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1 Introduction

The theory of operator algebras emerged from quantum mechanics in the

study of Murray and von Neumann to give it a mathematical framework. In

this theory, the Gelfand–Naimark theorem states that a commutative oper-

ator algebra (unital C∗-algebra) is isomorphic to the algebra of continuous

functions on some compact space. According to this fundamental result, a

general operator algebra can be seen as an algebra of continuous functions

on a hypothetical “noncommutative” compact topological space.

The theorem of Potryagin states that the dual of a locally compact abelian

group G is again a locally compact abelian group Ĝ, which is the group of

characters. One of the major motivations of the study in topological quantum

groups and Hopf algebras is the extension of Potryagin duality to non-abelian

locally compact groups. Aiming at the generalization of Potryagin duality

in the setting of C∗-algebras and von Neumann algebras, the theory of Kac

algebras was introduced by Kac and Vaunermann [17], and by Enock and

Schwartz [6]. The C∗-algebraic research was conducted by Vallin and Enock

[7, 18]. They gave the first extension of Pontryagin duality to all locally

compact groups in a framework of Kac algebras in von Neumann setting.

These works turned out to be unsatisfactory as their assumption on the

antipode was too strong and excluded many interesting examples.

Aiming at overcoming such limitation, the theory of compact quantum

groups developed by Woronowicz [20, 21, 23], which gave examples which

do not sit in the framework of Kac algebra. The concept of Woronowicz’s

compact quantum groups was very attractive in the viewpoint of the concise-

ness of the definition and the striking similarity between its corepresentation

theory and the representation theory of compact groups.

In the theory of compact quantum groups, the most important example

is the quantum SUq(2), constructed in [21]. This gives a one-parameter
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deformation of the algebra of functions on the compact group SU(2) as a C∗-

algebra with coproduct, which represents a group law on the noncommutative

space SUq(2). The case of q = 1 corresponds to the algebra of SU(2).

Parallel to Woronowicz’s work, Drinfeld and Jimbo defined q-deformation

of semisimple Lie groups, which are new Hopf algebras, by deforming univer-

sal enveloping algebras of semisimple Lie algebras through the algebraic study

of quantum integrable systems [5, 8]. The C∗-algebra of SUq(2) contains

a dense Hopf ∗-algebra of matrix coefficients of unitary corepresentations,

which can be regarded as the Hopf dual of the Drinfeld–Jimbo q-deformation

Hopf algebra. The theory of semisimple Lie algebras also incorporates with

an extension to the case of affine Lie algebras, which can be tackled simulta-

neously with the usual semisimple algebras in the framework of Kac–Moody

Lie algebras. Drinfeld and Jimbo also developed in the case of quantum

affine enveloping algebras and, more generally, the quantum analogs of the

Kac–Moody Lie algebras [11].

A significant feature of Woronowicz’s construction is that the negative

range q < 0 is allowed, which is different from naively setting q to be a neg-

ative number in the Drinfeld–Jimbo construction. In particular, a concrete

description for q = −1 is given by Zakrzewski’s realization of C(SU−1(2))

as a C∗-subalgebra of M2(C(SU(2))) [24]. This technique is also useful for

computation in K-theory of the algebra C(SU−1(2)) [1].

Regarding the quantum subgroups of SU−1(2), a pioneering study was

carried out by Podleś [14], who investigated the subgroups and the quotient

spaces of quantum SU(2). The complete classification of quantum homo-

geneous spaces over SUq(2) realized as coideals are obtained by Tomatsu

[16], inspired by Wassermann’s classification of ergodic actions of SU(2) [19].

Their results gave a classification of coideals in terms of graphs. According

to the McKay correspondence, the homogeneous spaces for SU(2) were clas-

sified by the extended Dynkin diagrams, and their results provided a very
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similar picture.

By Woronowicz’s Tannaka–Krein duality [22], a compact quantum group

G can be recovered from their representation category RepG, the C∗-tensor

category of finite dimensional unitary representations, and the fiber func-

tor. The SUq(2) is distinguished in this respect, because its representation

category has a universality for the fundamental representation and the asso-

ciated morphism which solves its conjugate equations. The Tannaka–Krein

duality for compact quantum homogeneous spaces over a compact quantum

group G, established by De Commer and Yamashita, says that such homoge-

neous spaces correspond to module C∗-categories over RepG. Such module

categories can be also described in terms of tensor functors from RepG to

a category of bi-graded Hilbert spaces [3], the quantum SU(2) case being

explained in detail in [4]. The universality of the representation category

of SUq(2) implies that the quantum homogeneous spaces over SUq(2) are

classified by graphs generalizing the McKay correspondence.

The Kac–Paljutkin Hopf algebra was introduced by Kac and Paljutkin

as the smallest example of semisimple Hopf algebra which is neither commu-

tative (function algebra of finite group) nor cocommutative (group algebra

of finite group) [9]. In this paper, we show that this algebra appears as a

quotient of C(SU−1(2)). Conceptually, the corresponding quantum group

GKP can be regarded as a quantum subgroup of SU−1(2), and the quotient

map of Hopf algebras is “restriction” of functions.

A key fact for us is the corepresentation category of the Kac–Paljutkin

algebra can be realized as a Tambara–Yamagami tensor category [15] asso-

ciated with the Krein 4-group, K4 = Z/2Z× Z/2Z.

We use the graded twist method of Bichon–Neshveyev–Yamashita [2] as

another crucial technique to obtain Hopf ∗-homomorphism from C(SU−1(2)).

This twisting gives a useful description of the Hopf algebra C(SU−1(2)) as

a deformation of the Hopf algebra C(SU(2)), suited to study of its Hopf
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quotients. We apply their method for describing quantum subgroups of a

compact quantum group obtained as the graded twisting of a genuine com-

pact group.

This paper has nine sections including this introduction organized as fol-

lows. In Section 2, we give the operator algebraic approach to quantum

groups such as the definitions of compact quantum groups and their repre-

sentation theory. By Woronowicz’s definition of a compact quantum group,

it becomes possible to generalize the whole theory of compact groups to the

quantum group setting. The essential fact is the existence of a unique state

on A, that is left and right invariant. The state is called the Haar state of

the compact quantum group.

In Section 3, we explain the theory of Hopf ∗-algebras because the theory
of compact quantum groups involves the aspects of a purely algebraic nature

on the one hand and of a topological nature on the other. For a compact

quantum group G, we construct the Hopf ∗-algebra (C[G],∆) of the matrix

coefficients of all finite dimensional representations of G. Furthermore, we

give a characterization of the Hopf ∗-algebra (C[G],∆).

In Section 4, we introduce C∗-tensor categories to understand compact

quantum groups from the perspective of categories. The crucial fact is the

extension of the Tannaka–Krein duality to the quantum setting. Moreover,

we give the definition of module C∗-categories.

Section 5 is a preliminary section on the Tambara–Yamagami tensor cate-

gories and the graded twisting of Hopf algebras. We also recall a presentation

of the Kac–Paljutkin algebra following [15]. we describe the construction of

the graded twisting of Hopf algebras and then recall that the Hopf algebra

C(SU−1(2)) is isomorphic to the graded twisting of C(SU(2)).

In Section 6, we give a realization of Kac–Paljutkin Hopf algebra as a

quotient of C(SU−1(2)). An essential ingredient in our computation is com-

parison of the two different kinds of projective representations of the Krein
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4-group.

In Section 7, we give an explanation of the one-dimensional representation

of Kac–Paljutkin quantum group. In addition, we also describe the associated

coideal which is one of the type D∗
4 discussed in [16], which is also suggested

in [14].

Section 8 treats the topics of asymmetric simple exclusion processes (ASEP).

We focus on the transition matrices for a usual ASEP and related facts

on Temperley–Lieb algebra. Then, we explain the extension to three-state

ASEP using the tensor product of the fundamental representation of SUq(2).

The content of this section is based on the talk in the workshop on“ Non-

commutative Probability and Related Fields”held on 21 November 2019 at

Ochanomizu University.

This paper includes the parts of contents in [10], together with back-

ground materials and expositions on related works.
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2 Compact quantum groups

2.1 Definitions

For general theory of compact quantum groups, we refer to [13]. When

we deal with C∗-algebras, the symbol ⊗ denotes the minimal tensor product.

Definition 1. A compact quantum group is a pair (A,∆) of an unital C∗-

algebra A and an unital ∗-homomorphism ∆: A→ A⊗A called comultipli-

cation such that

1. (coassociativity) (∆⊗ ι)∆ = (ι⊗∆)∆,

2. (cancelation property) the spaces

(A⊗ 1)∆(A) = span{(a⊗ 1)∆(b)|a, b ∈ A},

(1⊗ A)∆(A) = span{(1⊗ a)∆(b)|a, b ∈ A}

are dense in A⊗ A.

Example 2. Let G be a compact group. Then a compact quantum group

(A,∆) can be constructed as follows. An unital C∗-algebra A is the algebra

C(G) of complex valued continuous functions on G. In this case A⊗ A can

be identified with C(G × G) so the comultiplication ∆: C(G) → C(G × G)

is given by

∆(f)(g, h) = f(gh) for all f ∈ C(G), g, h ∈ G.

Any compact quantum group (A,∆) with abelian A is of this form. There-

fore we write (C(G),∆) as a suggestive notation for any compact quantum

group, and use G to denote the object behind it.

Definition 3. Let q be a real number such that |q| ≤ 1, and q ̸= 0. The

quantum SU(2) group SUq(2) is defined as follows. The algebra C(SUq(2))
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is the universal C∗-algebra generated by two elements α and γ such that

(uqij)i,j =

α −qγ∗

γ α∗

 is unitary. (1)

The comultiplication ∆ is defined by

∆(uqij) =
∑
k

uqik ⊗ uqkj.

Explicitly, we can write this comultiplication as

∆(α) = α⊗ α− qγ∗ ⊗ γ, ∆(γ) = γ ⊗ α + α∗ ⊗ γ.

From now unless we want to be specific about q we write uij for u
q
ij.

If q = 1 then we can get the usual compact group SU(2). For q ̸= 1

the compact quantum group SUq(2) can be considered as a deformations of

SU(2). We are particularly interested in the case of q = −1, in which case

the relation (1) becomes

α∗α + γ∗γ = 1, αα∗ + γγ∗ = 1, γ∗γ = γγ∗, αγ = −γα, αγ∗ = −γ∗α.

Definition 4. Let F ∈ GLn(C), n ≥ 2, such that FF = ±In, where F
denotes the matrix with entry-wise complex conjugates of F . The algebra

C(O+
F ) is the universal C∗-algebra generated by uij, 1 ≤ i, j ≤ n, such that

U = (uij)i,j is unitary and U = FU cF−1 (U c = (u∗ij)i,j).

The comultiplication ∆: C(O+
F ) → C(O+

F )⊗ C(O+
F ) is defined by

∆(uij) =
∑
k

uik ⊗ ukj.

This compact quantum group O+
F is called the free orthogonal quantum group

associated with F .

We note that SUq(2) is an example of the free orthogonal quantum group

by taking the matrix

F =

 0 −sgn(q)|q| 12

|q|− 1
2 0

 .
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2.2 Haar state

Let G be a compact quantum group. For bounded linear functionals ω1,

ω2 on C(G), define the convolution by

ω1 ∗ ω2 = (ω1 ⊗ ω2)∆.

If G is a genuine group, then this is same as the definition of the convolution

of measures on G. In this case, the Haar measure ν on G is characterized by

the identity µ ∗ ν = ν ∗ µ = µ(G)ν for any complex measure µ on G.

Theorem 5. For any compact quantum group G, there exists a unique state

h on C(G) such that

ω ∗ h = h ∗ ω = ω(1)h

for any ω ∈ C(G)∗. The state h is called the Haar state.

Proof. We show the existence of h in several steps.

Step 1. If ω is a state on C(G), then there exists a state h on C(G) such

that ω ∗ h = h ∗ ω = h.

We construct h by taking any weak * limit of the states

1

n

n∑
k=1

ω∗k.

Step 2. Let ν be a state on C(G) such that 0 ≤ ν ≤ ω, and ω ∗ h =

h ∗ ω = ω(1)h. Then ν ∗ h = h ∗ ν = ν(1)h.

We may assume that ω(1) = 1. Fix an element a ∈ C(G) and take

b = (ι⊗ h)∆(a). Then we have

(h⊗ ω)((∆(b)− b⊗ 1)∗(∆(b)− b⊗ 1))

= (h ∗ ω)(b∗b)− (h ∗ ω)(∆(b)∗(b⊗ 1))− (h ∗ ω)((b∗ ⊗ 1)∆(b) + h(b∗b)) = 0
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By the coassociativity (∆⊗ ι)∆ = (ι⊗∆)∆ of the coproduct ∆,

(ι⊗ ω)∆(b) = (ι⊗ ω ∗ h)∆(a)

= (ι⊗ h)∆(a)

= b.

Therefore, (h ⊗ ν)((∆(b) − b ⊗ 1)∗(∆(b) − b ⊗ 1)) = 0. By Cauchy-Schwarz

inequality, we have

(h⊗ ν)((c⊗ 1)(∆(b)− b⊗ 1)) = 0

for all C in C(G). Hence we get

(h⊗ ν ∗ h)((c⊗ 1)∆(a)) = (h⊗ ν)((c⊗ 1)∆(b))

= (h⊗ ν)(cb⊗ 1)

= h(cb)ν(1)

= ν(1)(h⊗ h)((c⊗ 1)∆(a)). (2)

Since the space (C(G)⊗ 1)∆(C(G)) is dense in C(G)⊗ C(G), the equation

(2) means that ν ∗ h = ν(1)h. Similarly, we get h ∗ ν = ν(1)h.

End of proof. For a finite set F = {ω1, . . . , ωn} of states on C(G), take

ωF =
1

n
(ω1 + · · ·+ ωn).

By step 1 and step 2, we can find a state hF such that ωF ∗hF = hF ∗ωF = hF .

Hence for every i = 1, . . . , n, we have ωi ∗ hF = hF ∗ ωi = hF . Define h by

taking the weak ∗ limit point of the states hF as F increases. Then this state

h is the Haar state.

2.3 Representations

Definition 6. A representation of a compact quantum group G on a finite

dimensional vector space HU is an invertible element U of B(H)⊗C(G) such
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that

(ι⊗∆)(U) = U12U13 in B(HU)⊗ C(G)⊗ C(G).

The representation U is called unitary if HU is a Hilbert space and U is

unitary. The unitaries U = (uij)i,j in Definition 3 and Definition 4 define

unitary representations of each compact quantum group. They are called

the fundamental representations of the corresponding quantum groups. We

can obviously take direct sums of representations. The tensor product of two

finite dimensional representations U and V is the representation U × V on

HU ⊗HV defined by U × V = U13V23.

Definition 7. Assume (U,HU) and (V,HV ) are finite dimensional represen-

tations of a compact quantum group G. Then an operator T : HU → HV is

an intertwiner from U to V if

(T ⊗ 1)U = V (T ⊗ 1).

The space of intertwiners from U to V is denoted by Mor(U, V ). A

representation (U,HU) is irreducible if Mor(U,U) = C.

Proposition 8 (Schur’s lemma). Let G be a compact quantum group. Two

irreducible unitary representations U and V are either unitarily equivalent

and Mor(U, V ) is one-dimensional, or Mor(U, V ) = 0.

Proof. Take a nonzero intertwiner T : HU → HV so that the scalar T ∗T in

End(U) and TT ∗ in End(V ) are nonzero. Then the operator T is unitary up

to a scalar factor. If we take any other intertwiner S : HU → HV , then T
∗S

belongs to End(U) and it is a scalar operator. Hence we have S = λT for

some λ ∈ C. Therefore, Mor(U, V ) = CT .

Proposition 9. Every finite dimensional representation of a compact quan-

tum group is equivalent to a unitary representation.
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Proof. For a finite dimensional representation U ∈ B(HU) ⊗ C(G), we take

any Hilbert space structure on HU and take an element Q = (ι ⊗ h)(U∗U)

in B(HU). Since U is invertible, it satisfies that U∗U ≥ ϵ1 for some ϵ > 0.

Thus we get Q ≥ ϵ1. Applying (ι⊗ h⊗ ι) to the both sides of the equation

(ι⊗∆)(U∗U) = U∗
13U

∗
12U12U13

and using (h⊗ ι)∆(·) = h(·)1, we obtain

Q⊗ 1 = U∗(Q⊗ 1)U.

Therefore if we take V = (Q1/2⊗1)U(Q−1/2⊗1), it is a unitary representation

on HU . We conclude that Q1/2 ∈ Mor(U, V ).

Theorem 10. Every finite dimensional representation of a compact quantum

group G is a direct sum of irreducible representations.

Proof. Let U ∈ B(H) ⊗ C(G) be a finite dimensional representation of G.

We may assume that U is unitary. Then the space End(U) is a C∗-algebra.

Take a collection of minimal projections {e1, . . . , en} in End(U) such that

e1 + · · ·+ en = 1. Then (ei⊗ 1)U are irreducible representations on eiH and⊕
i(ei ⊗ 1)U is equal to U .

Definition 11. Let G be a compact quantum group and U ∈ B(H)⊗C(G)

be a finite dimensional representation of G. Consider the dual space H∗ of H,

and the map j : B(H) → B(H∗) that sends an operator to the dual operator.

Then the contragredient representation to U is the representation U c on the

dual space defined by

U c = (j ⊗ ι)(U−1) ∈ B(H∗)⊗ C(G).

If H is a Hilbert space, then the dual space H∗ can be identified with

the complex conjugate Hilbert space H̄. In that case, the map j is given by

j(T )ξ̄ = ¯T ∗ξ for all T ∈ B(H) and ξ̄ ∈ H̄, and it is a ∗-anti homomorphism.
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The properties of the contragredient representation U c to a finite repre-

sentation U of a compact quantum group G are follows.

1. U cc is equivalent to U .

2. U cc is irreducible if and only if U is irreducible.

3. The flip map H∗
U ⊗ H∗

V → H∗
V ⊗ H∗

U defines an equivalence between

(U × V )c and V c × U c.

Definition 12. Let G be a compact quantum group and U be a finite dimen-

sional unitary representation of G. The quantum dimension of U is defined

by

dimq(U) = Tr(ρU).

Example 13. Consider a quantum SU(2) group for a real number q such

that |q| ≤ 1 and q ̸= 0. The fundamental representation U = (uij)i,j for

SUq(2) in the formula (1) is irreducible. The given matrix F for for SUq(2)

satisfies that FUF−1 is unitary and Tr(F ∗F ) = Tr((F ∗F )−1). Thus we get

(F−1)∗U c∗F ∗FU cF−1 = 1. By the fact that for a finite unitary representation

U and an operator Q ∈ B(HU), Q is in Mor(U,U cc) if and only if the identity

U c∗(j(Q) ⊗ 1)U c = j(Q) ⊗ 1 hold, we can conclude that j(F ∗F ) = (F ∗F )t

belongs to Mor(U,U cc). Hence we get ρU = (F ∗F )t. More concretely, the

matrix F is given by

F =

 0 −sgn(q)|q| 12

|q|− 1
2 0


Thus we obtain the operator ρU as

ρU = (F ∗F )t =

|q|−1 0

0 |q|

 .

Therefore, the quantum dimension of U is dimq U = Tr(ρU) = |q + q−1|.
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Proposition 14 (Orthogonality relations). Let G be a compact quantum

group, U be an irreducible finite dimensional representation of G, whose

matrix form with respect to an orthonormal basis in HU is (uij)i,j, and let

ρ = ρU . Then

1. The equalities

h(uklu
∗
ij) =

δkiρjl
dimq U

, h(u∗ijukl) =
δjl(ρ

−1)ki
dimq U

.

hold.

2. If V = (vkl)k,l is an irreducible unitary representation which is not

equivalent to U , then h(vklu
∗
ij = h(u∗ijvkl)) = 0.

Proof. (1) For any operator T ∈ B(HU), we have that (ι⊗h)(U(T ⊗1)U∗) ∈
End(U) = C1. Therefore, there exists a unique positive operator ρr ∈ B(HU)

such that

Tr(ρrT )1 = (ι⊗ h)(U(T ⊗ 1)U∗)

for all T ∈ B(HU). Define the operators Qr and Ql in B(H̄U) defined by

Qr = (ι⊗ h)(U c∗U c), Ql = (ι⊗ h)(U cU c∗).

By the property of taking the trace, Tr(XY Z) = Tr(Y ZX) = Tr(j(Y )j(Z)j(X)),

we get that

(dimq U) Tr(ρrT ) = (Tr⊗h)(U(T ⊗ 1)U∗)

= (Tr⊗h)((j ⊗ ι)(U)(j ⊗ ι)(U ∗)(j(T )⊗ 1))

= (Tr⊗h)(U c∗U c(j(T )⊗ 1))

= Tr(Qrj(T ))

= Tr(j(Qr)T ).
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Since Qr =
dimU
dimq U

j(ρU), we have

ρU =
j(Qr)

dimU
=

ρ

dimq U
.

Applying T = mij to the identity Tr(ρrT )T = (ι⊗h)(U(T⊗1)U∗), we obtain

the first equality. Similarly, showing that

Tr(ρ−1T )

dimq U
= 1 = (ι⊗ h)(U ∗(T ⊗ 1)U)

for all T ∈ B(HU) leads the second equality.

(2) Let V be an irreducible unitary representation such that Mor(V, U) =

0 and Mor(U, V ) = 0. Then we get that

(ι⊗ h)(V (S ⊗ 1)U∗) = 0, (ι⊗ h)(U ∗(T ⊗ 1)V ) = 0

for all S : HU → HV and T : HV → HU . This is equivalent to h(vklu
∗
ij) = 0

and h(u∗ijvkl) = 0.

Proposition 15. Let G be a compact quantum group and U be a finite

dimensional unitary representation. Then there exists a unique positive in-

vertible operator ρ ∈ Mor(U,U cc) such that

Tr(·ρ) = Tr(·ρ−1) on End(U) ⊂ B(HU).

We denote by ρU ∈ B(HU) this operator. By definition, dimq U = Tr(ρU).

Proof. There exist pairwise nonequivalent irreducible unitary representations

Ui, 1 ≤ i ≤ n, such that U decomposes into a direct sum of copies of Ui.

In other word, HU =
⊕

i(Ki ⊗ HUi
) for some finite dimensional Hilbert

space Ki, and U =
⊕

i(1 ⊗ Ui). Then we have End(U) =
⊕

i(B(Ki) ⊗ 1).

Therefore, the operator ρ =
⊕

i(1 ⊗ ρUi
) is positive and invertible, and it

satisfies Tr(·ρ) = Tr(·ρ−1).

Assume ρ′ ∈ B(HU) is another positive invertible operator with the above

property. Then ρ−1ρ′ ∈ End(U), and we have ρ′ =
⊕

i(Ti ⊗ ρUi
) for some
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positive invertible operator T ∈ B(Ki). Therefore Tr(·Ti) = Tr(·T−1
i ) on

B(Ki), so we get Ti = T−1
i . Hence Ti = 1 because Ti is positive. Thus we

get ρ = ρ′.

Definition 16. Let G be a compact quantum group, U be a finite dimen-

sional unitary representation of G on HU , and ρU ∈ B(H) be a normalized

positive invertible operator such that Mor(U,U cc) is spanned by ρU . Then

the conjugate representation to U is defined by

Ū = (j(ρU)
1/2 ⊗ 1)U c(j(ρU)

−1/2 ⊗ 1)

in B(H̄U) ⊗ C(G). This is the canonical unitary form of the contragredi-

ent representation U c. The morphism ρU is equal to 1 if and only if the

contragredient representation U c is unitary.

Let us give a list of the properties of the conjugate representation. For

any finite dimensional unitary representation U of a compact quantum group

G, we have the following properties.

1. ¯̄U = U

2. U ⊕ V = Ū ⊕ V̄

3. the flip map H̄U ⊗ H̄V → H̄U ⊗ H̄V defines an equivalence between

U × V and V̄ × Ū .

Proposition 17. Let G be a compact quantum group. Then for any finite

dimensional unuitary representation U of G, we have that ρŪ = j(ρU)
−1. In

particular, dimq Ū = dimq U .

Proof. For an irreducible representation U , we can compute that

(Ū)c = (j ⊗ ι)(Ū)∗

= (j ⊗ ι)(j(ρU)
−1/2 ⊗ 1)U c∗(j(ρU)

−1/2 ⊗ 1))

= (ρ
1/2
U ⊗ 1)(j ⊗ ι)(U c∗)(ρ

−1/2
U ⊗ 1)

= (ρ
1/2
U ⊗ 1)U(ρ

−1/2
U ⊗ 1).
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Therefore, (ρ
1/2
U ⊗ 1)(Ū)c(ρ

1/2
U ⊗ 1) is unitary. It follows that j(ρU)

−1 is in

Mor(Ū , Ū cc). Using an equality Tr(ρU) = Tr(ρ−1
U ), we get ρŪ = j(ρU)

−1.
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3 Hopf ∗-algebras

3.1 Definitions and examples

Definition 18. A pair (A,∆) consisting of a unital ∗-algebra A and a unital

∗-homomorphism ∆: A→ A⊗A is called a Hopf ∗-algebra if ∆ satisfies the

coassociativity (∆ ⊗ ι)∆ = (ι ⊗∆)∆ and there exist linear maps ϵ : A → C

and S : A→ A such that

(ϵ⊗ ι)∆(a) = (ι⊗ ϵ)∆(a) = a and m(S ⊗ ι)∆(a) = m(ι⊗ S)∆(a) = ϵ(a)1

for all a ∈ A, where m : A⊗A→ A is the multiplication map. The map ϵ is

called a counit and S is called an antipode.

Let us list a number of properties of the maps ϵ and S that follow from

the axioms:

1. ϵ and S are uniquely determined;

2. ϵS = ϵ;

3. ϵ is a ∗-homomorphism and S is an anti-homomorphism;

4. ∆S = (S ⊗ S)∆op;

5. S(S(a∗)∗) = a for all a ∈ A.

Example 19. Let G be a compact quantum group. For a unitary represen-

tation U , the element (ωξ,ζ⊗ι)(U) ∈ C(G) for ξ, ζ ∈ HU are called the matrix

coefficients of U , where ωξ,ζ : B(HU) → C is a linear functional defined by

ωξ,ζ(T ) = (Tξ, ζ) for T ∈ B(HU). It is known that the linear span of matrix

coefficients of all finite dimensional representations of G, denoted by C[G],

is a dense ∗-subalgebra of C(G).
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The pair (C[G],∆) forms a Hopf ∗-algebra. In order to prove it, define

linear maps ϵ, S by

(ι⊗ ϵ)(U) = 1, (ι⊗ S)(U) = U−1

for every finite dimensional representation U of G. We take representitative

Uα of the equivalence classes of irreducible finite dimensional representations.

By the orthogonality relations, the matrix coefficients uαij with respect to a

fixed orthonormal basis in HUα form a linear basis in C[G]. Therefore, we

can define linear maps ϵ, S by

ϵ(uαij) = δij, S(uαij) = uα∗ji .

For any finite dimensional finite dimensional representation U , it decomposes

into a direct sum of copies of Uα. Hence, it satisfies

(ι⊗ ϵ)(U) = 1, (ι⊗ S)(U) = U−1.

Applying (ι⊗ ϵ⊗ ι) to the equation (ι⊗∆)(U) = U12U13, we get

(ι⊗ ϵ⊗ ι)(ι⊗∆)(U) = (ι⊗ ϵ⊗ ι)(U12U13) = U.

It leads (ϵ⊗ ι)∆ = ι. Similarly, we compute

(ι⊗ ι⊗ ϵ)(ι⊗∆)(U) = (ι⊗ ι⊗ ϵ)(U12U13) = U

and we get (ι⊗ ϵ)∆ = ι. On the other hand, by applying (ι⊗m)(ι⊗ S ⊗ ι)

to the same equation, we have

(ι⊗m)(ι⊗ S ⊗ ι)(ι⊗∆)(U) = (ι⊗m)(U−1
12 U13)

= U−1U = 1 = (ι⊗ ϵ(·)1)(U).

Therefore, we get m(S ⊗ ι)∆ = ϵ(·)1. Similarly, m(ι ⊗ S)∆ = ϵ(·)1 can be

checked. Thus (C[G],∆) is a Hopf *-algebra.
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Definition 20. Let (A,∆) be a Hopf ∗-algebra and H be a vector space. A

corepresentation of A on H is a linear map δ : H → H ⊗ A such that

(δ ⊗ ι)δ = (ι⊗ δ)δ, (ι⊗ ϵ)δ = ι.

The corepresentation δ is called unitary if H is a Hilbert space and the

equation ⟨δ(ξ), δ(ζ)⟩ = (ξ, ζ)1 holds for all ξ, ζ ∈ H, where ⟨·, ·⟩ is defined by

⟨ξ ⊗ a, ζ ⊗ b⟩ = (ξ, ζ)b∗a

for all a, b ∈ A.

A subspace H ′ of H is said to be invariant if δ(H ′) is contained in H ′⊗A.
The corepresentation is called irreducible if there are no proper invariant

subspace.

If δ : H → H⊗A is a corepresentation on a finite dimensional space, then

δ(ξ) = U(ξ ⊗ 1) for a uniquely determined element U ∈ B(H)⊗A. Namely,

if {ξi}ni=1 is a basis in H and δ(ξi) =
∑

i ξ ⊗ uij, then U =
∑

i,jmij ⊗ uij.

Conversely, any element U ∈ B(H)⊗ A with properties

(ι⊗∆)(U) = U12U13, (ι⊗ ϵ)(U) = 1

defines a corepresentation.

All results on finite dimensional representations of compact quantum

groups can be extended to finite dimensional corepresentations of Hopf ∗-
algebras. Unitarity of δ is the same as unitarity of U . In particular, a finite

dimensional unitary corepresentation of (C[G],∆) is the same thing as a finite

dimensional unitary representation of G. The irreducibility of δ is equivalent

to the irreducibility of U .

3.2 Characterization of Hopf *-algebras arising from

compact quantum groups

We will give a characterization of Hopf *-algebras that arises from com-

pact quantum groups.
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Lemma 21. Let A be a Hopf *-algebra. For any finite or infinite dimensional

corepresentaion δ : H → H ⊗ A, we have

H ⊗ A = δ(H)(1⊗ A).

Proof. Define linear maps S : H ⊗ A→ H ⊗ A and r : H ⊗ A→ H ⊗ A by

S(ξ ⊗ a) = (ι⊗ S)δ(ξ)(1⊗ a), r(ξ ⊗ a) = δ(ξ)(1⊗ a).

We claim that rs = ι. Since the maps r, S are right A-module maps, it

suffices to compute rs on ξ ⊗ 1. Then we get that

rs(ξ ⊗ 1) = r((ι⊗ S)δ(ξ))

= (ι⊗m(ι⊗ S))(δ ⊗ ι)δ(ξ)

= (ι⊗m(ι⊗ S))(ι⊗∆)δ(ξ)

= (ι⊗ ϵ(·)1)δ(ξ)

= ξ ⊗ 1.

It shows that rs = ι. Thus the map r is surjective. We can also check that

the map r is injective and thus it concludes the proof.

In particular, if the corepresentation δ is unitary and K is a closed invari-

ant subspace of H, then the space K⊥ is also invariant. Indeed, for elements

ξ ∈ K⊥ and a ∈ A, we have

⟨δ(ξ), δ(ζ)(1⊗ a)⟩ = (ξ, ζ)a∗ = 0,

and then we get ⟨δ(ξ), ζ ⊗ 1⟩ = 0 for any ζ in K since δ(K)(1⊗A) = K⊗A.

Therefore, δ(ξ) is in K⊥ ⊗ A.

Thus, any finite dimensional corepresentation decomposes into a direct

sum of finite dimensional unitary corepresentations.

Consider a dual space U = A∗. It is a unital *-algebra with the product

given by ων = (ω ⊗ ν)∆, the involution given by ω∗ = ω̄S, and the unit ϵ.
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For every finite dimensional corepresentation U ∈ B(H)⊗A, define a unital

representation πU : U → B(H) by πU(ω) = (ι⊗ω)(U). A subspace K of H is

invariant if and only if K is πU(U)-invariant. When the corepresentation U is

unitary, then πU is a ∗-representation and πU(ω)
∗ = (ι⊗ω)(U ∗) = (ι⊗ω̄)(U∗).

Therefore, if the subspace K is πU(U)-invariant, then the space K⊥ is also

πU(U)-invariant.

Theorem 22. Let (A,∆) be a Hopf *-algebra such that A is generated as

an algebra by the matrix coefficients of finite dimensional unitary corepre-

sentations. Then, (A,∆) = (C[G],∆) for some compact quantum group G.

Proof. Assume A is a C∗-enveloping algebra of A. This is well-defined since

A is generated by matrix coefficients of unitary matircies over A and the

matrix coefficients have universal bounds on the norms for all possible *-

representations on Hilbert spaces. The most important point in this proof is

to show that the canonical homomorphism A→ A is injective. We will show

that there exists a faithful state h on A. It plays a role of the Haar state. In

the following, we construct h in several steps.

Step 1. There exists a unique linear functional h such that h(1) = 1,

(ι⊗ h)∆(a) = h(a)1, (h⊗ 1)∆(a) = h(a)1 for every a ∈ A.

Firstly we show that if U1 ∈ B(H1) ⊗ A, · · · , Un ∈ B(Hn) ⊗ A are

pairwise nonequivalent finite dimensional irreducible corepresentations of

A, then the matrix coefficients of U1, . . . , Un with respect to fixed basis

in H1, . . . , Hn are linearly independent. Define representations πU1 , . . . , πUn

of U = A∗ by πUi
(ω) = (ι ⊗ ω)(Ui). Then they are irreducible and pair-

wise nonequivalent. Thus, by Jacobson’s density theorem, a homomorphism⊕
i πUi

: U →
⊕

iB(Hi) is surjective. By the dimension reason, it happens

in only the case where the matrix coefficients of U1, . . . , Un are linearly inde-

pendent. By the assumption, A is generated by matirx coefficients of finite

dimensional unitary corepresentations. A product of matrix coefficients is
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the matrix coefficients of the tensor product U×V = U13V23 of corepresenta-

tions. Since every finite dimensional unitary corepresentation U decomposes

into a direct sum of irreducible corepresentations, A is spanned by matrix

coefficients of finite dimensional irreducible unitary corepresentations. Take

representatives Uα of equivalence classes of finite dimensional irreducible uni-

tary corepresentations of A. Then the matrix coefficients of Uα with respect

to any basis in HUα form a basis in A. Therefore, we define a linear functional

h on A such that

h(1) = 1, (ι⊗ h)(Uα) = 0 if Uα = 1.

By the equation (ι⊗∆)(Uα) = (Uα)12(Uα)13, the functional h has the required

properties. The uniqueness of h is obvious.

Step 2. (Orthogonality relations) For every α there exists a positive

invertible operator Qα ∈ B(H̄Uα) such that

(ι⊗ h)(U∗
α(T ⊗ 1)Uβ) = δα,β

Tr(Tj(Qα))

dimUα
1

for any T ∈ B(HUβ
, HUα).

Define an operator Qα = (ι⊗ h)(U c∗
α U

c
α) using the contragredient corep-

resentation U c
α = (j⊗ ι)(U−1

α ) = (j⊗S)(Uα) to Uα. The above orthogonality

relations holds with this operator Qα. We show that the operator Qα is pos-

itive invertible for every α. Since we have that j(Qα) ∈ Mor(Uα, U
cc
α ), if Uα

is irreducible, then the space Mor(Uα, U
cc
α ) is at most one-dimensional and

every nonzero operator in Mor(Uα, U
cc
α ) is invertible. Because of the fact that

Tr(j(Qα)) = dimUα > 0, it is enough to show that the space Mor(Uα, U
cc
α )

contains a nonzero positive operator. Since

πUc
α
(ω) = j(πUα(ωS))

and the antipode S is bijective, the contragredient corepresentation U c
α is

irreducible. By the fact that the matrix coefficients of Uα are linearly in-
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dependent, there exists a finite dimensional irreducible unitary corepresen-

tation V among Uβ that is equivalent to U c
α. Choose an invertible operator

T ∈ Mor(U c
α, V ), then j(T ) is in Mor(V c, U cc

α ). On the other hand, by taking

adjoint and applying (j ⊗ ι) to the identity (T ⊗ 1)U c
α = V (T ⊗ 1), we get

(j(T )∗ ⊗ 1)U c
α = (j ⊗ ι)(V ∗)(j(T )∗ ⊗ 1)

= V c(j(T )⊗ 1).

Thus, j(T )∗ is in Mor(Uα, V
c). Hence, Mor(Uα, U

cc
α ) contains the positive

invertible operator j(T )j(T )∗.

Step 3. For every nonzero element a ∈ A, we have h(a∗a) ≥ 0.

Let uαij be the matrix coefficients of Uα with respect to an orthonormal

basis in which the positive invertible operators j(Qα) are diagonal. By step 2,

uαij form orthogonal basis in A with respect to the sesquilinear form (a, b) =

h(b∗a). By (uαij, u
α
ij) ≥ 0, (a, b) = h(b∗a) is positive definite.

End of proof. Define a left action of A on A by l(a)(b) = ab seeing A as

a pre Hilbert space with the scalar product (a, b) = h(b∗a). It is a faithful

∗-representation of A on A. This is a representation by bounded operators.

Hence, A is spanned by the matrix coefficients of unitary matrices over A.

Since every entry of a unitary matrix must act as an operator of norm less

than 1, this representation can be extend to a faithful representation on the

Hilbert space completion of A. Therefore, A is considered as a subalgebra

of A. The coproduct ∆: A ⊗ A → A can be extended to ∆: A ⊗ A → A.

Applying Lemma 21 with δ = ∆, we get (1 ⊗A)∆(A) = A ⊗A. Similarly,

(A⊗ 1)∆(A) = A⊗A. Thus, (A,∆) has the cancellation property. Hence,

it is a compact quantum group G. Since A is dense in C[G] and A is spanned

by the matrix coefficients of irreducible unitary representations of G, by the

orthogonality relations, we get A = C[G].

For every finite dimensional Hopf *-algebra A, its dual space U = A∗ is a

∗-algebra with the product ων = (ω⊗ν)∆ and the involution ω∗ = ω̄S. Then
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(U , δ̂) is a Hopf *-algebra with the coproduct, the antipode, and the counit

given by δ̂(ω)(A ⊗ b) = ω(ab) for a, b ∈ A, Ŝ(ω) = ωS, and ϵ̂(ω) = ω(1). It

is called the dual of (A,∆). The dual of (U , δ̂) is (A,∆).

Definition 23. The algebra of functions on the dual discrete quantum group

Ĝ of a compact quantum group G is the *-algebra U(G) = C[G]∗ with the

multiplication ων = ω ∗ ν = (ω ⊗ ν)∆ and the involution ω∗ = ω̄S.

For every finite dimensional representation U of G, a representation πU

of U(G) is given by πU(ω) = (ι ⊗ ω)(U). If U is unitary, then πU is ∗-
preserving. Fix the representatives Uα of equivalence classes of irreducible

unitary representations of G. Then C[G] is a direct sum of spaces spanned

by the matrix coefficients of Uα. Therefore, πUα define a ∗-homomorphism

U(G) ≃
∏
α

B(HUα).

Let U(Gn) be the dual space of C[G]⊗n. Similarly to U(G) case, U(Gn)

is a ∗-algebra which is canonically isomorphic to∏
α1,...,αn

B(HUα1
⊗ · · · ⊗HUαn

).

Define ∆̂ by ∆̂(ω)(a ⊗ b) = ω(ab) for any a, b ∈ C[G]. Then ∆̂ is a unital

∗-homomorphism. Equivalently, ∆̂(ω) ∈ U(G×G) is a unique element such

that (πUα⊗πUβ
)∆̂(ω)T = TπUγ (ω) for any T ∈ Mor(Uγ, Uα×Uβ). In general,

(̂∆)(ω) is not in the algebraic tensor product U(G) ⊗ U(G) ⊂ U(G × G).

Define linear maps ϵ̂ : U(G) → C and Ŝ : U(G) → U(G) by ϵ̂(ω) = ω(1) and

Ŝ(ω) = ωS. Then the maps ∆̂, ϵ̂, Ŝ, and the multiplication map m : U(G)⊗
U(G) → U(G) can be applied to the factors of U(G)⊗n. and then they can

be extend to U(Gn). For example, ι⊗ ∆̂ : U(G2) → U(G3) by (ι⊗ ∆̂)(ω)(a⊗
b⊗ c) = ω(a⊗ bc). Therefore, (U(G), ∆̂) is a Hopf ∗-algebra.
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4 C∗-Tensor categories

4.1 C∗-Tensor categories and tensor functors

Definition 24. A category C is a C∗-category if

1. For all objects U, V in C the space of morphisms Mor(U, V ) from U to V

is a Banach space, the map Mor(V,W )×Mor(U, V ) → Mor(U,W ), (S, T ) 7→
ST is bilinear, and ∥ST∥ ≤ ∥S∥∥T∥;

2. ∗ : C → C is antilinear contravariant functor that is the identity map

on objects, so if T ∈ Mor(U, V ) then T ∗ ∈ Mor(V, U), satisfying

(a) T ∗∗ = T for any morphisms T .

(b) ∥T ∗T∥ = ∥T∥2 for any T ∈ Mor(U, V ). In particular, End(U) =

Mor(U,U) is a unital C∗-algebra for any object U .

(c) for any morphism T , the element T ∗T ∈ End(U) is positive.

The category C is a C∗-tensor category if in addition we are given a bilinear

bifunctor ⊗ : C × C → C, (U, V ) 7→ U ⊗ V , natural unitary isomorphisms

αU,V,W : (U⊗V )⊗W → U⊗ (V ⊗W ), called the associativity morphisms, an

object 1, called the unit object, and natural unitary isomorphisms λU : 1 ⊗
U → U, ρU : U ⊗ 1→ U , such that

1. the pentagon diagram commutes.

((U ⊗ V )⊗W )⊗X

α⊗ι

uukkkk
kkkk

kkkk
kkkk

kkkk
k

α12,3,4

))SSS
SSSS

SSSS
SSSS

SSSS
SS

(U ⊗ (V ⊗W ))⊗X

αa,23,4

��

(U ⊗ V )⊗ (W ⊗X)

α1,2,34

��
U ⊗ ((V ⊗W )⊗X)

ι⊗α
// U ⊗ (V ⊗ (W ×X))
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2. λ1 = ρ1 and the triangle diagram commutes.

(U ⊗ 1) α //

ρ×ι
$$J

JJ
JJ

JJ
JJ

JJ
JJ

U ⊗ (1⊗ V )

ι⊗λ
xxqqq

qqq
qqq

qqq
qq

U ⊗ V

3. (S ⊗ T )∗ = S∗ ⊗ T ∗ for an morphisms S, T .

4. (Direct sum) For any objectsU1, U2 there exist an object V and isometriesu1 ∈
Mor(U1, V ) and u2 ∈ Mor(U2, V ) such that u1u

∗
1 + u2u

∗
2 = 1.

5. (Subobject) For every projection p ∈ End(U) there exists an object V

and v ∈ Mor(V, U) such that vv∗ = p.

6. End(1) = C1 ≃ C.

7. The category is small, that is, the class of objects is a set.

The category C is called strict if

(U ⊗ V )⊗W = U ⊗ (V ⊗W ), 1⊗ U = U ⊗ 1 = U

for any objects U, V,W in C and α, λ, ρ are the identity morphisms. By the

result of Mac Lane, any tensor category can be strictified.

Example 25. The category Hilbf of finite dimensional Hilbert spaces is

a strict C∗-tensor category with usural tensor product of Hilbert spaces.

Morphisms Mor(H,K) is bounded operators B(H,K) from H to K. The

unit object is C.

Example 26. The category RepG of finite dimensional unitary representa-

tions of a compact quantum group G is a strict C∗-tensor category. Mor-

phisms Mor(Hπ, Hρ) from π to ρ are intertwiners.
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Definition 27. Let C and C ′ be C∗-tensor categories. A tensor functor

C → C ′ is a functor F : C → C ′ that is linear on morphisms, together with an

isomorphism F0 : 1C′ → F (1C) in C ′ and natural isomorphisms

F2 : F (U)⊗ F (V ) → F (U ⊗ V )

such that the following diagrams commute. A tensor functor F : C → C ′ is

(F (U)⊗ F (V ))⊗ F (W )

α′
��

F2⊗ι// F (U ⊗ V )⊗ F (W )
F2 // F ((U ⊗ V )⊗W )

F (α)
��

F (U)⊗ (F (V )⊗ F (W ))
ι⊗F2

// F (U)⊗ F (V ⊗W )
F2

// F (U ⊗ (V ⊗W ))

F (1)⊗ F (U)
F2 // F (1⊗ U)

F (λ)

��
1
′ ⊗ F (U)

F0⊗ι

OO

λ′ // F (U)

F (U)⊗ F (1)
F2 // F (U ⊗ 1)

F (ρ)

��
F (U)⊗ 1

′

ι⊗F0

OO

ρ′ // F (U)

unitary if in addition F (T ∗) = F (T )∗ for all morphisms T in C, and F2 and

F0 are unitary.

Example 28. Let G be a compact quantum group. Then we have a tensor

functor F : RepG → Hilbf defined by F (U) = HU for every finite dimen-

sional unitary representation U of G. The action of F on morphisms and F2

are taken to be the identity maps.

Definition 29. A natural isomorphism η : F → G between two tensor func-

tors F , G : C → C ′ is said to be monoidal if the diagrams commutes.

F (U)⊗ F (V )

η⊗η
��

F2 // F (U ⊗ V )

η

��
G(U)⊗G(V )

G2 // G(U ⊗ V )

1
′

F0

����
��
��
��

G0

!!C
CC

CC
CC

CC
C

F (1)
η // G(1)
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Definition 30. Two C∗-tensor categories C and C ′ are monoidally equivalent

if there exist tensor functor F : C → C ′ and G : C ′ → C such that FG and

GF are naturally monoidally equivalent if we can take F , G and the natural

isomorphisms FG ≃ ι and GF ≃ ι to be unitary.

4.2 Conjugate objects

Definition 31. Let C be a strict C∗-tensor category and U be an object in

C. An object Ū is said to be a conjugate object to U if there exist morphisms

R : 1→ Ū ⊗ U and R̄ : 1→ U ⊗ Ū such that

(R̄∗ ⊗ ι)(ι⊗R) = ι and (R∗ ⊗ ι)(ι⊗ R̄) = ι.

This identities are called the conjugate equations.

A strict C∗-tensor category C is said to be rigid if every object in C has a

conjugate object.

Example 32. Let H be an object in Hilbf and {ei}i be an orthonormal basis

in H. Define morphisms

r : C→ H̄ ⊗H, r(1) =
∑
i

ēi ⊗ ei, (3)

r̄ : C→ H ⊗ H̄, r̄(1) =
∑
i

ei ⊗ ēi. (4)

Then the morphisms (r, r̄) is a solution of the conjugate equations for H and

H̄. Hence H̄ is a conjugate object to H. The morphisms (r, r̄) do not depend

on the choice of an orthonormal basis of H.

Example 33. Let U be an object in RepG. Then the conjugate represen-

tation Ū ∈ B(H̄U)⊗ C(G) is the conjugate object to U . Let r and r̄ be the

morphisms in Example 32. Then r̄ belongs to Mor(1RepG, U × U c). Using

the operators ρU ∈ Mor(U,U cc) and j : B(H) → B(H̄), define morphism

R = (1⊗ j(ρŪ)
1/2)r = (1⊗ ρ

−1/2
U )r ∈ Mor(1, Ū × U), (5)

R̄ = (1⊗ j(ρU)
1/2)r̄ = (ρ

1/2
U ⊗ 1)r̄ ∈ Mor(1, U × Ū). (6)
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Then (R, R̄) is a solution for the conjugate equations.

Theorem 34 (Frobenius reciprocity). Let C be a C∗-tensor category, Ū be

a conjugate object to an object U in C, and (R, R̄) be a solution of the

conjugate equations for U and Ū . Then we have

Mor(U ⊗ V,W ) ≃ Mor(V, Ū ⊗W ),

and

Mor(V ⊗ U,W ) ≃ Mor(V,W ⊗ Ū)

for any objects V,W in C.

Proof. A map from Mor(U ⊗ V,W ) to Mor(V, Ū ⊗ W ) defined by T 7→
(ιŪ⊗T )(R⊗ιV ) for every element T in Mor(U⊗V,W ) is a linear isomorphism.

Its inverse map is given by S 7→ (R̄∗ ⊗ ιW )(ιU ⊗ S) for any S in Mor(V, Ū ⊗
W ). Similarly, we can construct a linear isomorphism for Mor(V ⊗ U,W ) ≃
Mor(V,W ⊗ Ū).

Corollary 35. Let C be a C∗-tensor category, U be a simple object in C,
and Ū be a conjugate object to U . Then Ū is simple. The dimension of the

space Mor(1, Ū ⊗ U) and Mor(1, U ⊗ Ū) is equal to 1.

Proof. By the Frobenius reciprocity, one can check that the spaces

Mor(1, Ū ⊗ U) = End(Ū) = Mor(1, U ⊗ Ū)

are isomorphic to End(U) = C·1.

Proposition 36. Let C be a C∗-tensor category and U be an object in C.
Assume that U has a conjugate object. Then the space End(U ) is finite

dimensional.
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Proof. We give a proof by showing that there exists a positive linear func-

tional f on End(U) such that T ≤ f(U) for all positive element T in End(U),

which is possible only for finite dimensional C∗-algebra.

Define an operator ρU : End(U) → End(1) by ρU(T ) = R∗(ι ⊗ T )R for

all T in End(U), where (R, R̄) is a solution of the conjugate equations for U

and Ū . For an element X ∈ End(U) we denote Y for a morphism (ι⊗X)R ∈
Mor(1, U ⊗ Ū). Then there is an inequality

X∗X ≤ ∥R̄∥2(ι⊗ Y ∗Y ) = ∥R̄∥2(ι⊗ ρU(X
∗X)).

Therefore, the functional f defined by ∥R̄∥2ρU(T ) = f(T )1 satisfies that

f(T )1 ≤ T for all positive T in End(T ).

Corollary 37. Every object with a conjugate decomposes into a finite direct

sum of simple objects.

Definition 38. Let C be a strict C∗-tensor category and q be a nonzero real

number such that ∥q∥ ≤ 1. A pair (x,R) is called q-fundamental solution if

x is an object in C and R is a morphism 1→ x⊗ x such that

(R∗ ⊗ ι)(ι⊗R) = −sgn(q)ιx and R∗R = J2Kqι1,
where JnKq denotes the absolute value of the q-integer

[n]q =
q−n − qn

q−1 − q
.

Two q-fundamental solutions (x,R) and (y, S) in C are called equivalent

if there exists a unitary morphism T ∈ Mor(x, y) such that S = (T ⊗ T )R.

Definition 39. Let C be a C∗-tensor category, U be a simple object in C,
Ū be a conjugate object to U , and (R, R̄) be a solution of the conjugate

equations for U and Ū . Then the number

di(U) = ∥R∥·∥R̄∥
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is called the intrinsic dimension of a simple object U .

Any other solution (R′, R̄′) of the conjugate equations for U and Ū is of

the form

R′ = λR, R̄′ = λ−1R̄

for some λ in C∗. In particular, di(U) = ∥R∥·∥R̄∥ is independent of the

solution.

For general object V in C, since it is a direct sum of simple object Vk, the

intrinsic dimension of V is defined by

di(V ) =
∑
k

di(Vk).

For the unit object in C, we have di(1) = 1.

Example 40. Let U be an object in the category Hilbf of finite dimensional

Hilbert spaces. The intrinsic dimension of U is given by di(U) = dimU , since

U can be written as a direct sum of dimU objects 1Hilbf .

Example 41. Let G be a compact quantum group and RepG be a category

of finite dimensional unitary representations of G. For an irreducible unitary

representation U of G, by Example ? we have that the morphism R =

(1⊗ρ−1/2
U )r and R̄ = (ρ

−1/2
U ⊗1)r̄ become a solution of the conjugate equations

for U . Let {ei}i be an orthnormal basis in the basis HU . Then the ∥R ∥ can

be computed as

∥R ∥ = ∥(1⊗ ρ
−1/2
U )r(1)∥ = ∥

∑
i

ēi ⊗ ρ
−1/2
U ei∥ = Tr(ρ−1

U )−1/2 = (dimq U)
1/2.

Similarly we can get ∥R̄∥ = (dimq U)
1/2. Hence the intrinsic dimension of U

is di(U) = dimq U .

There is a multiplicativity of the intrinsic dimension on tensor product,

that is,

di(U ⊗ V ) = di(U)di(V )
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for objects U, V in a C∗-tensor category C.
We can give a characterization of the intrinsic dimension. For every onject

U in a C∗-tensor category C. Then

di(U) = min{∥R ∥·∥R̄∥},

where the minimum is taken over all solutions of conjugate equations for U .

Next we construct a contravariant functor from the operation taking con-

jugates. For every object U in C, fix a conjugate object Ū and a solution

(R, R̄) of the conjugate equations for Ū . By the Frobenius reciprocity, there

exists a linear isomorphism Mor(U, V ) → Mor(V̄ , Ū), T 7→ T∨ which is

uniquely defined by

(ι⊗ T )RU = (T∨ ⊗ 1)RV .

Explicitly, it is given by T∨ = (ι⊗ R̄∗
V )(ι⊗ T ⊗ ι)(RU ⊗ ι). This element T∨

is also defined by the identity R̄∗
V (T ⊗ ι) = R̄∗

U(ι⊗ T∨).

Proposition 42. The maps U 7→ Ū and T 7→ T∨ define a contravariant

functor C → C. When all solutions used to define T∨ are standard, then

the functor is unitary and its square is naturally unitarily isomorphic to the

identity functor.

Proof. Since (ST )∨ = T∨S∨, this functor is a contravariant functor. When

all solutions to define T∨ are standard, then in order to show that T∨∗ = T ∗∨

for any T ∈ Mor(U, V ), it is enough to proov that TrŪ(ST
∗∨) = TrŪ(ST

∨∗)

for every S ∈ Mor(V̄ , Ū). We compute that

TrŪ(ST
∗∨) = R∗

U(ST
∗∨ ⊗ ι)RU = R∗

U(S ⊗ T ∗)RV

= ((ι⊗ T )RV )
∗(S ⊗ ι)RV

= R∗
V (T

∨∗S ⊗ ι)RV

= TrŪ(T
∨∗S) = Tr Ū(ST∨∗).
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Therefore, we obtain T∨∗ = T ∗∨.

Since (RU , R̄U) and (R̄U , RU) are both standard solutions for Ū , there

exists a unitary morphism ηU ∈ Mor(U, Ū) such that

(ι⊗ ηU)RU = R̄Ū , (ηV ⊗ ι)R̄U = RŪ .

For a morphism T ∈ Mor(U, V ), we have

(ι⊗ ηV T )RU = (T∨ ⊗ ηV )RV = (T∨ ⊗ ι)R̄V̄

= (R̄∗
V (T

∨∗ ⊗ ι))∗ = (R̄∗
V̄ (ι⊗ T∨∗∨))∗

= (ι⊗ T∨∗∨∗)R̄Ū = (ι⊗ T∨∗∨∗ηU)RU .

It shows that ηV T = T∨∗∨∗ηU . Using the identity T∨∗ = T ∗∨, we get ηV T =

T∨∨ηU . Hence the unitaries ηU defines a natural isomorphism between the

identity functor and the functor U 7→ ¯̄U .

We remark that for any solutions (RU , R̄U) for U and (RV , R̄V ) for V , if

we put R̄Ū = RU , R̄V̄ = RV then we get T∨∗∨∗ = T for every element T in

Mor(U, V ).

A contravariant functor F : C → C given by F (U) = Ū , F (T ) = T∨ can

be a tensor functor by giving F2(U, V ) ∈ Mor(V̄ ⊗ Ū , U ⊗ V ) as

(F2(U, V )⊗ ι⊗ ι)(ι⊗RU ⊗ ι)RV = RU⊗V .

4.3 Fiber functors

Definition 43. Let C be a C∗-tensor category, F be a tensor functor from

C to the category Hilbf of finite dimensional Hilbert spaces. The functor F

is said to be a fiber functor if it is faithful (that is, injective on morphism)

and exact.

When C is a C∗-tensor category with conjugates, then any object U in

C is a direct sum of simple objects Uk. In this case, any linear functor
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C → Hilbf is exact. Furthermore, if U is nonzero, then the unit object 1C

is a subobject of Ū ⊗ U . Thus for a tensor functor F : C → Hilbf we have

C ⊆ F (Ū ⊗ U) ≃ F (Ū)⊗ F (U). It leads that F (U) is also nonzero. By the

fact that a linear functor is faithful if and only if the image of every simple

object is nonzero, the functor F is fiber functor. In short, for C∗-tensor

categories with conjugates a fiber functor is just a tensor functor C → Hilbf .

Example 44. Let G be compact quantum group. Define a tensor functor

F : RepG → Hilbf by F (U) = HU for every finite dimensional unitary

representation U of G, and the action of F on morphisms and F2 to be

dentity maps. Then F is a unitary fiber functor and it is called a canonical

fiber functor on RepG.

Theorem 45 (Woronowicz’s Tannaka–Krein duality). Let C be a C∗-tensor

category with conjugates, F : C → Hilbf be a unitary fiber functor. Then

there exists a compact quantum group G and a unitary monoidal equivalence

E : C → RepG such that F is naturally unitarily monoidally isomorphic on

RepG. Furthermore, the Hopf ∗-algebra (C[G],∆) for such G is uniquely

determined up to isomorphisms.

For the proof of the above theorem, we may assume that C is strict,

F (1C) = C, and F0 = id. Consider a ∗-algebra End(F ) = Nat(F, F ) of

natural transformations from F to F . Let U be the representatives of iso-

morphic classes of simple objects in C. Then, since every object U in C can

be expressed as a direct sum of Uα, a natural transformation η : F → F is

completely determined by morphisms ηUα : F (Uα) → F (Uα) in Hilbf . So the

∗-algebra End(F ) can be identified with
∏

αB(F (Uα)).

Next, using the tensor functor structure on F , we define a ∗-homomorphism

δ from End(F ) to End(F⊗2) ≃
∏

α,β B(F (Uα)⊗F (Uβ)) such that δ(η) is de-

termined by the commutative diagram that means δ(η)U,V = F ∗
2 ηU⊗V F2.

Now we extend the ∗-homomorphisms (ι ⊗ δ), (δ ⊗ ι) to End(F⊗2) →
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F (U)⊗ F (V )
δ(η)U,V //

F2

��

F (U ⊗ V )

F2

��
F (U)⊗ F (V )

ηU⊗V // F (U ⊗ V )

End(F⊗3) by the definition of a tensor functor. Then, the identity (ι⊗ δ)δ =

(δ,⊗ι)δ holds.

In the following, we would like to show that (End(F ),∆) ≃ (U(G), ∆̂) for

some compact quantum group G. For a morphism T from an object U to an

object V ⊗W in a C∗-tensor category C, denote by Θ(T ) for the morphism

determined by

Θ(T ) = F ∗
2F (T ) : F (U) → F (V )⊗ F (W )

in Hilbf . If (R, R̄) is a solution of the conjugate equations for U and a

cojugate object Ū to U , then (Θ(R),Θ(R̄)) is a solution of the conjugate

equations for F (U) and F (Ū) in Hilbf .

Lemma 46. Let C be a C∗-tensor category with conjugates, F : C → Hilbf be

a unitary fiber functor, and End(F ) be a ∗-algebra of natural transformations

from F to itself. For every element η in End(F ), there exists a unique element

η∨ in End(F ) such that if (R, R̄) is a solution of the conjugate equations for

U and Ū in C, then we have

(η∨)Ū = (ηU)
∨,

where (ηU)
∨ is defined using the solution (Θ(R),Θ(R̄)) of the conjugate equa-

tions for F (U) and F (Ū).

Proof. For an element ηU ∈ End(F ), the map ηU 7→ (ηU)
∨ is the linear

isomorphism between End(U) and End(Ū) defined by

(ι⊗ ηU)R = ((ηU)
∨ ⊗ ι)R.
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For a fixed object Ū , the morphism (ηU)
∨ does not depend on (R, R̄). Indeed,

when (R′, R̄′) is any other solution of the conjugate equations for U and

Ū , then using a morphism T from U to Ū we have R′ = (ι ⊗ T ∗)R and

R̄′ = (T−1 ⊗ ι)R̄. Thus the equation

Θ(R′) = (1⊗ F (T ∗))Θ(R)

holds. By the naturality of η, we have that ηUF (T
∗) = F (T ∗)ηU . It leads

that (ηU)
∨ is independent whether we use Θ(R) or Θ(R′) to define it.

By the naturality of η, we can check that for two isomorphic objects U

and U ′ such that their conjugate objects are same, then (ηU)
∨ = (ηU ′)∨.

Therefore, there is an well-defined collection of maps (η∨)V : F (U) → F (V )

such that if V is a conjugate object to U , then (η∨)V = (ηU)
∨. In the following

we check that the maps (η∨)V are natural. Consider an operator S : V1 →
V2 such that S = T∨ for some T : U2 → U1, where we use fixed solutions

(R1, R̄1), (R2, R̄2) of the conjugate equations for (U1, V1) and (U2, V2). By

the identity ηU1F (T ) = F (T )ηU2 , we get

F (T )∨(ηU1)
∨ = (ηU2)

∨F (T )∨,

where we use Θ(R1),Θ(R2) to define F (T )∨. Using the identity F (T )∨ =

F (T∨) = F (S), we obtain F (S)(η∨)V1 = (η∨)V2F (S).

Now we are ready to define (A,∆) for (C[G],∆). From the identification

End(F ) ≃
∏

αB(F (Uα)), we define A =
⊕

αB(F (Uα))
∗ ∈ End(F )∗. For two

elements a, b in A, their tensor product a ⊗ b ∈ End(F⊗2)∗ is well-defined.

Thus we define a product on A by

ab = (a⊗ b)δ.

If a is inB(F (Uα))
∗ and b is inB(F (Uβ))

∗, then ab is an element of
⊕

γ B(F (Uγ))
∗,

with finitely many γ such that Mor(Uγ, Uα⊗Uβ) ̸= 0. Since δ is coassociative,

the operation a, b 7→ a⊗ b is associative. The algebra A is unital and its unit
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is given by 1A(η) = η1 ∈ End(C) = C. Define a coproduct ∆: A → A ⊗ A

by

∆(a)(ω ⊗ η) = a(ωη)

for ω, η in End(F ) and a ∈ A. This is a unital coassociative homomorphism.

Define a character ϵ : A→ C by

ϵ(a) = a(1End(F )) (7)

and a linear map S : A→ A by

S(a)(η) = a(η∨). (8)

Lemma 47. A pair (A,∆) of the algebra A and the coproduct ∆ defined as

above is a Hopf ∗-algebra with the counit ϵ and the antipode S defined in

(7) and (8).

For the proof of the lemma, we use the following convention. We regard

δ(η) as a finite sum of elementary tensors so that we omit the sum symbol

and write simply as δ(η) = η(1) ⊗ η(2). This is called the Sweedler’s sumless

notation.

Proof. The identities (ι ⊗ ϵ)∆(a) = a and (ϵ ⊗ ι)∆(a) = a can be checked

by applying η ∈ End(F ) to the both sides. It is known that the identity

m(ι⊗ S)∆(a) = ϵ(a)1 for all a in A holds if and only if

η(1)η
∨
(2) = η1C1End(F ) (9)

for every η in End(F ).

Fix an object U in C and a solution (R, R̄) of the conjugate equation for

U and Ū . By the definition (1⊗ T )Θ(R) = (T∨ ⊗ 1)Θ(R) of ∨, we get

((η(1))Ū(η
∨
(2))Ū ⊗ ι)Θ(R) = δ(η)Ū ,UΘ(R)

= F ∗
2 ηŪ⊗UF (R)

= Θ(R)η1.

40



Therefore, the identity (η(1)η
∨
(2))Ū = η11End(F ) holds in B(F (Ū)). This is

true for all U in C, so the equation (9) holds. Similarly, by Θ(R)∗(T ⊗ 1) =

Θ(R̄)∗(1⊗ T∨) for ∨, we can get m(S ⊗ ι)∆(a) = ϵ(a)1.

Define an antilinear map a 7→ a∗ by a∗(η) = ā(η∨) = a(η∗). Then, using

the property η∨∗∨∗ = η we have a∗∗ = a. The coproduct ∆ is ∗-preserving.
The map ∗ is anti-multiplicative since it is equivalent to anti-multiplicativity

of the antipode S on A and this is true for any Hopf algebra. Therefore,

(A,∆) is a Hopf ∗-algebra.

For any object U in C define XU ∈ B(F (U))⊗ End(F )∗ by

(ι⊗ η)(XU) = ηU

for every η ∈ End(F ). Clearly XU is in B(F (U))⊗ A.

Lemma 48. Let (A,∆) be the Hopf ∗-algebra defined as above. Then we

have:

1. The elementXU ∈ B(F (U))⊗A is a unitary corepresentation of (A,∆).

2. When T is an element inMor(U, V ), then the identity (F (T )⊗1)XU =

XV (F (T )⊗ 1) holds.

3. (F2 ⊗ 1)XU
13X

U
23 = XU⊗V (F2 ⊗ 1).

Proof. (i) The identity (ι ⊗ ϵ)(XU) = 1 follows from the definition of XU

since ϵ = 1 ∈ End(F ). The identity (ι ⊗ ∆)(XU) = XU
12X

U
13 is checked by

applying (ι⊗ω⊗η) to both sides. Thus, XU is a coprepresentation of (A,∆).

It leads that XU is invertible and (ι ⊗ S)(XU) = (XU)−1. Hence, for every

η in End(F ),

(ι⊗ η)((XU)−1) = (ι⊗ η∨)(XU) = (η∨)U = (η∨∗)∗U

= (ι⊗ η∨∗)(XU) = (ι⊗ η)((XU)∗).
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Therefore, we get (XU)−1 = (XU)∗.

(ii) By applying (ι⊗ η) to both sides, the equation can be checked using

the naturality of η.

(iii) Applying (ι⊗ ι⊗ η) to the left hand side we get

F2(ι⊗ ι⊗ η)(XU
13X

V
23) = F2(ι⊗ ι⊗ δ(η))(XU

13X
V
24)

= F2δ(η)U,V = ηU⊗V F2.

This is equal to (ι⊗ ι⊗ η)XU⊗V (F2 ⊗ 1).

Now we are ready to give a proof of Woronowicz’s theorem.

Proof of Woronowicz’s theorem. By Theorem, we have (A,∆) = (C[G],∆)

for a compact quantum group G. By Lemma 48 (ii) and (iii), we can define

a unitary tensor functor E : C → RepG by E(U) = XU for every object

U in C, E(T ) = F (T ) for morphism T , and E2 = F2. Then, the functor

F : C → Hilbf is the composition of E with the canonical fiber functor on

RepG. The representation XUα of G are irreducible, pairwise nonequivalent,

and form equivalence classes of irreducible representation of G, since the

matrix coeeficients of XUα form a basis in
⊕

B(F (Uα))
∗ = A. Thus, the

functor E is a unitary monoidal equivalence.

To show the uniqueness, let G′ be a compact quantum group and F ′ be

the canonical fiber functor RepG′ → Hilbf on RepG′. Then (U(G′), ∆̂) ≃
(End(F ′), δ). By seeing ω ∈ U(G′) as an element End(F ′), it acts on F ′(U) =

HU by πU(ω). Let E ′ : C → RepG′ be a unitary monoidal equivalence such

that F ′E ′ is naturally unitarily monoidally isomorphic to F . Then we have

an isomorphism

(U(G), ∆̂) = (End(F ), δ) ≃ (End(F ′), δ) = (U(G′), ∆̂).

By duality we obtain (C[G],∆) = (C[G′],∆).
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Definition 49. Let G1, G2 be compact quantum groups. Then G1 are

G2 are said to be monoidally equivalent if RepG1 and RepG2 are unitarily

monoidally equivalent.

Example 50. The two free orthogonal compact quantum groups O+
F and O+

F ′

are monoidally equivalent if and only if the identities sgn(FF̄ ) = sgn(F ′F̄ ′)

and Tr(F ∗F ) = Tr(F ′∗F ′) hold.

The two free orthogonal compact quantum groups O+
F and O+

F ′ are iso-

morphic if and only if the matrices F and F ′ are same size and F ′ = vFvt

for some unitary matrix v.

4.4 Module C∗-categories

Definition 51 (e.g., [3]). Let D be a C∗-category. and C be a C∗-tensor

category. Then (D,M, ϕ, e) is a left C-module C∗-category ifM is a bilinear ∗-
functor C×D → D with natural unitary transformations ϕ : M((−⊗−),−) →
M(−,M(−,−)) and e : M(1,−) → id satisfying certain coherence condition.

We often abbreviate this left C-module C∗-category as D.

When we write U ⊗ X for M(U,X), then the condition is described as

the commutative diagrams below.

(U ⊗ V ⊗W )⊗X
ϕU,V ⊗W,X //

ϕU⊗V,W,X

��

U ⊗ ((V ⊗W )⊗X)

idU⊗ϕV,W,X

��
(U ⊗ V )⊗ (W ⊗X)

ϕU⊗V,W,X // U ⊗ (V ⊗ (W ⊗X))

U ⊗ (1⊗X)
idU⊗eX((RR
RRR

R

U ⊗X

ϕU,1,X
66llllll idU⊗X //

ϕ1,U,X ((RRR
RRRR

U ⊗X

1⊗ (U ⊗X)
eU⊗X

66lllllll
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Example 52. Let G be a compact quantum group,and H be a closed quan-

tum subgroup of G. Then the category RepH of finite dimensional unitary

representation of H is a RepG-module C∗-category. For π ∈ RepG and

θ ∈ H, π ⊗ θ is defined by π|H ⊗ θ. The restriction functor RepG→ RepH

induces this module category. We are particularly interested in the case of

G = SU−1(2) and H = GKP.

Definition 53. Let D and D′ be module C∗-categories over a C∗-tensor

category C. Then a C-module homomorphism (G,ψ) is from D → D′ is a C∗-

tensor functor G : D → D′ and a natural unitary equivalence ψ : G(−⊗−) →
−⊗G− satisfying the commutative diagrams below.

G(1⊗X)
ψ1,X //

G(e)

��

1⊗GX

e
xxqqq

qqq
qqq

qqq
q

GX

U ⊗G(V ⊗X)
idU⊗ψV,X**UUU
UUUU

U

G(U ⊗ (V ⊗X))
G(ϕU,V,X) ��

ψU,V ⊗X
44iiiiiiiii

U ⊗ (V ⊗GX)
ϕU,V,GX��

G((U ⊗ V )⊗X)
ψU⊗V,X

// (U ⊗ V )⊗GX

A RepG-module homomorphism for a compact quantum group G corre-

sponds to the Hopf homomorphism which define the action of G.

Definition 54. Let X be a quantum homogeneous space for a compact

quantum group G. An equivariant Hilbert C∗-module E over X is a right

Hilbert C(X)-module E , carrying a coaction αE : E → E ⊗ C(G), where the

right hand side is the exterior product of E with the standard right Hilbert

C(G)-module C(G), satisfying the density condition [(1⊗C(G))αE(E)]n-cl =
E ⊗ C(G) = [αE(E)(1⊗ C(G))]n-cl and the compatibility conditions

1. αE(ξ · x) = αE(ξ)αX(x) for all x ∈ C(X) and ξ ∈ E ;

2. ⟨αE(ξ), αE(η)⟩C(X)⊗C(G) = αX(⟨ξ, η⟩C(X)) for all ξ, η ∈ E .
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An equivariant Hilbert C∗-module E is called finite if E is finitely gener-

ated projective as a right C∗-module, and irreducible if LG(E) = {T ∈
L(E)|αE(Tξ) = (T ⊗ 1)αξ for any T ∈ E} is one-dimensional.

A category DX of finite equivariant Hilbert C∗-modules over X with the

equivariant adjointable maps between Hilbert C∗-modules is a semi-simple

C∗-category. Then by the operation Rep(G) × Dx → D, (u, E) 7→ u ⊗ E , it
become a connected Rep(G)-module C∗-category.
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5 Tambara–Yamagami tensor category and Kac–

Paljutkin Hopf algebra

5.1 Tambara–Yamagami tensor category

One of the Tambara–Yamagami tensor categories [15] arising from the

Klein 4-groupK4 = Z/2Z⊕Z/2Z is realised as the category of representations

of the Kac–Paljutkin Hopf algebra [15]. Let us recall that the elements in

the notation in [15] of K4 = {e, a, b, c} satisfies the relations a2 = b2 = c2 =

e, ab = c, bc = a, ca = b. What we focus on is the tensor category C(χ, τ)
corresponding to the nondegenerate symmetric bicharacter χ = χc of K4

which is defined by

χc(a, a) = χc(b, b) = −1, χc(a, b) = 1,

and the parameter τ = 1
2
satisfying τ 2 = 1

|K4| . Its objects are finite direct

sums of elements in S = K4 ∪ {ρ}. Sets of morphisms between elements in

S are given by

Mor(s, s′) =

C s = s′,

0 s ̸= s′,

so S is the set of irreducible classes of C(χ, τ). Tensor products of elements

in S are given by

s⊗ t = st, s⊗ ρ = ρ = ρ⊗ s, ρ⊗ ρ =
⊕
s∈K4

s, (s, t ∈ K4)

and the unit object is e. Associativity morphisms φU,V,W : (U ⊗ V ) ⊗W →
U ⊗ (V ⊗W ) are given by

φs,t,u = idstu, φs,t,ρ = φρ,s,t = idρ,

φs,ρ,t = χc(s, t)idt, φs,ρ,ρ = φρ,ρ,s =
⊕
k∈K4

idk,

φρ,s,ρ =
⊕
k∈K4

χc(s, t)idk, φρ,ρ,ρ =

(
1

2
χc(k, l)

−1idρ

)
k,l

:
⊕
k∈K4

ρ→
⊕
l∈K4

ρ,
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for s, t, u ∈ K4. This category is identified with the representation category

of Kac–Paljutkin quantum group GKP, that is

C
(
χc,

1

2

)
≃ Rep(GKP)

as tensor categories. Here (C(GKP),∆) is the Kac–Paljutkin algebra, that

is, the eight dimensional Hopf algebra which is the noncommutative and

noncocommutative algebra. It is given by

C(GKP) = C · ϵ⊕ C · α⊕ C · β ⊕ C · γ ⊕M2(C),

as an (∗-)algebra. The comultiplication ∆: C(GKP) → C(GKP)⊗C(GKP) is

defined by

∆(ϵ) = ϵ⊗ ϵ+ α⊗ α + β ⊗ β + γ ⊗ γ +
1

2

∑
1≤i,j≤2

ϵij ⊗ ϵij,

∆(α) = ϵ⊗ α + α⊗ ϵ+ β ⊗ γ + γ ⊗ β

+
1

2
(ϵ11 ⊗ ϵ22 + iϵ12 ⊗ ϵ21 − iϵ21 ⊗ ϵ12 + ϵ22 ⊗ ϵ11),

∆(β) = ϵ⊗ β + β ⊗ ϵ+ α⊗ γ + γ ⊗ α

+
1

2
(ϵ11 ⊗ ϵ22 − iϵ12 ⊗ ϵ21 + iϵ21 ⊗ ϵ12 + ϵ22 ⊗ ϵ11),

∆(γ) = ϵ⊗ γ + γ ⊗ ϵ+ α⊗ β + β ⊗ α

+
1

2
(ϵ11 ⊗ ϵ11 − ϵ12 ⊗ ϵ12 − ϵ21 ⊗ ϵ21 + ϵ22 ⊗ ϵ22),

∆(x) = ϵ⊗ x+ α⊗ uαxu
∗
α + β ⊗ uβxu

∗
β + γ ⊗ uγxu

∗
γ

+ x⊗ ϵ+ uαxu
∗
α ⊗ α + uβxu

∗
β ⊗ β + uγxu

∗
γ ⊗ γ,

(10)

for projections ϵ, α, β, γ and x ∈ M2(C), where ϵij are the matrix units in

M2(C) and

uα =

0 i

1 0

 , uβ =

0 1

i 0

 , uγ =

−1 0

0 1

 .
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5.2 Graded twisting of Hopf algebras

Let us describe the graded twist construction [2]. The algebra C(SU(2))

of continuous functions on the compact group SU(2) can be identified with

the space
⊕

n∈NHn/2 ⊗Hn/2, where Hn/2 ⊗Hn/2 denotes matrix coefficients

of the irreducible representation of SU(2) of dimension n + 1. Half integers

{n/2}n∈N can be divided into integers {0, 1, 2, 3, . . .} for n even and others

{1/2, 3/2, 5/2, . . .} for n odd. Thus the space above can be decomposed as

(
⊕
n : even

Hn/2 ⊗Hn/2)⊕ (
⊕
n : odd

Hn/2 ⊗Hn/2).

The component with even n forms the algebra of continuous functions on

SO(3), so we denote the whole space by C(SO(3)) ⊕ C(SU(2))odd. Let

{e1, e2} be an orthonormal basis of H1/2. Unit vectors ei⊗ej in H1/2⊗H1/2 ⊂
C(SU(2))odd are denoted by uij.

Consider an action α of the group Z/2Z on the Hopf algebra C(SU(2))

defined by

αg


u11 u12

u21 u22

 =

 u11 −u12
−u21 u22

 (11)

=

i 0

0 −i

u11 u12

u21 u22

−i 0

0 i


for the generator g of Z/2Z.

Next take the crossed product C(SU(2)) ⋊α Z/2Z of the Hopf algebra.

Define the graded twisting of C(SU(2)) by α as the subalgebra of crossed

product

C(SU(2))t,α = C(SO(3))⊕ (C(SU(2))odd · λg) ⊂ C(SU(2))⋊α Z/2Z.

Generators uijλg in C(SU(2))
t,α are denoted by u′ij. It follows that the ma-

trix (u′ij)
2
i,j=1 becomes unitary because (uij)

2
i,j=1 is an unitary matrix. They

48



satisfy the same relations as the generators of C(SU−1(2)). Indeed,

(u′11)
∗ = (u11λg)

∗ = λg−1u∗11 = λgu22 = u22λg = u′22,

(u′21)
∗ = (u21λg)

∗ = λg−1u∗21 = λg(−u21) = u12λg = u′12,

so that the matrix (u′ij)
2
i,j=1 can be described asu′11 u′12

u′21 u′22

 =

u′11 (u′21)
∗

u′21 (u′11)
∗

 .

Moreover, images of u′ij by the comultiplication ∆gr on C(SU(2))
t,α are given

by

∆gr(u
′
ij) = (

∑
k

uik ⊗ ukj)λg ⊗ λg =
∑
k

u′ik ⊗ u′kj (12)

Thus we obtain an isomorphism of Hopf algebras

C(SU(2))t,α ≃ C(SU−1(2))

by mapping u′ij in C(SU(2))
t,α to u

(−1)
ij in C(SU−1(2)).

A similar construction works for any Z/2Z-graded Hopf algebra with

grade-preserving action of Z/2Z.
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6 Realization of Kac–Paljutkin Hopf algebra

as a quotient

Besides the formulation of graded twist, [2] provided a method for de-

scribing quantum subgroups of a compact quantum group obtained as the

graded twisting of a genuine compact group. Let us apply their method to

our compact quantum group SU−1(2).

Proposition 55 ([2, Example 4.11]). Any quantum subgroup of SU−1(2)

with noncommutative function algebra corresponds to a closed subgroup of

SU(2) containing {±I2}, being stable under the Z/2Z-action defined in (11)

and containing an elementa b

c d

with abcd ̸= 0. (13)

Take the subgroup Ṽ of SU(2) generated by

s1 =
1√
2

i i

i −i

 , s2 =
1√
2

−i i

i i

 , s3 =

0 −1

1 0

 .

They satisfy relations s2i = −I2 for i = 1, 2, 3 and s1s2 = s3 = −s2s1. It is the
group of order eight with elements ±si for i = 1, 2, 3 and ±I2. This subgroup
Ṽ is related to the Klein 4-group K4 via an isomorphism Ṽ /{±I2} ≃ K4.

This subgroup satisfies the conditions mentioned in the above proposition.

Namely, s2i = −I2 for i = 1, 2, 3 so Ṽ has the elements ±I2. Since αg

transforms the elements

s1 7→ −s2, s2 7→ −s1, s3 7→ −s3, I2 7→ I2,

Ṽ is stable under the Z/2Z-action. The element s1 in Ṽ gives an example of

an element of the form in (13).

Consider the graded twisting C(Ṽ )t,α = C(Ṽ )even ⊕ (C(Ṽ )odd · λg) of the
Hopf algebra C(Ṽ ) of continuous functions on Ṽ .
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We are now ready to state our main result.

Theorem 56. [10] There exists a surjective Hopf ∗-homomorphism from

C(SU−1(2)) onto C(GKP). It can be constructed by a composition of the Hopf

∗-isomorphism C(SU−1(2)) → C(SU(2))t,α, a surjective Hopf ∗-homomorphism

C(SU(2))t,α → C(Ṽ )t,α, and the Hopf ∗-isomorphism C(Ṽ )t,α → C(GKP) de-

fined by

(ϵ, α′, β′, γ′) 7→ (ϵ, γ, α, β),

M2(C) ∋ x 7→ vxv∗

v =

−1 0

0 i

 .

There is a surjective homomorphism C(SU(2))t,α → C(Ṽ )t,α, it repre-

sents a quantum subgroup of SU−1(2).

Proposition 57. The Hopf ∗-algebra C(Ṽ )t,α is noncommutative and non-

cocommutative.

Proof. Indeed, if we take a product of an element δs1 + δ−s1 in C(Ṽ )even and

an element (δs2 − δ−s2)λg in C(Ṽ )odd · λg in this order, then we have

(δs1 + δ−s1)(δs2 − δ−s2)λg = 0.

On the other hand,

(δs2 − δ−s2)λg(δs1 + δ−s1) = (δs2 − δ−s2)(δ−s2 + δs2)λg = (δs2 − δ−s2)λg,

which shows noncommutativity of C(Ṽ )t,α. Furthermore, the coproduct on

C(Ṽ )t,α is induced by

∆(δh) =
∑

h=k1k2

δk1 ⊗ δk2

for h ∈ Ṽ and (12). Using it we can see that the comultiplication ∆

on C(Ṽ )t,α is noncocommutative by observing that ∆((δs3 − δ−s3)λg) ̸=
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∆op((δs3 − δ−s3)λg) for an element (δs3 − δ−s3)λg in C(Ṽ )t,α. By direct com-

putation we get

∆((δs3 − δ−s3)λg)

= (∆(δs3)−∆(δ−s3))(λg ⊗ λg)

= {(δs1 − δ−s1)⊗ (δs2 − δ−s2)− (δs2 − δ−s2)⊗ (δs1 − δ−s1)

+ (δs3 − δ−s3)⊗ (δI2 − δ−I2) + (δI2 − δ−I2)⊗ (δs1 − δ−s1)}(λg ⊗ λg),

and

∆op((δs3 − δ−s3)λg)

= {(δs2 − δ−s2)⊗ (δs1 − δ−s1)− (δs1 − δ−s1)⊗ (δs2 − δ−s2)

+ (δs3 − δ−s3)⊗ (δI2 − δ−I2) + (δI2 − δ−I2)⊗ (δs1 − δ−s1)}(λg ⊗ λg).

This concludes the proof.

Proof of Theorem 56. The only thing we need to describe is a concrete iso-

morphism of Hopf algebras (C(Ṽ )t,α,∆gr) → (C(GKP),∆GKP
). We set gen-

erators in C(Ṽ )t,α = C(Ṽ )even ⊗ (C(Ṽ )odd · λg) regarded as elements in

C · ϵ⊕ C · α′ ⊕ C · β′ ⊕ C · γ′ ⊕M2(C)

for projections ϵ, α′, β′, and γ′ such that the triplet (α′, β′, γ′) is obtained

from permutation of the triplet (α, β, γ) by the following mapping

δs1 + δ−s1 7→

1 0

0 0

 , δs2 + δ−s2 7→

0 0

0 1

 ,

δs3 + δ−s3 7→ β′ + γ′, δI2 + δ−I2 7→ ϵ′ + α′,

(δs1 − δ−s1)λg 7→

0 −1

0 0

 , (δs2 − δ−s2)λg 7→

0 0

1 0

 ,

(δs3 − δ−s3)λg 7→ i(β′ − γ′), (δI2 − δ−I2)λg 7→ ϵ′ − α′.
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Applying this mapping, we can see that formulas for images of elements in

C(Ṽ )t,α by the comultiplication ∆gr is given by

∆gr(ϵ) = ϵ⊗ ϵ+ α′ ⊗ α′ + β′ ⊗ β′ + γ′ ⊗ γ′

+
1

2
(ϵ11 ⊗ ϵ11 − ϵ12 ⊗ ϵ12 − ϵ21 ⊗ ϵ21 + ϵ22 ⊗ ϵ22),

∆gr(α
′) = ϵ⊗ α′ + α′ ⊗ ϵ+ β′ ⊗ γ′ + γ′ ⊗ β′

+
1

2
(ϵ11 ⊗ ϵ11 + ϵ12 ⊗ ϵ12 + ϵ21 ⊗ ϵ21 + ϵ22 ⊗ ϵ22),

∆gr(β
′) = ϵ⊗ β′ + β′ ⊗ ϵ+ α′ ⊗ γ′ + γ′ ⊗ α′

+
1

2
(ϵ11 ⊗ ϵ22 + iϵ12 ⊗ ϵ21 − iϵ21 ⊗ ϵ12 + ϵ22 ⊗ ϵ11),

∆gr(γ
′) = ϵ⊗ γ′ + γ′ ⊗ ϵ+ α′ ⊗ β′ + β′ ⊗ α′

+
1

2
(ϵ11 ⊗ ϵ22 − iϵ12 ⊗ ϵ21 + iϵ21 ⊗ ϵ12 + ϵ22 ⊗ ϵ11),

∆gr(x) = ϵ⊗ x+ α′ ⊗ wα′xw∗
α′ + β′ ⊗ wβ′xw∗

β′ + γ′ ⊗ wγ′xw
∗
γ′

+ x⊗ ϵ+ wα′xw∗
α′ ⊗ α′ + wβ′xw∗

β′ ⊗ β′ + wγ′xw
∗
γ′ ⊗ γ′,

(14)

for projections ϵ, α′, β′, γ′ and x ∈M2(C), where ϵij are the matrix units and

wα′ =

−1 0

0 1

 , wβ′ =

0 1

i 0

 , wγ′ =

 0 −i
−1 0

 .

We can observe that these unitary matrices wα′ , wβ′ and wγ′ are transformed

to unitary matrices uγ, uα and uβ in the formula of ∆GKP
respectively, by

taking adjoint by a unitary matrix

v =

−1 0

0 i

 , vwα′v∗ = uγ, vwβ′v∗ = uα, vwγ′v
∗ = uβ. (15)

Moreover, ∆gr(ϵ), ∆gr(α
′), ∆gr(β

′) and ∆gr(γ
′) coincide with ∆GKP

(ϵ), ∆GKP
(γ),

∆GKP
(α) and ∆GKP

(β) respectively, by Φ defined by

(ϵ, α′, β′, γ′) 7→ (ϵ, γ, α, β), M2(C) ∋ x 7→ vxv∗.
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Then (15) implies that Φ intertwines (14) to (10). For instance, α′⊗wα′xw∗
α′

in (14) is transformed to γ ⊗ vwα′v∗(vxv∗)vw∗
α′v∗ = γ ⊗ uγAdv(x)u

∗
γ in (10).

Hence we obtain the isomorphism (C(Ṽ )t,α,∆gr) → (C(GKP),∆GKP
).
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7 RepSU−1(2)-module homomorphisms

7.1 Representations of GKP

The 1-dimensional representations of GKP are following.

u1 = ϵ+ α + β + γ +

1 0

0 1

 ,

u2 = ϵ− α− β + γ +

1 0

0 −1


u3 = ϵ+ α + β + γ +

−1 0

0 −1

 ,

u4 = ϵ− α− β + γ +

−1 0

0 1

 .

(16)

The oriented graph with weights corresponding to the representation cat-

egory Rep(GKP) is in Figure 1. Each vertex corresponds to an irreducible

object in Rep(GKP) with labeling corresponding to the convention of Section

2.2. Total weights on the oriented edges starting from one vertex is equal to

2. See [4] for the interpretation of the weights of this graph.

•a

2

		
•e

2
** •ρ

1/2

jj

1/2
**

1/2

		

1/2

II

•b
2

jj

•c

2

JJ

Figure 1: D
(1)
4

Let U ∈M2(C(GKP)) be the fundamental representation ui of GKP (16).

Its tensor product U⊗U decomposes into
∑4

i=1 Pi⊗ui wth mutually orthog-
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onal matrices

P1 =
1

2


0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

 , P2 =
1

4


1 1 −1 1

1 1 −1 1

−1 −1 1 −1

1 1 −1 1

 ,

P3 =
1

2


1 0 0 −1

0 0 0 0

0 0 0 0

−1 0 0 1

 , P4 =
1

4


1 −1 1 1

−1 1 −1 −1

1 −1 1 1

1 −1 1 1

 .

7.2 Concrete computation

Unitary maps ψ consisting a RepSU−1(2)-module homomorphism (G,ψ)

together with a functor G : RepGKP → Hilbf can be given by solving equa-

tions provided by the interpretation of conditions on the natural equivalence

ψ in terms of bigraded vector spaces [3, 4].

From the information in the graph in Figure 1 we can write up the q-

fundamental solution in RepGKP. Recall that IrrGKP = K4 ∪ {ρ}. The

bigraded vector spaces associated with the Rep SU−1(2)-module category

RepGKP are denoted by Hρg and Hgρ for g ∈ K4 = {e, a, b, c}. They are

all one dimensional so we write unit vectors as ξρg ∈ Hρg and ξgρ ∈ Hgρ.

Therefore the q-fundamental solution R in RepGKP is described by the vec-

tors
√
2ξgρ ⊗ ξρg,

and
1√
2

∑
g∈K4

ξρg ⊗ ξgρ.

The vector spaces associated with the the RepSU−1(2)-module category

Hilbf are Hρ and Hg of dimensions 2 and 1. Here the unital maps of the

56



RepSU−1(2)-module homomorphisms are expressed as

ψg : Hρ ⊗Hρg → H1/2 ⊗Hg

for g ∈ K4 = {e, a, b, c} and

ψρ :
⊕
g∈K4

Hg ⊗Hgρ → H1/2 ⊗Hρ

satisfying the following commutative diagrams:

Hg
id⊗R //

R⊗id
''NN

NNN
NNN

NNN
NNN

N Hg ⊗Hgρ ⊗Hρg

(id⊗ψg)(ψρ⊗id)

��
H1/2 ⊗H1/2 ⊗Hg,

Hρ
id⊗R //

R⊗id
((PP

PPP
PPP

PPP
PPP

PPP
⊕

g∈K4
Hρ ⊗Hρg ⊗Hgρ

(id⊗ψρ)(ψg⊗id)

��
H1/2 ⊗H1/2 ⊗Hρ.

From the projections Pi ∈ M4(C) in the tensor product of fundamental

representation U of GKP with itself U ⊗ U =
∑4

i=1 pi ⊗ ui, we can compute

the maps ψg, ψρ concretely.

Let {ξ1, ξ2} be an orthonormal basis of Hρ.

Theorem 58. The unitary maps

ψe =

0 1

1 0

 , ψa =
1√
2

1 −1

1 1

 , ψb =

1 0

0 −1

 , ψc =
1√
2

 1 1

−1 1

 ,

ψρ =
1

2


0 1

√
2 1

√
2 1 0 −1

√
2 −1 0 1

0 1
√
2 1


associated with the RepSU−1(2)-module homomorphism RepGKP → Hilbf

make the above diagrams commutes. Here the matrix presentation of ψρ is

with respect to the basis

{ξe ⊗ ξeρ, ξa ⊗ ξaρ, ξb ⊗ ξbρ, ξc ⊗ ξcρ}
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of
⊕

g∈K4
Hg ⊗Hgρ and the basis

{e1 ⊗ ξ1, e1 ⊗ ξ2, e2 ⊗ ξ1, e2 ⊗ ξ2}

of H1/2 ⊗Hρ.

Proof. We show that the equation

(id⊗ψg)(ψρ ⊗ id)(id⊗R)(ξg) = (R⊗ id)(ξg) (17)

holds for the unit vector ξg in Hg in the case g = b. On the right hand side

we have

(R⊗ id)(ξb) = (e1 ⊗ e1 + e2 ⊗ e2)⊗ ξb,

while on the left hand side we have

(id⊗ψb)(ψρ ⊗ id)(id⊗R)(ξb) =
√
2(id⊗ψb)(ψρ ⊗ id)(ξb ⊗ ξbρ ⊗ ξρb)

=
√
2(id⊗ψb)

(
1√
2
(e1 ⊗ ξ1 − e2 ⊗ ξ2)

)
= e1 ⊗ e1 ⊗ ξb + e2 ⊗ e2 ⊗ ξb.

Therefore, (17) for g = b holds. Other cases can be shown similarly.
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8 Three-state asymmetric simple exclusion pro-

cesses

8.1 Asymmetric simple exclusion processes

An asymmetric simple exclusion process, called ASEP for short, is an

exclusion process on N site one-dimensional lattice, which describes one-

dimensional random walks. One particle is admitted in each site. There is

no out-going particles and in-coming particles. The particles moves left and

right and its rule is determined by the local transition rates. We denote by

pR for the rate of particle moving right and pL for left.

We express the system using the vectors

|0⟩i =

1

0

 , |1⟩i =

0

1


to describe each site contain a particle or not. Then the whole system is

expressed as

|τ1, . . . , τN⟩ = |τ1⟩1 ⊗ · · · ⊗ |τN⟩N

with τi ∈ {0, 1}. The probabilities to get each configuration are denoted by

p(t; τ1, . . . , τN). Then the configuration at time t is the formula

|P (t)⟩ =
∑

τi∈{0,1}

p(t; τ1, . . . , τN) |τ1, . . . , τN⟩ .

The time evolution of |P (t)⟩ is given by the differential equation

d

dt
p(t; τ1, . . . , τN) =

N∑
i=1

Θ(τi+1 − τi)p(t; τ1, . . . , τi+1, τi, . . . , τN)

−
N∑
i=1

Θ(τi − τi+1)p(t; τ1, . . . , τi, τi+1, . . . , τN),

(18)
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where Θ is determined by

Θ(x) =


−pR (x < 0)

0 (x = 0)

pL (x > 0).

The equation (18) in a matrix form is given by

d

dt
|P (t)⟩ =M |P (t)⟩ ,

where M =
∑N−1

i=1 Mi,i+1 is the Markov matrix determined by

Mi.i+1 = 11⊗ · · · ⊗ 1i−1⊗


0 0 0 0

0 −pL pR 0

0 pL −pR 0

0 0 0 0


i,i+1

⊗ 1i+2 ⊗ · · · ⊗ 1N .

The matrix Mi.i+1 contributes only to i and (i+1)-th terms among N times

tensor poroducts.

Let us illustrate an example of ASEP. We consider the case where N = 3

and the particle transition rates given by pL = 0.2 and pR = 0.3. We take

p(0; 1, 0, 0) = 1, that means the initial state is |1, 0, 0⟩. Then the probability

of each configuration through the time evolution starting from t = 0 to t = 8

is shown in Figure 2. The state changes as the particle is likely to move right.

8.2 Uq(sl2) and Temperley-Lieb algebra

Next we see how to identify the update operator of ASEP by the gener-

ators of Temperley-Lieb algebra.

Definition 59. For a real number q such that 0 < q ≤ 1, the algebra Uq(sl2)

is generated by the elements E,FK,K−1 satisfying the relations

KK−1 = K−1K = 1, KE = q2EK, KF = q−2FK,

[E,F ] =
K −K−1

q − q−1
.
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Figure 2: Changes of probability of each configuration in a ASEP

Definition 60. Temperley-Lieb algebra is the algebra generated by the ele-

ments 1, e1, . . . , en−1 satisfying the relations

e2i = (q + q−1)ei,

eiei+1ei = ei,

eiej = ejei (|i− j| ≥ 2),

(19)

for every i = 1, . . . , n− 1.

We can check that the Temperley-Lieb (TL) generators ei of the form

ei =


0 0 0 0

0 q−1 −1 0

0 −1 q 0

0 0 0 0


i,i+1

satisfy the above relations.

For the concrete computation, the use of the graphical representation of

TL generators is effective. Graphs can be created by combining the identity

operator 1i and the TL generator ei, displayed in Figure 3. Arranging each of
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Figure 3: Graphical representation of the identity operator 1i and the TL

generator ei.

operators in Figure 3 vertically means the composition of the operators. On

the other hand, arranging them horizontally indicates taking tensor products.

Moreover, if a circle appears, then the weight (q+ q−1) is applied. Then, the

TL relations (19) are drawn in Figure 4, 5, and 6.

Figure 4: Graphical representation

of the equation e2i = (q + q−1)ei.

Figure 5: Graphical representation

of the equation eiei+1ei = ei.

Figure 6: Graphical representation of the equation eiej = ejei (|i− j| ≥ 2).

An important fact is that there is a relationship between ASEP update

operators and TL generators. Define the similarity transformation matrix U
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by

U =
N⊗
i=1

Ui =
N⊗
i=1

1 0

0 qi−1


i

,

with q =
√
pR/pL > 0. Then the update operator TL generators by the

equation

Mi,i+1 = −√
pRpLUi,i+1ei(Ui,i+1)

−1.

Therefore, the update operators satisfy the TL relations (19).

It is known that the spin operators defined by

S+ =

0 1

0 0

 , S− =

0 0

1 0

 , qS =

q 1
2 0

0 q−
1
2

 (20)

generates the algebra Uq(sl2). The coproduct ∆ on Uq(sl2) satisfies the coas-

sociativity

(∆⊗ id)∆(X) = (id⊗∆)∆(X)

for X ∈ {S±, qS}. Then we have

[ei,∆(X)] = 0.

Therefore, the update operator Mi,i+1 of ASEP also commutes with the spin

operators up to the similarity transformation.

8.3 Extension to three-state ASEP

Amuliti-state extension of ASEP is developed using the higher-dimensional

representation of the Uq(sl2) algebra by Matsui [12]. In this section we con-

sider the three-state case. Our target is to construct the update operators of

three-state ASEP with TL generators.

For three-state ASEP, two particles are admitted in one box. The vectors

for zero, one, and two local states are following.

|0⟩ ⊗ |0⟩ , q
1
2 |0⟩ ⊗ |1⟩+ q−

1
2 |1⟩ ⊗ |0⟩

∥q 1
2 |0⟩ ⊗ |1⟩+ q−

1
2 |1⟩ ⊗ |0⟩ ∥

, |1⟩ ⊗ |1⟩
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Let us describe three-dimensional TL generators construction. We intro-

duce the projection operator Y (2) by the reccurrence formula

Y (2)(ei) = Y (1)(1− U0(τ)

U1(τ)
ei)Y

(1)

=


1 0 0 0

0 q
q+q−1

1
q+q−1 0

0 1
q+q−1

q−1

q+q−1 0

0 0 0 1


i,i+1

,

where Y (1) = 1 and Uk(τ) is the Chebyshev polynomials of the second kind

with the parameter τ = (q + q−1)/2. Then the three-dimensional fused TL

generators e
(2:r)
i are given by

e
(2:1)
i = Y (2)e2(i−1)+2Y

(2), (21)

e
(2:2)
i = Y (2)e2(i−1)+2e2(i−1)+1e2(i−1)+3e2(i−1)+2Y

(2). (22)

Similar to the usual TL generators ei, for the spin operators X ∈ {S±, qS}
introduced in (20) we have that

[e
(2:r)
i ,∆(X)] = 0.

Figure 7 and 8 the graphs for the three-dimensional fused TL generators

e2:ri . The rings express the projection operator Y (2).

Figure 7: Graphical representation

of the equation e2i = (q + q−1)ei.

Figure 8: Graphical representation

of the equation eiei+1ei = ei.

The conditions to be the update operator of three-state ASEP is as fol-

lows.
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(i) (the principle of probability conservation) The sum of each column

should be zero.

(ii) (the positivity of probability) The diagonal element should be negative

values, while the off-diagonal elements should be positive values.

The matrix of three-dimensional fused TL generators e
(2:1)
i of type 1 cre-

ated by the formula (21) is given by the matrix below.

e
(2;1)
i =



0 0 0 0 0 0 0 0 0

0 q−2

q+q−1 0 − 1
q+q−1 0 0 0 0 0

0 0 1
q

0 − q
(q+q−1)2

0 0 0 0

0 − 1
q+q−1 0 q2

q+q−1 0 0 0 0 0

0 0 −q 0 q2−1+q−2

q+q−1 0 −1
q

0 0

0 0 0 0 0 q−2

q+q−1 0 − 1
q+q−1 0

0 0 0 0 − q−1

(q+q−1)2
0 q 0 0

0 0 0 0 0 − 1
q+q−1 0 q2

q+q−1 0

0 0 0 0 0 0 0 0 0


i,i+1

Clearly, by multiplying −1 to e
(2:1)
i , it becomes to satisfy the condition (ii).

In order to deal with the condition (i), we need the similarity transfor-

mation U (2) of three-state ASEP given by

U (2) =
N⊗
i=1

U
(2)
i,i+1 =

N⊗
i=1


1 0 0

0 q2(i−1) 0

0 0 q4(i−1)


i,i+1

.

Then the sum of each column in the matrix Ui,i+1e
(2;1)
i (Ui,i+1)

−1 becomes
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zero. Indeed, the matrix is computes as

U
(2)
i,i+1e

(2;1)
i (U

(2)
i,i+1)

−1

=



0 0 0 0 0 0 0 0 0

0 q−2

q+q−1 0 − q2

q+q−1 0 0 0 0 0

0 0 1
q

0 − q3

(q+q−1)2
0 0 0 0

0 − q−2

q+q−1 0 q2

q+q−1 0 0 0 0 0

0 0 −1
q

0 q2−1+q−2

q+q−1 0 −q 0 0

0 0 0 0 0 q−2

q+q−1 0 − q2

q+q−1 0

0 0 0 0 − q−3

(q+q−1)2
0 q 0 0

0 0 0 0 0 − q−2

q+q−1 0 q2

q+q−1 0

0 0 0 0 0 0 0 0 0


i,i+1

.

Similarly, applying the same similarity transformation U (2) to the three-

dimensional fused TL generator e
(2:2)
i of type determined by (22), it satisfies

the condition (ii).

Now we are ready to state the following proposition.

Proposition 61. [12] Take the matrices

M
(2;r)
i,i+1 = −Ui,i+1e

(2;r)
i (Ui,i+1)

−1 (23)

for r = 1, 2. Then the linear combination

M
(2)
i,i+1 = b1M

(2;1)
i,i+1 + b2M

(2;2)
i,i+1 (24)

satisfies the positivity condition as long as β = b2/b1 satisfies− q2

q+q−1 < β < 0 (0 < q ≤ 1),

− q−2

q+q−1 < β < 0 (1 ≤ q).
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By the formula (24) we get the update operator as

M
(2)
i,i+1 =

0 0 0 0 0 0 0 0 0

0 1
q2(q+q−1)

0 q2

q+q−1 0 0 0 0 0

0 0 q+β

q2
0 − q3+βq(q+q−1)

(q+q−1)2
0 −q4β 0 0

0 − 1
q2(q+q−1)

0 − q2

q+q−1 0 0 0 0 0

0 0 − q3+βq(q+q−1)

q4
0 − q4−q2+1+βq2(q+q−1)

q2(q+q−1)
0 −q(βq3 + βq + 1) 0 0

0 0 0 0 0 − 1
q2(q+q−1)

0 q2

q+q−1 0

0 0 0 0 − βq2(q+q−1)+1

q3(q+q−1)2
0 −q(qβ + 1) 0 0

0 0 0 0 0 − q−2

q+q−1 0 q2

q+q−1 0

0 0 0 0 0 0 0 0 0


i,i+1

with β = b2/b1. Using this matrix, the direct computation provides the proof

of the proposition.

Let us see an example of three-state ASEP. Take N = 3 of the length

of the lattice and p(t; 1, 0, 1) = 1 as the initial state of |1, 0, 1⟩. The local

transition rates are given by pL = 0.2 and pR = 0.3. Then the probability of

each configuration from time t = 0 to t = 8 is described in Figure 9.

Figure 9: Changes of probability of each configuration in a three-state ASEP
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8.4 Investigation of the case where q is negative

Now we are interested in the investigation of the case where q is negative.

We begin with the setting of the ingredients with q < 0. In this case, the TL

generators ei are given by the matrices (25). The sign is switched and q is

replaced by the absolute values of q.

ei =


0 0 0 0

0 |q|−1 1 0

0 1 |q| 0

0 0 0 0


i,i+1

(25)

Similarly, we change the sign and absolute values for the vectors for zero,

one, and two particles.

|0⟩ ⊗ |0⟩ , |q| 12 |0⟩ ⊗ |1⟩ − |q|− 1
2 |1⟩ ⊗ |0⟩

∥|q| 12 |0⟩ ⊗ |1⟩ − |q|− 1
2 |1⟩ ⊗ |0⟩ ∥

, |1⟩ ⊗ |1⟩

Moreover, the projection operator Y (2) is given by the formula (26).

Y (2)(ei) =


1 0 0 0

0 |q|
|q|+|q|−1

1
|q|+|q|−1 0

0 1
|q|+|q|−1

q−1

|q|+|q|−1 0

0 0 0 1


i,i+1

, (26)

Then we can compute the matrices for the three-dimensional fused TL gen-

erators e
(2:r)
i given by (21) and (22) as follows.

e
(2;1)
i =



0 0 0 0 0 0 0 0 0

0
|q|−1

|q|2(|q|+|q|−1)
0 −1

|q|+|q|−1 0 0 0 0 0

0 0 1
|q| 0 − |q|

|q|+|q|−1 0 0 0 0

0 − 1
|q|+|q|−1 0

|q|2

|q|+|q|−1 0 0 0 0 0

0 0 − |q|
|q|+|q|−1 0 − |q|−2−1+|q|2

|q|+|q|−1 0 − |q|
|q|+|q|−1 0 0

0 0 0 0 0
|q|−2

|q|+|q|−1 0 − 1
|q|+|q|−1 0

0 0 0 0 − |q|−1

|q|+|q|−1 0 q 0 0

0 0 0 0 0 − 1
|q|+|q|−1 0

|q|2

|q|+|q|−1 0

0 0 0 0 0 0 0 0 0


i,i+1
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e
(2:2)
i =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1
|q|2 0 |q|3−2|q|+|q|−1

|q|+|q|−1 0 1 0 0

0 0 0 0 0 0 0 0 0

0 0 |q|−2|q|−1+|q|−3

(|q|+|q|−1)2
0 (|q|2−2|q|−1+|q|−2)2

(|q|+|q|−1)4
0 |q|3−2|q|+|q|−1

|q|+|q|−1 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 |q|3−2|q|+|q|−1

|q|+|q|−1 0 |q|2 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


i,i+1

In the similarity transformation matrix U (2), we add an entry with the

negative value.

U (2) =
N⊗
i=1


1 0 0

0 −|q|2(i−1) 0

0 0 |q|4(i−1)


Then we construct the pieces M (2:r) of the update operator by the same

formula (23) as before. For example, we obtain the matrix of M
(2:2)
i,i+1 as

below.

M
(2:2)
i,i+1 =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1
|q|2 0 − |q|(1−2|q|2+|q|4)

(|q|−1+|q|)(1+|q|2)2 0 |q|4 0 0

0 0 0 0 0 0 0 0 0

0 0 − (|q|−1+|q|)(1−2|q|2+|q|4)
|q|3(1+|q|2)2 0 (1−2|q|2+|q|4)2

(1+|q|2)4 0 − |q|3(|q|−1+|q|)(1−2|q|2+|q|4)
(1+|q|2)2 0 0

0 0 0 0 0 0 0 0 0

0 0 1
|q|4 0 − 1−2|q|2+|q|4

|q|(|q|−1+|q|)(1+|q|2)2 0 |q|2 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


i,i+1
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Consider a matrix W defined by the following formula.

W =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1
(1−|q|)2 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


Using this matrix W , we take WXW for X = M

(2:r)
i,i+1, that is X multiplied

by the value 1/(1−|q|)2 only in the fifth line and fifth column of X, and then

we can see that we obtain the same matrices M (2:r) as in the case of positive

q. As a conclusion, it provide the update operator for the same process as

the case of positive q.
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