reset only prove intuitionistic
theorems.

Our journey is however just started. To make Dellina ready for real-world
programming, we must further extend the language both effect-wise and type-
wise. In the remainder of this chapter, we list some of the to-do’s we have in
mind.

8.1 Multiple Effects

In Dellina, we can simulate a wide range of effects using shift and reset, but only
one single effect at a time. The limitation is due to the inflexibility in the way
shift and reset pair up. Consider the following program:

run-state (λ () : Unit. run-choose (λ () : Unit. 1 + choose (get ()) (inc (); get ())))

The program involves two kinds of effects: state and non-determinism. To remind
the reader, run-state initializes the value of the state to 0, and choose wraps its
arguments with the surrounding context. With these behaviors in mind, we would
expect that the program reduces to [1; 2]. However, it turns out that the program
does not run in this way. Since Dellina is call-by-value, we first evaluate the state-
accessing computation get (). The shift operator in get is supposed to be paired
with the reset operator in run-state, but this association is blocked by the reset

in run-choose, leading to a type mismatch. Swapping run-state and run-choose does
not help us either: it gives us the right association between get and run-state, but
this time, the shift operator in choose will be unexpectedly paired with run-state.
To make the above example runnable, we need to somehow let the second shift

to skip the intervening reset. There are several ways to support this skipping, as
we describe below.

243
CPS Hierarchy The most lightweight approach is to incorporate the CPS hi-
erarchy. Recall that we have augmented Dellina with a hierarchy of universes,
extending the “type-of” relation to an infinite one. There is an analogous notion
for continuations as well, which gives rise to a tower of the “context-of” relations.
That is, we extend pure evaluation contexts F into layered ones Fi, which are cap-
tured by a family of operators shifti and reseti [56]. The following examples
show how indexed shift and reset work:

(11) ⟨1 + ⟨2 + S1k. 3⟩1⟩2 = ⟨1 + 3⟩2 = 4

(12) ⟨1 + ⟨2 + S2k. 3⟩1⟩2 = ⟨3⟩2 = 3

In program (11), shift1 only discards the context within reset1, namely addition
of 2. On the other hand, in program (12), shift2 discards the whole thing within
reset2, including addition of 1, hence the program reduces to a different value.
With these operators, we can specify the matching reset operator for each shift,
avoiding undesired interference.

The layered control operators can be simulated by iterative CPS translations
[56]. That is, if we wish to deal with n levels of contexts, then we CPS translate the
source program n times. The target program will require n continuation arguments,
where the i’th argument corresponds to the continuation captued by the level-i
shift.

Dynamic Shift and Reset An alternative approach would be supporting a
dynamic variant of shift and reset known as shift0 and reset0. The dynamic
nature of these operators comes from the following reduction rule:

⟨F [S0k. e]⟩0 ▷ e[λx. ⟨F [x]⟩0/k]

Notice that elimination of shift0 removes the enclosing reset0. This means, if the
body e has occurrences of shift0, they will be delimited by outer reset0 operators.
As Materzok and Biernacki [118] show, the above reduction rule makes shift0 and
reset0 fully express, and even go beyond, the CPS hierarchy.

The removal of reset0 makes more contexts relevant to evaluation, that is, we
must take care of the innermost delimited context, and any other contexts within

244
outer reset0’s. For this reason, a type system for shift0 and reset0 has to main-
tain a list of contexts [118], often called trails in the literature. Correpondingly, the
CPS translation of these operators should handle multiple continuations, either by
passing around a continuation list [148], or by recursively abstracting over continu-
ations via nested λ’s [118]. In a typed setting, it seems that the curried translation
would be easier to implement, since continuations generally have different types
and hence cannot be put in a single homogeneous list.

Multi-Prompt Shift and Reset A more powerful but non-trivial extension is
to adopt multi-prompt shift and reset [66]. The variant of shift and reset is
a generalization of shifti and reseti: they carry a prompt tag representing the
intended association between the two operators, but the tags do not have orderings.

As Kiselyov and Sivaramakrishnan [105] show, multi-prompt shift and reset

can be used to support algebraic effects and handlers [136], a promising approach to
formalizing user-defined effects. Roughly speaking, an algebraic effect is something
like a datatype, where constructors represent the operations on that effect (such
as get and inc in the case of mutable state). Operations are performed by a
handler, which is similar to a pattern matching construct. The idea of Kiselyov
and Sivaramakrishnan is to implement operations using shift, and handlers using
reset, together with an invariant that they use a common prompt tag defined for
the effect they constitute.

The expressiveness of multi-prompt shift and reset comes at the cost of losing
a succinct CPS semantics. Indeed, these operators are able to express dynamic
binding [104], and for this reason, if we wish to simulate their behavior in a pure
language, we need a CPS translation and an environment-passing style translation
that erases dynamic variables [65]. This gives rise to a concern: dynamic binding
has been considered only in non-dependent languages, and intuitively, it would not
mix well with dependent types, due to its dynamic nature—we can at least imagine
that dependency on dynamic variables would make static type checking impossible.
The interaction between dynamic binding and dependent types is however worth
studying on its own, from both theoretical and practical perspectives.

245
8.2 Control Effects at Higher Levels

Another interesting extension would be allowing control effects in higher universes.
The simplest case is illustrated by the following program:

(13) ⟨(λα : Set.N) (Sk : Set→ Set.B)⟩

The shift operator is a type-level expression, which captures a type-returning
continuation and returns a type to the delimited context. That is, the type and
the two answer types of the shift construct are all Set.

We can make things more interesting by allowing the three types to reside in
different universes. For instance, the following examples involve continuations that
go across universe levels:

(14) ⟨(λ n : N.N) (Sk : N→ Set.B)⟩

(15) ⟨1 + ((λα : Set. 2) (Sk : Set→N. 3))⟩

In program (14), the captured continuation “goes up”, in that it receives a term and
returns a type. By contrast, program (15) has a continuation that “goes down”, as
it receives a type and returns a term.

Higher control effects also give rise to answer-universe modification. Suppose
a inhabits A, which is a Prop-type:

(16) ⟨(λ x : ⊤.⊤) (Sk : ⊤→Prop. tt)⟩

The reset operator initially encloses a Prop-returning context, but the context is
replaced by tt in the course of evaluation, hence the final answer type is one level
lower than the initial answer type. Note that we are using a Prop type to ensure
type preservation of the CPS translation. If we replace tt and ⊤ with 1 and N,
the CPS counterpart of the shift clause will have type (N→Set)→N, which is
ill-formed because N→Set : Type1.

Higher-level control effects have been studied by Boutillier and Herbelin [32].
As we mentioned in Section 5.2, they incorporate shift and reset into Pure Type
Systems, but leaving the discussion of language properties—including type preser-
vation of the CPS translation—for future work. In a different context, Barthe et
al. [22] give a CPS translation of non-dependent PTSs. They call their translation

246
pervasive, as it internalizes both term-level and type-level contexts. The trans-
lation is however not designed for implementing control effects, but for proving
the so-called Barendregt-Geuvers-Klop conjecture [82]. This conjecture states that
any weakly normalizing PTS is also strongly normalizing. A popular approach to
derive strong normalization from weak normalization is to define a mapping from
the source calculus to Barendregt’s λI-calculus [15], where every λ-bound variable
is used at least once [152, 171]. The CPS translation of Barthe et al. is essentially
such a mapping; however, they have not yet been able to scale the result to PTSs
featuring dependent types, and the conjecture is still left open.

It is unclear how control effects at higher levels would be useful in dependently
typed programming, but it clearly breaks the traditional view of types as being
static objects. That is, when types have effects, we cannot statically determine
what property or proposition they represent, just like when types depend on impure
terms. Also, erasing effectful types would cause unexpected runtime behavior,
which means the traditional compilation and program extraction no longer work.

On the other hand, type-level effects, as well as answer-universe modification,
seem to have certain applications in linguistics, more specifically, in natural lan-
guage semantics. We do not intend to discuss this in detail, but the intution is
as follows. Natural language semantics is a study concerned with how to compute
the meaning of natural language sentences. In the past decades, researchers found
that a number of tools from programming languages, including control operators
and dependent types, allow us to account for challenging linguistic phenomena in
an elegant manner [17, 62, 18, 147, 25, 44, 46, 139]. Recently, Cong and Bowman
[47] integrated a continuation-based treatment of focus [141] into Dependent Type
Semantics of Bekki and Mineshima [26], showing that control operators must han-
dle type-level contexts when used for natural language purposes. Although the
work is still ongoing, it is an interesting observation that natural languages require
more effects than what Dellina provides.

8.3 Propositional Equality

We have discussed two extensions for making more effects expressible. We next look
at features for making more programs typable, or, equivalently, for proving more

247
theorems. In Dellina, we say two types are equivalent when they are definitionally
equal, i.e., when they reduce to a common type. In the mainstream dependent
languages, types may also judged propositionally equal, which is to say, two types
are not convertible in terms of reduction, but they can be proven equal. The need
for propositional equality arises when e.g. we prove associativity of list append:

Πn1 n2 n3 : N.Π (l1 : L n1, l2 : L n2, l3 : L n3).

append (n1 + n2) n3 (append n1 n2 l1 l2) l3=L ((n1 + n2) + n3)

append n1 (n2 + n3) l1 (append n2 n3 l2 l3)

where = is a type constant with a single constructor representing reflexivity (note
that the left- and right-hand sides must be a pure term):

Γ ⊢ e1 : A Γ ⊢ e2 : A

Γ ⊢ e1=A e2 : Prop
(Equal)

Γ ⊢ e1 =A e2 : Prop

e1 ▷⋆p e e2 ▷⋆p e

Γ ⊢ refl : e=A e
(Refl)

The reader may be interested in how we prove this theorem, but it turns out that
the theorem itself is ill-formed. The problem is in the equality type: the equality
constructor = requires two terms of type L ((n1 + n2) + n3), while the second list
has type L (n1 + (n2 + n3)). This means, we have to separately prove associativity
of addition, and then rewrite the type of the second list using the subst operation:

Γ, x : A ⊢ B : s s ∈ S

Γ ⊢ e : B[e1/x] ρ[e1/x] Γ ⊢ p : e1 =A e2

Γ ⊢ B[e2/x] : s Γ ⊢ ρ[e2/x] : (s, s
′)

Γ ⊢ subst p e : B[e2/x] ρ[e2/x]
(Subst) subst refl e ▷ e

An alternative approach is to incorporate heterogeneous equality, where the left-
and right-hand sides of the equality constructor may have different types. That is
to say, we adopt the following equality formation rule:

Γ ⊢ e1 : A Γ ⊢ e2 : B

Γ ⊢ e1= e2 : Prop
(HEqual)

The relaxed notion of equality reduces tedious work that indexed types give rise

248
to, making proofs more concise and readable. On the other hand, heterogeneous
equality considerably complicates the theory of the language. For instance, we
must refine the (Subst) rule to an n-ary one, allowing multiple equalities to be
eliminated simultaneously [151]. This is necessary for avoiding generation of ill-
typed terms in the intermediate equalities.

Aside from the homogeneous vs. heterogeneous discussion, we would like to
adress a bonus advantage of having propositional equality in Dellina and the tar-
get of the CPS translation. Recall from Section 4.4.3 that we use equivalence as-
sumptions to make CPS-translated pattern matching well-typed, which may bring
non-terminating behavior to programs. This issue can be solved if we use equality
assumptions and convert types using subst. The reason is that reduction of subst
does not happen unless an equality proof is actually given; in other words, if the
equality really holds.

Propositional equality is used for compilation of dependent pattern matching in
general [86, 153]. However, as existing studies suggest, the equality often requires
a stronger elimination rule, known as the axiom K :

K : ΠA : Type.Πx : A.ΠP : x = x → Prop. P (refl) → ∀hx = xP (h)

The type of K essentially states that all identity proofs are the same as refl. It is
known that the axiom is incompatible with the univalence axiom from homotopy
type theory: e.g., Cockx et al. [42] shows how the combination allows us to prove
true = false. As future work, we intend to investigate if our CPS translation
demands the axiom K, or it suffices to equip the target language with the [Subst]

rule.

8.4 Specialization by Unification

Another facility we would like to incorporate is Agda-style pattern matching, which
automatically skips impossible branches. As a simple example, recall the head

function from Section 1.1 (with a minor tweak to the list index):

head : Πn : N.L (suc n) → N

249
By declaring head in this way, we commit ourselves to run the function only with
a non-empty list. Therefore, in the definition of head, we want to ignore the empty
case and only account for the cons branch. This is exactly what Agda allows us to
do: in Agda, the following program serves as the complete definition of the head

function1:

head : ∀ (n : Nat) -> (L (suc n)) -> Nat

head .m (cons m h t) = h

When type checking the program, Agda will not complain that the pattern match-
ing is non-exhaustive, because it knows that the empty case is impossible: the list
argument must be indexed by a successor of some number, whereas an empty list
is indexed by zero, which has a different head constructor. The skipping technique
is called specialization by unification [86], since it specializes a pattern matching
construct based on unification over type indices.

Smart pattern matching has been studied in order to make dependently typed
programming easier [42, 43, 41]. We draw attention to this feature because, in
Dellina, it would further serve as an appraoch to avoiding uses of inconsistent as-
sumptions. Recall that inconsistency arises only in impossible branches. If we do
not generate those branches in the first place, we will never need inconsistent as-
sumptions. Of course, to incorporate the skipping mechanism, we have to establish
a lot of properties; in particular, we must make sure that the pre- and post-CPS
versions of a program have the same branches. We believe that the proofs would
not be complicated too much by the presence of control effects, because type indices
are all pure terms.

1The dot on the first occurrence of m means that, for the whole program to be well-typed, it
must coincide with the argument m of the cons constructor.

250

Appendix A

Control Operators and Dependent
Types in Natural Languages

In this appendix, we study an application of control operators and dependent types
in a non-programming context, namely in natural language sentences. This might
be surprising to the reader, but linguists do “functional programming” as well,
and more excitingly, it has proven that control operators and dependent types are
powerful tools for solving a wide range of linguistic challenges. Below, we give a
gentle introduction to natural language semantics (Section A.1), present two long-
standing puzzles as well as their PL-based solutions (Section A.2), and discuss the
possibility of using Dellina for linguistic purposes (Section A.3).

A.1 Introduction to Natural Language Semantics

Natural language semantics is concerned with two questions: (i) how to represent
the meaning of sentences in a formal way; and (ii) how to compute the meaning
in a natural manner. Let us analyze the following sentence as a natural language
semanticist would do:

(17) John loves Mary.

Our first task is to find a semantic representation, which foramlly represents
the meaning communicated by the sentence. Intuitively, we can represent sentence
(17) as the following logical formula:

251
(18) Love (j, m)

where Love is a two-place predicate, and j and m are constants. There are at least
two ways to link between sentence (17) and formula (18). One popular approach
is to say: “John loves Mary” is true in a given model M iff the interpretation of
Love (j, m) with regard to M is true. This is the idea underlying model-theoretic
frameworks, which is a popular paradigm of natural language semantics. An alter-
native approach is to view Love (j, m) as a type, and say that the sentence is true iff
Love (j, m) is inhabited. This idea constitutes proof-theoretic semantics, which has
been studied by researchers in the intersection of linguistics and type theory. We
do not commit ourselves to one particular paradigm until next section; for now, it
suffices to keep in mind that we represent meanings as logical formulas.

Having found a semantic representation, our next task is to map sentence (17)
to formula (18) in the “right way”, i.e., as humans interpret the sentence. In-
tuitively, given the sentence “John loves Mary”, we implicitly convert it into the
following tree-like structure:

Sentence
�

��
Q
QQ

Subject Verb Phrase
#

#
c
c

Verb Object

John loves Mary

That is, we recognize that the verb “loves” describes a loving relation, where the
subject is John and the object is Mary. The reader may find the diagram similar
to an abstract syntax tree, e.g.:

252
Addition

�
��

Q
QQ

Number Multiplication
#

#
c

c

Number Number

1 2 3

By converting sentences and programs into trees, we can clearly see the indi-
vidual components and the way they are connected. Then, we can compute the
meaning of the whole in a compositional way, i.e., from the meaning of its compo-
nents and their relationships. The principle of compositionality goes all the way
back to Frege, and is adopted in a majority of natural language frameworks—if
we did not compute the meaning of a sentence from its components, how could we
interpret sentences that we have never seen before? Compositionality is also pre-
ferred in programming languages: for instance, when defining a CPS translation,
it is easier to prove its correctness if the translation is compositional [59].

So, how do we compositionally convert sentence (17) into formula (18)? The
answer is to view verbs as functions, individuals as constants, and nodes as function
application. That is, we define each word in the following way1:

John
def≡ j

Mary
def≡ m

loves
def≡ λ y. λ x. Love (x, y)

and then combine them using left and right application (·l and ·r):

John loves Mary = j ·r ((λ y. λ x. Love (x, y)) ·l m) = Love (j, m)

Thus, the λ-calculus is not just a foundation of programming languages; it also
serves as a framework for analyzing natural languages.

1Notice that “loves” first receives an object and then a subject. This is because “loves Mary”
syntactically makes sense, whereas “John loves” does not.

253
A.2 Solving NL Challenges using PL Techniques

So far, everything looks trivial. But of course, there are cases where it is not obvious
how to represent or compositionally compute meanings. In this section, we discuss
two challenging phenomena in natural languages, and show how programming
language techniques help us solve these challenges in an elegant way.

A.2.1 Quantifiers

The first challenge we would like to discuss is quatifiers. Let us consider the
following sentences:

(19) Everyone loves John.

(20) John loves everyone.

It is easy to see that the word “everyone” gives rise to a universally quantified
interpretation. Therefore, the two sentences should have the following semantic
representations:

(21) ∀x. Love (x, j)

(22) ∀x. Love (j, x)

Interestingly, while these representations are structurally similar, obtaining the
latter is harder than obtaining the former. Let us start by the easy case. To convert
sentence (19) into formula (21), we simply define “everyone” as the following higher-
order function:

everyonesbj
def≡ λP. ∀x. P x

A subject-position “everyone” takes a verb phrase P , and returns a universally
quantified statement saying that every x satisfies P . In our running example,
“everyone” will be applied to the function λx. Love (x, j), yielding ∀x. Love (x, j).

We next convert sentence (20) into formula (22). Observe that, in the original
sentence, “everyone” appears as an object, which is one level deeper than the
subject in the tree representation:

254
Sentence

�
��

Q
QQ

Subject Verb Phrase
#

#
c
c

Verb Object

John loves everyone

The tree structure tells us that we must form a verb phrase by applying “loves”
to “everyone”. This means “everyone” should be of the entity type. However, if
“everyone” was a mere entity, like “John” and “Mary”, how could behave like a
universal quantifier?

To solve this puzzle, let us focus our attention to the body part of formula (22),
namely Love (j, x). By the β-rule, the representation is equivalent to (λx′. Love (j, x′)) ·l
x. Interestingly, the function λx′. Love (j, x′) corresponds exactly to the continua-
tion of “everyone”. If we can expose this continuation, we can obtain formula (22)
by wrapping (λx′. Love (j, x′)) ·l x around a universal quantifier. This leads to the
following semantic representation of object-position ‘̀everyone”:

everyoneobj
def≡ Sk. ∀x. k x

An object-position “everyone” captures its surrounding context k, which is a sen-
tence with a hole, and builds a universally quantified statement saying that every
x satisfies k. From a computational point of view, the use of shift in the above se-
mantic representation is analogous to the one in the reverse example from Section
1.2, in that we obtain the correct scoping by calling the continuation in a non-tail
position.

With this definition, together with a top-level reset surrounding the whole
sentence (which is reasonable to assume), we can compositionally convert sentence
(20) into formula (22):

John loves everyone = j ·r ((λ y. λ x. Love (x, y)) ·l (Sk. ∀x. k x)) = ∀x. Love (j, x)

255
Continuations found their way into natural language semantics about twenty

years ago [62, 17]. Interestingly, the notion of “expressions with a hole” arise not
only in sentences involving quantifiers, but in many other linguistic phenomena as
well [17, 145, 144, 18, 147, 103, 25, 44, 39, 46]. Furthermore, it has proven that
continuations in natural languages generally require some delimitation [18], and
sometimes need to be layered [19].

A.2.2 Anaphora

The second challenge we would like to address is anaphoric expressions. Consider
the mini discourse below:

(23) Someone bought TAPL. He then bought ATAPL.

The discourse consists of two sentences. We can easily find an appropriate semantic
representation for the first sentence: since the subject “someone” has an existential
interpretation, we existentially quantify over the entity who bought TAPL, as in
∃x.Buy (x, t). But what about the second sentence? Intuitively, its semantic rep-
resentation must be something like Buy (??, a), and we, as a human, know that ??
must be convertible with the entity that “someone” refers to. The problem is that,
if we naïvely put the variable x, we would end up with an open formula Buy (x, a),
because the existential quantification is only effective in the first sentence.

Discourse (23) suggests that the two successive sentences cannot be interpreted
individually; in particular, the meaning of the second sentence depends on the
first one. Therefore, we must somehow make the information carried by the first
sentence available when interpreting the second sentence. This requires a means
to “pack” the meaning of sentences, so that we can pass it between sentences,
and a means to “unpack” the meaning, so that we can extract the context when
necessary. Now, recall from Section 5.3 that there is a kind of type equipped with a
pair of pack and unpack rules: Σ types! This observation was first made by Ranta
[139], and was later incorporated into Bekki and Mineshima’s Dependent Types
System (DTS) [26]. DTS is a proof-theoretic framework of natural languages,
where meanings are represented as types. For instance, “Someone bought TAPL”
is represented as a Σ type in DTS:

(24) Σx : Entity.Buy (x, t)

256
As in other proof-theoretic frameworks, we say “Someone bought TAPL” is true
when the Σ type is inhabited, put differently, if we have a proof of Σx : Entity.Buy (x, t).
As an example, the dependent pair (j, p), where p is a proof of “John bought TAPL”,
serves as a proof of the sentence.

Going back to discourse (23), our challenge is to get access to the entity rep-
resenting “someone” from the second sentence. In DTS, we have the following
dynamic conjunction rule, which lets us interpret a sentence with a proof of the
preceding part of a discourse:

M ;N
def≡ λ c.Σu : M c.N (c, u)

The rule essentialy tells us that, when we have a discourse S1;S2; ...;Sn, the mean-
ing of Si depends on the information carried by all Sj such that j < i. This
proof-passing works if we turn every sentence, as well as the whole discourse, into
a proof-awaiting function λ c. e. In the actual definition, M stands for the sequence
of sentences, and N stands for a sentence following it. The meaning of their con-
junction is a function that receives a local context, which is a proof we may use to
solve anaphoric references in M , and returns a Σ type, which makes the proof u
of M available during interpretation of N .

Using the conjunction rule, we can represent the meaning of discourse 23 as:

(25) λ c.Σu : (Σ x : Entity.Buy (x, t)).Buy (fst u, a)

The semantic representation correctly captures the meaning of the sentence, and
has no free variable. However, there is still one thing left to do: we must figure out
what the general representation of pronouns would be. In discourse (23), the only
candidate for “he” is the entity corresponding to “someone”, but in the following
example, we have multiple choices when resolving anaphora:

(26) A dog barked at a kitten. Then a boy came and took it.

The second sentence has two possible readings: (i) the boy took the dog to save the
kitten; and (ii) the boy took the kitten for the same purpose. What this suggests
is that we must allow some ambiguity when giving a meaning to pronouns. Based
on this idea, Bekki and Mineshima [26] define pronouns as an underspecified term:

257

he, she, it
def≡ @i

Here, @ is a symbol representing some unknown entity, and i is a unique index
given to each pronoun. Finding a concrete entity for @i now boils down to finding
a term that makes the type referring to @i inhabited. In other words, anaphora
resolution has reduced to proof search.

As Bekki and Mineshima [26] show, the idea presented here not only solves the
issue with pronouns, but also scales to other linguistic phenomena that requires
some form of non-local reasoning. Moreover, the type-theoretical aspect of DTS
also makes it well-suited for textual inference tasks: e.g., if we have a proof of
“Someone bought TAPL. He then bought ATAPL”, we can easily obtain a proof of
“Someone bought ATAPL” via the second projection.

A.3 Dellina for Natural Language Semantics

Having seen the linguistic uses of control operators and dependent types, we would
wonder if our language, Dellina, serves as a uniform framework for analyzing chal-
lenging phenomena in natural languages. For instance, with shift, reset, and Σ

types at hand, we could explain discourses that have both pronouns and object-
position quantifiers:

(27) Someone bought TAPL. He then bought every PL book.

(28) λ c.Σu : (Σ x : Entity. x ·r (buy ·l t)). ⟨(fst u) ·r (buy ·l (Sk.Π y : PLBook. k y))⟩
= λ c.Σu : (Σ x : Entity.Buy (x, t)).∀y.PLBookBuy (fst u, y)

Is formula (28) a well-kinded Dellina type? The answer is no, because Dellina
does not allow type dependency on impure terms. This limitation rules out the
application of the type-level function buy to the impure shift construct repre-
senting “everyone”. In fact, the problem is already present in sentences that have
quantifiers but not anaphoras, such as our earlier example “John loves everyone”.
Therefore, although Dellina has both control operators and dependent types, it
cannot be used for natural language purposes without relaxing the restriction on
type dependency

258
A closer look at the semantic representation (28) reveals another interesting

fact: the captured continuation goes across the term-type boundary. Observe that
the shift operator is surrounded by a context that returns a type, which represents
a buying proposition. The shift operator itself is however a term of type Entity.
This means the captured continuation has type Entity → Prop, which Dellina does
not support.

It seems that type-returning continuations are prevalent in natural languages,
because we assume a default reset surrounding every sentence. That means, if
there is no intervening expression that behaves like reset2, an effectful expression
will capture a Prop-returning continuation. There are also cases where we capture a
continuation from a type-level expression, such as verbs and adjectives (see sentence
(22a) of Barker [18]). To account for these cases, we would need the shift and
reset operators in the type language.

In summary, if we want to combine continuation-based treatments of quanti-
fiers and type-theoretical analysis of pronouns, we must allow (at least) (i) types
dependent on impure terms; (ii) continuations from terms to types; and (iii) con-
tinuations from types to types. From a programming perspective, the resulting lan-
guage would be harder to reason about, because the meaning of types becomes less
clear in the presence of control effects. Also, there cannot exist a type-preserving
CPS of such a language, be it selective or unselective. However, it is definitely
an interesting observation that natural languages require more than what Dellina
provides.

2As an example of reset-like expressions, adverbs like “only” and “also” delimit relevant con-
texts to verb phrases [18], which are type-level functions.

259

Bibliography

[1] D. Ahman. Fibred Computational Effects. PhD thesis, University of Edin-
burgh, 2017.

[2] D. Ahman. Handling fibred algebraic effects. Proc. ACM Program. Lang.,
2(POPL):7:1–7:29, Dec. 2017.

[3] A. Ahmed and M. Blume. An equivalence-preserving CPS translation via
multi-language semantics. In Proceedings of the 16th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP ’11, pages 431–444,
Sept. 2011.

[4] T. Altenkirch and B. Reus. Monadic presentations of lambda terms using
generalized inductive types. In Proceedings of the 13th International Work-
shop and 8th Annual Conference of the EACSL on Computer Science Logic,
CSL ’99, pages 453–468, London, UK, 1999. Springer-Verlag.

[5] A. Anand, A. W. Appel, G. Morrisett, Z. Paraskevopoulou, R. Pollack, O. S.
Bélanger, M. Sozeau, and M. Weaver. CertiCoq: A verified compiler for Coq.
In The Third International Workshop on Coq for Programming Languages
(CoqPL), 2017.

[6] A. W. Appel. Compiling with continuations. Cambridge University Press,
1992.

[7] Z. Ariola and H. Herbelin. Minimal classical logic and control operators.
In ICALP: Annual International Colloquium on Automata, Languages and
Programming, volume 2719 of LNCS, pages 871–885. Springer-Verlag, 2003.

260
[8] Z. M. Ariola, H. Herbelin, and A. Sabry. A type-theoretic foundation of de-

limited continuations. Higher Order and Symbolic Computation, 22(3):233–
273, Sept. 2009. online from 2007.

[9] K. Asai. Offline partial evaluation for shift and reset. In Proceedings of
the 2004 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
based Program Manipulation, PEPM ’04, pages 3–14, New York, NY, USA,
2004. ACM.

[10] K. Asai and Y. Kameyama. Polymorphic delimited continuations. In Proceed-
ings of the 5th Asian Conference on Programming Languages and Systems,
APLAS ’07, pages 239–254, Berlin, Heidelberg, 2007. Springer-Verlag.

[11] K. Asai and O. Kiselyov. Introduction to programming with shift and reset.
In ACM SIGPLAN Continuation Workshop, Sept. 2011.

[12] K. Asai and C. Uehara. Selective CPS transformation for shift and reset.
In Proceedings of the 2018 ACM SIGPLAN Workshop on Partial Evaluation
and Semantics-based Program Manipulation, PEPM ’18, pages 40–52, 2018.

[13] R. Atkey. Parameterised notions of computation. J. Funct. Program., 19(3-
4):335–376, July 2009.

[14] L. Augustsson. Cayenne—a language with dependent types. In Pro-
ceedings of the Third ACM SIGPLAN International Conference on Func-
tional Programming, ICFP ’98, pages 239–250, New York, NY, USA, 1998.
ACM.

[15] H. P. Barendregt. The lambda calculus, volume 3. North-Holland Amster-
dam, 1984.

[16] H. P. Barendregt. Lambda calculi with types. 1992.

[17] C. Barker. Introducing continuations. In Semantics and Linguistic Theory,
volume 11, pages 20–35, 2001.

[18] C. Barker. Continuations in natural language. ACM SIGPLAN Continuation
Workshop, 4:1–11, 2004.

261
[19] C. Barker and C.-c. Shan. Continuations and natural language, volume 53.

Oxford studies in theoretical linguistics, 2014.

[20] G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal certification of
code-based cryptographic proofs. In Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’09, pages 90–101, New York, NY, USA, 2009. ACM.

[21] G. Barthe, J. Hatcliff, and M. H. Sørensen. A notion of classical pure type
system. Electronic Notes in Theoretical Computer Science, 6:4–59, 1997.

[22] G. Barthe, J. Hatcliff, and M. H. Sørensen. Weak normalization implies
strong normalization in a class of non-dependent pure type systems. Theo-
retical Computer Science, 269(1-2):317–361, Nov. 2001.

[23] G. Barthe, J. Hatcliff, and M. H. B. Sørensen. CPS translations and appli-
cations: The cube and beyond. Higher-Order and Symbolic Computation,
12(2):125–170, Sept. 1999.

[24] G. Barthe and T. Uustalu. CPS translating inductive and coinductive types.
In Proceedings of the 2002 ACM SIGPLAN Workshop on Partial Evaluation
and Semantics-based Program Manipulation, PEPM ’02, pages 131–142, New
York, NY, USA, 2002. ACM.

[25] D. Bekki and A. Kenichi. Representing covert movements by delimited con-
tinuations. New Frontiers in Artifical Intelligence, pages 161–180, 2009.

[26] D. Bekki and K. Mineshima. Context-passing and underspecification in de-
pendent type semantics. pages 11–41, 2017.

[27] M. Biernacka and D. Biernacki. Context-based proofs of termination for
typed delimited-control operators. In Proceedings of the 11th ACM SIG-
PLAN conference on Principles and Practice of Declarative Programming,
PPDP ’09, pages 289–300. ACM, 2009.

[28] M. Biernacka, D. Biernacki, S. Lenglet, and M. Materzok. Proving termina-
tion of evaluation for system F with control operators. In Proceedings of the
1st Workshop on Control Operators and their Semantics, COS 2013, 2013.

262
[29] D. Biernacki and P. Polesiuk. Logical relations for coherence of effect sub-

typing. Logical Methods in Computer Science, 14, 2018.

[30] S. Boulier, P.-M. Pédrot, and N. Tabareau. The next 700 syntactical models
of type theory. In Proceedings of the 6th ACM SIGPLAN Conference on
Certified Programs and Proofs - CPP 2017, pages 182–194, Paris, France,
Jan. 2017. ACM Press.

[31] P. Boutillier. A relaxation of Coq’s guard condition. In JFLA - Journées
Francophones des langages applicatifs - 2012, pages 1 – 14, Carnac, France,
Feb. 2012.

[32] P. Boutillier and H. Herbelin. Delimited control and continuation passing
style in pure type systems. Sept. 2011.

[33] W. J. Bowman. Compiling with Dependent Types. PhD thesis, Northeastern
University, 2019.

[34] W. J. Bowman, Y. Cong, N. Rioux, and A. Ahmed. Type-preserving CPS
translation of Σ and Π types is not not possible. Proc. ACM Program. Lang.,
2(POPL):22:1–22:33, Dec. 2017.

[35] L. Cardelli. Phase distinctions in type theory. Technical report, 1988.

[36] J. Carette, O. Kiselyov, and C.-c. Shan. Finally tagless, partially evalu-
ated: Tagless staged interpreters for simpler typed languages. Journal of
Functional Programming, 19(5):509–543, 2009.

[37] C. Casinghino. Combining Proofs and Programs. PhD thesis, University of
Pennsylvania, 2014.

[38] C. Casinghino, V. Sjöberg, and S. Weirich. Combining proofs and programs
in a dependently typed language. In Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14,
pages 33–45, New York, NY, USA, 2014. ACM.

[39] S. Charlow. On the semantics of exceptional scope. PhD thesis, New York
University, 2014.

263
[40] J. Cheney and R. Hinze. First-class phantom types. Technical report, Cornell

University, 2003.

[41] J. Cockx. Dependent Pattern Matching and Proof-Relevant Unification. PhD
thesis, KU Leuven, 2017.

[42] J. Cockx, D. Devriese, and F. Piessens. Pattern matching without k. In
Proceedings of the 19th ACM SIGPLAN International Conference on Func-
tional Programming, ICFP ’14, pages 257–268, New York, NY, USA, 2014.
ACM.

[43] J. Cockx, D. Devriese, and F. Piessens. Unifiers as equivalences: Proof-
relevant unification of dependently typed data. In Proceedings of the
21th ACM SIGPLAN International Conference on Functional Programming,
ICFP ’16, pages 270–283. ACM, 2016.

[44] Y. Cong. Analysis and implementation of focus and inverse scope by de-
limited continuation. In Proceedings of ESSLLI 2014 Student Session, pages
177–189, 2014.

[45] Y. Cong and K. Asai. Handling delimited continuations with dependent
types. Proc. ACM Program. Lang., 2(ICFP):69:1–69:31, Sept. 2018.

[46] Y. Cong, K. Asai, and D. Bekki. Focus, inverse scope, and delimited control.
In Proceedings of the 12th International Workshop on Logic and Engineering
in Natural Language Semantics (LENLS 12), pages 137–148, 2015.

[47] Y. Cong and J. W. Bowman. Only control effects and dependent types. Pre-
sented at the 6th ACM SIGPLAN Workshop on Higher-Order Programming
with Effects (HOPE 2017), 2017.

[48] T. Coquand. An analysis of girard’s paradox. In Symposium on Logic in
Computer Science (LICS), pages 227–236, 1986.

[49] T. Coquand. Pattern matching with dependent types. In Proceedings of the
Workshop on Types for Proofs and Programs, pages 71–83, 1992.

264
[50] T. Coquand and G. Huet. The calculus of constructions. Information and

computation, 76(2-3):95–120, 1988.

[51] T. Coquand and C. Paulin. Inductively defined types. In Proceedings of
the International Conference on Computer Logic, COLOG ’88, pages 50–66,
London, UK, 1990. Springer-Verlag.

[52] P.-L. Curien and H. Herbelin. The duality of computation. In ACM sigplan
notices, volume 35, pages 233–243. ACM, 2000.

[53] H. B. Curry. Functionality in combinatory logic. Proceedings of the National
Academy of Sciences, 20(11):584–590, 1934.

[54] O. Danvy. Type-directed partial evaluation. In Proceedings of the 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’96, pages 242–257, New York, NY, USA, 1996. ACM.

[55] O. Danvy and A. Filinski. A functional abstraction of typed contexts. Tech-
nical report, University of Copenhagen, 1989.

[56] O. Danvy and A. Filinski. Abstracting control. In Proceedings of the 1990
ACM conference on LISP and functional programming, pages 151–160. ACM,
1990.

[57] O. Danvy and A. Filinski. Representing control: a study of the cps transfor-
mation, 1992.

[58] O. Danvy, C. Keller, and M. Puech. Typeful normalization by evaluation. In
20th International Conference on Types for Proofs and Programs, TYPES
2014, 2014.

[59] O. Danvy and L. R. Nielsen. A first-order one-pass cps transformation.
Theoretical Computer Science, 308(1-3):239–257, 2003.

[60] O. Danvy and L. R. Nielsen. Cps transformation of beta-redexes. Information
Processing Letters, 94(5):217–224, 2005.

[61] M. Davis, W. Meehan, and O. Shivers. No-brainer CPS conversion (func-
tional pearl). Proc. ACM Program. Lang., 1(ICFP):23:1–23:25, Aug. 2017.

265
[62] P. De Groote. Type raising, continuations, and classical logic. In Proceedings

of the thirteenth Amsterdam Colloquium, pages 97–101, 2001.

[63] E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation
of programs. Commun. ACM, 18(8):453–457, Aug. 1975.

[64] G. Dowek. The undecidability of typability in the lambda-pi-calculus. In
Proceedings of the International Conference on Typed Lambda Calculi and
Applications, TLCA ’93, pages 139–145, London, UK, UK, 1993. Springer-
Verlag.

[65] P. Downen and Z. M. Ariola. A systematic approach to delimited control
with multiple prompts. In European Symposium on Programming, ESOP
’12, pages 234–253. Springer, 2012.

[66] P. Downen and Z. M. Ariola. Delimited control and computational effects.
Journal of functional programming, 24(1):1–55, 2014.

[67] B. Duba, R. Harper, and D. MacQueen. Typing first-class continuations
in ml. In Proceedings of the 18th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’91, pages 163–173, New York,
NY, USA, 1991. ACM.

[68] P. Dybjer. Logical frameworks. chapter Inductive Sets and Families in
Martin-Lo&Uml;F’s Type Theory and Their Set-theoretic Semantics, pages
280–306. Cambridge University Press, New York, NY, USA, 1991.

[69] R. K. Dyvbig, S. P. Jones, and A. Sabry. A monadic framework for delimited
continuations. Journal of Functional Programming, 17(6):687–730, 2007.

[70] J. Egger, R. E. Møgelberg, and A. Simpson. The enriched effect calculus:
syntax and semantics. Journal of Logic and Computation, 24(3):615–654,
2012.

[71] R. A. Eisenberg and S. Weirich. Dependently typed programming with sin-
gletons. In Proceedings of the 2012 Haskell Symposium, Haskell ’12, pages
117–130, New York, NY, USA, 2012. ACM.

266
[72] M. Felleisen. The theory and practice of first-class prompts. In Proceedings

of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’88, pages 180–190. ACM, 1988.

[73] M. Felleisen. On the expressive power of programming languages. Science
of Computer Programming, 17(1):35 – 75, 1991.

[74] M. Felleisen, D. P. Friedman, E. Kohlbecker, and B. Duba. A syntactic
theory of sequential control. Theor. Comput. Sci., 52(3):205–237, June 1987.

[75] M. Felleisen, D. P. Friedman, E. E. Kohlbecker, and B. F. Duba. Reasoning
with continuations. In Logic in Computer Science, LICS ’86, 1986.

[76] A. Filinski. Representing monads. In Proceedings of the 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’94, pages 446–457, New York, NY, USA, 1994. ACM.

[77] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of com-
piling with continuations. In Proceedings of the ACM SIGPLAN 1993 Con-
ference on Programming Language Design and Implementation, PLDI ’93,
pages 237–247, New York, NY, USA, 1993. ACM.

[78] M. Flatt, G. Yu, R. B. Findler, and M. Felleisen. Adding delimited and
composable control to a production programming environment. In Proceed-
ings of the 12th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’07, pages 165–176, New York, NY, USA, 2007. ACM.

[79] H. Friedman. Classically and intuitionistically provably recursive functions.
In Higher set theory, pages 21–27. Springer, 1978.

[80] H. Geuvers. The church-rosser property for βη-reduction in typed lambda-
calculi. In Proceedings of the Seventh Annual IEEE Symposium on Logic in
Computer Science, LICS ’92, pages 453–460. IEEE, 1992.

[81] H. Geuvers and B. Werner. On the church-rosser property for expressive
type systems and its consequences for their metatheoretic study. In Logic
in Computer Science, 1994. LICS’94. Proceedings., Symposium on, pages
320–329. IEEE, 1994.

267
[82] J. H. Geuvers. Logics and type systems. PhD thesis, University of Nijmegen,

1993.

[83] E. Giménez. Codifying guarded definitions with recursive schemes. In Se-
lected Papers from the International Workshop on Types for Proofs and Pro-
grams, TYPES ’94, pages 39–59, London, UK, 1995. Springer-Verlag.

[84] J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures dans
l’arithmétique. PhD thesis, Université Paris VII, 1972.

[85] J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and types, volume 7. Cam-
bridge University Press, 1989.

[86] H. Goguen, C. McBride, and J. McKinna. Eliminating Dependent Pattern
Matching, pages 521–540. Springer Berlin Heidelberg, Berlin, Heidelberg,
2006.

[87] C. S. Gordon. A generic approach to flow-sensitive polymorphic effects. In
LIPIcs-Leibniz International Proceedings in Informatics, volume 74. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[88] T. G. Griffin. A formulae-as-types notion of control. In Proceedings of the
17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’90, pages 47–58, New York, NY, USA, 1990. ACM.

[89] R. Gu, Z. Shao, H. Chen, X. Wu, J. Kim, V. Sjöberg, and D. Costanzo.
CertiKOS: An extensible architecture for building certified concurrent os
kernels. In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation, OSDI’16, pages 653–669, Berkeley, CA, USA,
2016. USENIX Association.

[90] P. R. Harper. Practical Foundations for Programming Languages. Cambridge
University Press, New York, NY, USA, 2012.

[91] R. Harper and M. Lillibridge. Polymorphic type assignment and cps conver-
sion. Lisp Symb. Comput., 6(3-4):361–380, Nov. 1993.

268
[92] R. Harper and M. Lillibridge. Operational interpretations of an extension

of f-omega with control operators. Journal of Functional Programming, 6,
1996.

[93] H. Herbelin. On the degeneracy of Σ-types in presence of computational
classical logic. In International Conference on Typed Lambda Calculi and
Applications, TLCA ’05, pages 209–220. Springer, 2005.

[94] H. Herbelin. A constructive proof of dependent choice, compatible with clas-
sical logic. In Proceedings of the 2012 27th Annual IEEE/ACM Symposium
on Logic in Computer Science, LICS ’12, pages 365–374. IEEE Computer
Society, 2012.

[95] W. A. Howard. The formulae-as-types notion of construction. To HB Curry:
essays on combinatory logic, lambda calculus and formalism, 44:479–490,
1980.

[96] D. Ilik. Delimited control operators prove double-negation shift. Annals of
Pure and Applied logic, 163(11):1549–1559, 2012.

[97] G. Jaber, G. Lewertowski, P.-M. Pédrot, M. Sozeau, and N. Tabareau. The
definitional side of the forcing. In Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’16, pages 367–376, New
York, NY, USA, 2016. ACM.

[98] L. Jia, J. A. Vaughan, K. Mazurak, J. Zhao, L. Zarko, J. Schorr, and
S. Zdancewic. Aura: A programming language for authorization and au-
dit. In Proceedings of the 13th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’08, pages 27–38, New York, NY, USA,
2008. ACM.

[99] L. Jia, J. Zhao, V. Sjöberg, and S. Weirich. Dependent types and program
equivalence. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’10, pages 275–
286, New York, NY, USA, 2010. ACM.

269
[100] Y. Kameyama and M. Hasegawa. A sound and complete axiomatization of

delimited continuations. In Proceedings of the 8th ACM SIGPLAN Inter-
national Conference on Functional Programmin, ICFP ’03, pages 177–188,
New York, NY, USA, 2003. ACM.

[101] Y. Kameyama, O. Kiselyov, and C.-c. Shan. Shifting the stage: Staging with
delimited control. In Proceedings of the 2009 ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation, PEPM ’09, pages 111–120,
New York, NY, USA, 2009. ACM.

[102] Y. Kameyama and A. Tanaka. Equational axiomatization of call-by-name
delimited control. In Proceedings of the 12th International ACM SIGPLAN
Symposium on Principles and Practice of Declarative Programming, PPDP
’10, pages 77–86, New York, NY, USA, 2010. ACM.

[103] O. Kiselyov. Call-by-name linguistic side effects. In ESSLLI 2008 Workshop
on Symmetric calculi and Ludics for the semantic interpretation, 2008.

[104] O. Kiselyov, C.-c. Shan, and A. Sabry. Delimited dynamic binding. In The
33th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’06, pages 26–37. ACM, 2006.

[105] O. Kiselyov and K. Sivaramakrishnan. Eff directly in ocaml. In ML Work-
shop, 2016.

[106] A. Kolmogohov. On the principle of the excluded middle. In J. van Hei-
jenoort, editor, From Frege to Gödel: A Source Book in Mathematical Logic,
1879-1931, pages 414–437. Cambridge, Massachusetts: Harvard University
Press, 1967.

[107] J. Koppel, G. Scherer, and A. Solar-Lezama. Capturing the future by replay-
ing the past (functional pearl). Proc. ACM Program. Lang., 2(ICFP):76:1–
76:29, July 2018.

[108] S. Krishnamurthi, P. W. Hopkins, J. McCarthy, P. T. Graunke, G. Pettyjohn,
and M. Felleisen. Implementation and use of the PLT Scheme web server.
Higher Order Symbolic Computation, 20(4):431–460, Dec. 2007.

270
[109] Y. Lafont, B. Reus, and T. Streicher. Continuation semantics or expressing

implication by negation. Univ. München, Inst. für Informatik, 1993.

[110] R. Lepigre. A classical realizability model for a semantical value restriction.
In European Symposium on Programming Languages and Systems, ESOP
’16, pages 476–502. Springer, 2016.

[111] X. Leroy. Formal certification of a compiler back-end, or: programming a
compiler with a proof assistant. In 33rd ACM Symposium on Principles of
Programming Languages, POPL ’06, pages 42–54, 2006.

[112] P. Letouzey. A new extraction for coq. In Proceedings of the 2002 Inter-
national Conference on Types for Proofs and Programs, TYPES’02, pages
200–219, Berlin, Heidelberg, 2003. Springer-Verlag.

[113] P. B. Levy. Call-by-push-value: A Functional/imperative Synthesis, volume 2.
Springer Science & Business Media, 2012.

[114] Z. Luo. An Extended Calculus of Constructions. PhD thesis, University of
Edinburgh, 1990.

[115] Z. Luo. Coercive subtyping. Journal of Logic and Computation, 9(1):105–
130, 1999.

[116] Z. Luo. Notes on universes in type theory, 2012.

[117] M. Masuko and K. Asai. Caml light+ shift/reset= caml shift. Theory and
Practice of Delimited Continuations (TPDC 2011), pages 33–46, 2011.

[118] M. Materzok and D. Biernacki. A dynamic interpretation of the CPS hierar-
chy. In Asian Symposium on Programming Languages and Systems, APLAS
’12, pages 296–311. Springer, 2012.

[119] A. R. Meyer and M. Wand. Continuation semantics in typed lambda-calculi
(summary). In Proceedings of the Conference on Logic of Programs, pages
219–224, London, UK, 1985. Springer-Verlag.

[120] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT
Press, Cambridge, MA, USA, 1990.

271
[121] É. Miquey. A classical sequent calculus with dependent types. In European

Symposium on Programming, pages 777–803. Springer, 2017.

[122] E. Miquey. A sequent calculus with dependent types for classical arithmetic.
In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS ’18, pages 720–729, New York, NY, USA, 2018. ACM.

[123] S. Monnier and D. Haguenauer. Singleton types here, singleton types there,
singleton types everywhere. In Proceedings of the 4th ACM SIGPLAN Work-
shop on Programming Languages Meets Program Verification, PLPV ’10,
pages 1–8, New York, NY, USA, 2010. ACM.

[124] C. R. Murthy. An evaluation semantics for classical proofs. In Proceedings
of Sixth Annual IEEE Symposium on Logic in Computer Science, LICS ’91,
pages 96–107. IEEE, 1991.

[125] R. P. Nederpelt. Strong normalization in a typed lambda calculus with lambda
structured types. PhD thesis, Technische Hogeschool, Eindhoven, the Nether-
lands, 1973.

[126] L. R. Nielsen. A selective cps transformation. Electronic Notes in Theoretical
Computer Science, 45:311–331, 2001.

[127] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: a proof assistant
for higher-order logic, volume 2283. Springer Science & Business Media,
2002.

[128] U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Chalmers University of Technology, 2007.

[129] X. Ou, G. Tan, Y. Mandelbaum, and D. Walker. Dynamic typing with
dependent types. In IFIP TCS, 2004.

[130] E. Palmgren. On universes on type theory, 1998.

[131] M. Parigot. Lambda-mu-calculus: An algorithmic interpretation of classical
natural deduction. In Proceedings of the International Conference on Logic
Programming and Automated Reasoning, LPAR ’92, pages 190–201, London,
UK, 1992. Springer-Verlag.

272
[132] P.-M. Pédrot. A parametric cps to sprinkle cic with classical reasoning. In

Syntax and Semantics of Low-Level Languages, LOLA ’17, 2017.

[133] M. Petrolo. Negative translations and duality: toward a unified approach.
In Ludics, dialogue and interaction, pages 188–204. Springer, 2011.

[134] B. C. Pierce. Types and Programming Languages. The MIT Press, 2002.

[135] G. Plotkin. Lambda-definability and logical relations. Edinburgh University,
1973.

[136] G. Plotkin and M. Pretnar. Handlers of algebraic effects. In European Sym-
posium on Programming, ESOP ’09, pages 80–94. Springer, 2009.

[137] G. D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical
computer science, 1(2):125–159, 1975.

[138] C. Queinnec. The influence of browsers on evaluators or, continuations to
program web servers. In ACM SIGPLAN Notices, volume 35, pages 23–33.
ACM, 2000.

[139] A. Ranta. Type-theoretical grammar. Oxford: Clarendon Press, 1994.

[140] T. Rompf, I. Maier, and M. Odersky. Implementing first-class polymorphic
delimited continuations by a type-directed selective CPS-transform. In Pro-
ceedings of the 14th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’09, pages 317–328. ACM, 2009.

[141] M. Rooth. A theory of focus interpretation. Natural Language Semantics,
1(1):75–116, 1992.

[142] J. Rushby, S. Owre, and N. Shankar. Subtypes for specifications: Predicate
subtyping in PVS. IEEE Trans. Softw. Eng., 24(9):709–720, Sept. 1998.

[143] P. Severi and E. Poll. Pure type systems with definitions. In International
Symposium on Logical Foundations of Computer Science, pages 316–328.
Springer, 1994.

273
[144] C.-c. Shan. A continuation semantics of interrogatives that accounts for

baker’s ambiguity. In Semantics and Linguistic Theory, volume 12, pages
246–265, 2002.

[145] C.-c. Shan. Monads for natural language semantics. In Proceedings of the
ESSLLI 2001 Student Session, pages 285–298, 2002.

[146] C.-C. Shan. From shift and reset to polarized linear logic. Unpublished,
2003.

[147] C.-c. Shan. Linguistic side effects. PhD thesis, Harvard University, 2005.

[148] C.-c. Shan. A static simulation of dynamic delimited control. Higher-Order
and Symbolic Computation, 20(4):371–401, 2007.

[149] M. A. Sheldon and D. K. Gifford. Static dependent types for first class mod-
ules. In Proceedings of the 1990 ACM Conference on LISP and Functional
Programming, LFP ’90, pages 20–29, New York, NY, USA, 1990. ACM.

[150] V. Sjöberg. A Dependently Typed Language with Nontermination. PhD
thesis, University of Pennsylvania, 2015.

[151] V. Sjöberg, C. Casinghino, N. Collins, Y. K. Ahn, T. Sheard, H. D. Eades III,
P. Fu, G. Kimmell, A. Stump, and S. Weirich. Irrelevance, heterogeneous
equity, and call-by-value dependent type systems. In Fourth Workshop on
Mathematically Structured Functional Programming, MSEP ’12, 2012.

[152] M. H. Sørensen. Strong normalization from weak normalization in typed
λ-calculi. Information and Computation, 133(1):35–71, 1997.

[153] M. Sozeau. Un environnement pour la programmation avec types dépendants.
PhD thesis, Université de Paris-Sud. Faculté des Sciences d’Orsay (Essonne),
2008.

[154] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed actors for java. In Euro-
pean Conference on Object-Oriented Programming, pages 104–128. Springer,
2008.

274
[155] N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang.

Secure distributed programming with value-dependent types. In Proceed-
ings of the 16th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’11, pages 266–278, New York, NY, USA, 2011. ACM.

[156] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest,
K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K. Zinzindohoue,
and S. Zanella-Béguelin. Dependent types and multi-monadic effects in F*.
In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’16, pages 256–270, New York,
NY, USA, 2016. ACM.

[157] N. Swamy, J. Weinberger, C. Schlesinger, J. Chen, and B. Livshits. Verifying
higher-order programs with the dijkstra monad. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’13, pages 387–398, New York, NY, USA, 2013. ACM.

[158] M. Takahashi. Parallel reductions in λ-calculus. Information and computa-
tion, 118(1):120–127, 1995.

[159] A. Tanaka and Y. Kameyama. A call-by-name cps hierarchy. In T. Schrijvers
and P. Thiemann, editors, Functional and Logic Programming, pages 260–
274, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[160] The Coq Development Team. The Coq proof assistant reference manual.
https://coq.inria.fr/refman/, Mar. 2018.

[161] The DeepSpec Project. https://deepspec.org.

[162] H. Thielecke. From control effects to typed continuation passing. In Proceed-
ings of the 30th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages", POPL ’03, 2003.

[163] M. Vákár. In Search of Effectful Dependent Types. PhD thesis, Oxford
University, 2017.

[164] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones. Refine-
ment types for haskell. SIGPLAN Not., 49(9):269–282, Aug. 2014.

https://coq.inria.fr/refman/
https://deepspec.org

275
[165] P. Wadler. Theorems for free! In Proceedings of the Fourth International

Conference on Functional Programming Languages and Computer Architec-
ture, FPCA ’89, pages 347–359, New York, NY, USA, 1989. ACM, ACM.

[166] P. Wadler. The essence of functional programming. In Proceedings of the
19th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’92, pages 1–14, New York, NY, USA, 1992. ACM.

[167] P. Wadler. Call-by-value is dual to call-by-name. In Proceedings of the
Eighth ACM SIGPLAN International Conference on Functional Program-
ming, ICFP ’03, pages 189–201, New York, NY, USA, 2003. ACM.

[168] B. Werner. Une Théorie des Constructions Inductives. PhD thesis, Université
Paris-Diderot - Paris VII, May 1994.

[169] A. K. Wright. Simple imperative polymorphism. Lisp Symb. Comput.,
8(4):343–355, Dec. 1995.

[170] A. K. Wright and M. Felleisen. A syntactic approach to type soundness.
Information and computation, 115(1):38–94, 1994.

[171] H. Xi. Weak and strong beta normalisations in typed λ-calculi. In Inter-
national Conference on Typed Lambda Calculi and Applications, TLCA ’97,
pages 390–404. Springer, 1997.

[172] H. Xi. Dependent ml: An approach to practical programming with dependent
types. J. Funct. Program., 17(2):215–286, Mar. 2007.

[173] H. Xi, C. Chen, and G. Chen. Guarded recursive datatype constructors. In
Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’03, pages 224–235, New York, NY, USA,
2003. ACM.

[174] H. Xi and F. Pfenning. Dependent types in practical programming. In
Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’99, pages 214–227, New York, NY, USA,
1999. ACM.

276
[175] H. Xi and C. Schürmann. Cps transform for dependent ML. In Meeting Re-

port of the 8th Workshop on Logic, Language, Information and Computation
(WoLLIC ’01), pages 739–754, 2001.

[176] N. Zeilberger. Polarity and the logic of delimited continuations. In Logic
in Computer Science (LICS), 2010 25th Annual IEEE Symposium on, pages
219–227. IEEE, 2010.

	Introduction
	Ensuring Safety: Dependent Types
	Increasing Expressiveness: Delimited Control
	Mixing Dependency and Control
	Contributions and Outline

	Shift, Reset, and Dependent Types
	Typing Programs with Shift and Reset
	Simply Typed Shift and Reset
	Three Restrictions on Type Dependency
	Dependent Types and Effects

	The Dellina- Language
	Syntax
	Evaluation, Reduction, and Equivalence
	Typing
	Metatheory
	Examples

	CPS Translating Dellina-
	Challenges of CPS Translation
	Past Solution: Answer-type Polymorphism + CPS Axioms
	Our Solution: Selective Translation
	Target Language
	CPS Translation
	Proof of Type Preservation
	Related Work

	The Dellina Language
	Polymorphism and Type Operators
	Prop, Set, and Universe Hierarchy
	Inductive Datatypes
	Local Definitions
	Example

	Call-by-name Dellina-
	Syntax
	Evaluation, Reduction, and Equivalence
	Typing
	CPS Translation

	Logical Understanding of Dellina
	Logical vs. Non-logical Objects
	Intuitionistic vs. Classical Logic
	Related Work

	Conclusion and Perspectives
	Multiple Effects
	Control Effects at Higher Levels
	Propositional Equality
	Specialization by Unification

	Control Operators and Dependent Types in Natural Languages
	Introduction to Natural Language Semantics
	Solving NL Challenges using PL Techniques
	Dellina for Natural Language Semantics

