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Abstract

Various methods have been proposed to record and analyze trajectory dataset. Such

a dataset brings us beneficial knowledge in various fields, for example, prevention

of disasters, improvement of marketing. However, the dataset may be enormous as

we got to easily accumulate them, we need to improve techniques to analyze and

display the results. This thesis proposes visualization techniques to find features of

several trajectory datasets, specifically walking routes of people and eye-tracking scan-

paths. Results of case studies indicate several characteristic behaviors found from the

trajectories.
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Chapter 1

Introduction

1.1 Background

The utilization of trajectory data has been active in our society. Trajectory datasets

are sets of records that mainly includes when and where creatures or moving objects

passed, such as followings[28]:

• Walking of people

• Migration of animals

• Traffic of vehicles, ships, and airplanes

• Movement of typhoons[29]

These trajectories take various shapes and distributions, for example, “Crossings of

independent individual paths,” “Gathering of several similar paths like one thick

bund,” according to environmental elements. Furthermore, spaces which include the

trajectories get various scales, from a small room in a couple of meters square, to several

nations and continents[30].

Figure 1.1 shows a brief processing flow of the analysis of such trajectories. The

development of devices for recording trajectories enabled us to collect such various

datasets[31]. A simple small-case is, for example, setting laser sensors in a room or

ask visitors to carry small devices to record positions periodically. Another popular
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Figure 1.1: Flow of trajectory analysis.

approach is movie processing that extracts pedestrians or moving things from a recorded

movie and estimates their positions. In recent years, GPS is also a major technology

to collect position datasets in wide areas. GPS is effective to observe movements in

relatively wide areas than the above mentioned technologies. Especially, smartphones

help to get the movement of not only particularly limited participants of experiments

but also general people in daily life. As above, we can collect diverse types of trajectory

data in different environments. The scale and accuracy of the datasets have been

increasing.

We can get useful knowledge from such trajectory datasets. For example, the

followings are major fields related to the collection and analysis of trajectories.

• Prevention of disasters

• Improvement of the traffic system

• Support of marketing

In disaster prevention, analyzing movements of people and vehicles in abnormal
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circumstances are major tasks. Insights from such analysis are utilized to design better

evacuation routes, and estimate times to complete the evacuation. Not only an analysis

of existing data but also a simulation of behaviors is also an important task. In the field

of traffic, finding crowded places with dense trajectories is a simple but important task.

We can discuss how to control flow pedestrians or vehicles to realize smooth traffic, based

on the analysis results. Targets of analysis include stations, plaza, intersection, and any

event grounds. For marketing, we can utilize records of walking routes of customers

but also eye-tracking scan-paths. Accesses to products by such the trajectories indicate

which products attracted the customers. Especially, finding major paths that connect

different products is helpful to find an attractive combination of products to sell at once

and increase sales. As above, the mentioned trajectories represent popular phenomena

in our daily life, and we can use them to understand environments and carry out various

tasks such as behavior prediction.

Here, we need to establish how to analyze trajectories and display the result of

enormous input datasets. Especially, we have to cope with the following problems

to display features and trends of trajectory dataset.

• Simplification of the dataset

• Finding characteristic trajectories

• Displaying results relevant to each user

This process is effective to reduce time resources to analyze large or too detailed

trajectory datasets, even if this is not always necessary for completing the analysis

of trajectories as computers have a large memory space enough to preserve a large

trajectory dataset. The second problem, extraction of characteristic trajectories, is

essential when we deal with hundreds or thousands of trajectories. This task may

be partially different according to types of data and goals of users, such as “Finding

represent trajectory that indicates trends of behavior,” and “Extracting irregular

suspicious paths.” Finally, we have to devise how to show the results of the analysis.
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There have been various users who observe trajectories as there are many types of

trajectories. We have to develop techniques to represent useful information from large

datasets interactively and without too complicated representations or interactions.

Here, we focus on the third problem especially. One of the popular solutions for the

third problem is visualization of trajectories. We can classify the visualization methods

as follows based on which aspects of trajectories are shown.

Type 1 Drawing detailed individual trajectories

Type 2 Displaying summarized trajectories or groups of paths

Type 3 Showing feature values of trajectories without shapes of trajectories

Figure 1.2: A simple classification of visualization methods for trajectory data.

Figure 1.2 shows some examples of visualization techniques. The first type is the

illustration of when and where each individual trajectory passed on maps or movies.

This is the simplest representation effective to understand real movement on the

trajectories, for a wide range of users including beginners of visualization. The users

can efficiently compare the drawn trajectories on a single view if the trajectories are few

and relatively short. On the other hand, this method often provides declining visibility

when users input a large number of trajectories.
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The second type shows simplified shapes of trajectories. Users have to remove

excess parts of trajectories or classify them[32] as the preprocessing of the visualization

process. Such methods can keep high visibility by preventing to show too many data

elements while using simple expressions as same as the first type of visualization.

However, inappropriate preprocessing may affects the results of visualization and

indicates incorrect or misunderstanding information.

The third type does not draw shapes of trajectories differently from the above

two types. Instead, users have to observe visualization methods that are suitable

for large datasets, such as PCP (Parallel Coordinate Plots) or matrices. Either,

Origin-Destination network or radial graph are used to highlight the start- and end-

points of each trajectory. Such methods are effective to show large datasets in a

sight or subdivided characteristics, but sometimes difficult to understand and need

the experiences to use.

The first and second types of visualization methods are standard and simple

approaches and do not look to have issues to be improved. Furthermore, as mentioned

above, the direct application of such a method is not effective for the current large

trajectory datasets. Meanwhile, we suppose the increasing variety of trajectories and

observers. Non-expert visualization uses such as the owners of shops and constructers

of events are typical new analysts of such datasets we suppose. Thus, showing

useful information and removing excess elements while using basic simple drawings

of trajectories seem still useful. Such types of visualization methods still need to be

improved to deal with large amounts of trajectory datasets although there have been

various proposed methods. [28] The following issues mainly remain.

• Using both drawing individual trajectory and expression of a group of them

properly

• Suggestion on the proper classification of behaviors and division of regions in

space
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• Comparison of multiple datasets

The first issue is about the expression of trajectories. Proper expressions of trajectories

depend on what users want to visualize and flexible switching is required. For example,

“piling many trajectories” and “drawing a particular shape which means a group

of trajectories” may give us different impressions even if they represent the same

collection of trajectories. Flexible switching of representation can lead to obtaining

various information on both rough and detailed characteristics of datasets. The second

issue is about the condition of the classification of a dataset. Observers often want

to classify recorded trajectories according to their shapes or positions. The condition

and difficulty of the classification depends on what information the observers want

to find. The process may be difficult in some cases without supposed routes, for

example walking patterns in a vacant square. Therefore, the visualization system should

flexibly show various classification results. The third issue is the comparison of different

datasets. There are many tasks on the comparison, such as two particular trajectories or

differences in each time period. The development of comparative visualization methods

is still an open problem. It is possible to develop a visualization arranging multiple

views as many as the datasets; on the other hand, using a small number of views and

only show common or different parts between the datasets can be effective to directory

indicate features.

1.2 Contribution of This Research

This thesis proposes the following two visualization techniques based on the above

mentioned backgrounds and tasks. Briefly, we convert trajectories to simple strings

and extract their features, and finally visualize the extracted features, which to solve

the above three problems.

Visualization of people flow

The first technique is to analyze the dataset which indicates the movements of
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pedestrians. Specifically, the trajectories are recorded by cameras set on the

upper walls of some rooms. The technique finds various features like “How kind

of behaviors the recorded people had?,” “How different movements occurred in

different time periods?” as a preprocessing. The visualization view contains

drawing specific trajectories.

Visualization of eye tracking data

The other visualization is for visualizing eye-tracking data. We visualize tens

of eye-tracking scan-paths and display common behaviors such as transitions and

gazing, and similarities of the paths. Differently from the people flow visualization,

we combine multiple visualization views on a single window.

These techniques deal with the above issues as following Table 1.1. Detail of each

function are mentioned in Chapter 3 and 4.

Table 1.1: Our proposed techniques and tasks on trajectory analysis.

Technique 1
Visualization of people flow

Technique 2
Visualization of
eye-tracking data

Compression
of dataset

Conversion
by UniversalSAX

-

Pattern extraction
Clustering based

on Levenshtein Distances
Pattern extraction

by N-gram

Showing individual
trajectory and groups

Selection of drawing
a trajectory or
clustering results

Pattern visualization
selected by users

Classification
of datasets
and spaces

Region division
by UniversalSAX

Interactive
hierarchical AOIs

Comparison
of dataset

-
Comparison of patterns

in each trajectory

1.3 Usage Scenario of the Presented Technique

Scenario 1: Finding attractive objects

The density of trajectories is often useful information to understand the features
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of the data. For example, we would like to find when and where many trajectories

appeared. Crowded places in a shop is a typical example as products may attract

many customers if they passed around the products. In particular, people flow

and eye-tracking data can reflect people’s interests strongly because such data

record how pedestrians and participants behaved where they can freely act. The

techniques can apply to find places with dense trajectories, and common patterns

in multiple trajectories focusing on shapes and directions.

Scenario 2: Suggestion for improving layouts

Observers may have particular assumptions of the ideal movements of trajectories

in some cases of analyses. For example, visitors are supposed ideal in a museum

if they follow the fixed routes and look at many exhibits. In other words, objects

with a small number of accesses found from the trajectories sometimes have

positional problems. Furthermore, the shapes and lengths of trajectories between

departure and destination may be important. Simple trajectories are suitable

to reduce the effort of movement. Such an evaluation of existing trajectories

indicates how to improve the layout of spaces and control flow of the trajectories.

1.4 Contents of This Thesis

The remainder of this thesis is organized as follows. Chapter 2 introduces related studies

on the visualization of trajectories. Chapter 3 presents the technique to visualize people

flow trajectory data, and Chapter 4 presents another technique to analyze eye tracking

scan-paths. Chapter 5 conclude this thesis.
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Chapter 2

Related Work

This chapter introduces a method for extracting patterns from trajectory data.

Section 2.1 introduces a method of symbolizing trajectories and methods for analyzing

behaviors. Section 2.2 describes techniques on trajectory visualization classifying into

three categories according to more detailed tasks. Section 2.3 summarizes the contents

of these sections.

2.1 Pattern Extraction for Understanding

Movement

This section introduces techniques to extract features from trajectory datasets.

2.1.1 Conversion of Trajectories and Pattern Extraction

The method of symbolizing the trajectory dataset has already been popular. There

are roughly two targets of converting a trajectory into a string: “reducing the amount

of data” and “conversion to a form that facilitates feature extraction.” The following

method mainly aims at reducing the amount of data. Konomi et al. [33] improved

index system named I-TREE for large trajectory datasets. The system can generate

indices for chronological datasets and reduce computation times required to search

particular elements. They had the experiments using simulated people flow datasets

and search for specified data elements. Studies on symbolization-based trajectory data

compression have been inactive due to the evolution of data storage technology in recent

9



Figure 2.1: Flow of generating strings which presents way points of customers from
RFID dataset (refer from [36]).

years. Instead, there have been studies on the following approaches supporting extract

features from the trajectory dataset. Oates et al. [34] successfully extracted motifs

of trajectories from noisy people flow datasets by applying a context-free grammar

technique. These studies adopted SAX or TraSAX (an extension of SAX) during

compressing and visualizing datasets, as we also adopt. Ohata et al. [35] categorized

the migratory behavior of the customer’s trajectories in the store by converting them

into strings based on the passing areas. Yada [36] analyzed movements of customers

in a supermarket, and searched for popular sections. Figure 2.1 is an example of

the generation of strings. This technique converted original datasets to sequences

of characters that indicate sections where customers moved to. However, important

information including times of staying at each section is not preserved after converting.

The main objective of the research is to convert the trajectories to the symbol strings

in the above studies. Visualizations of the trajectories applying the symbol strings are
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quite simple but still an open problem.

The followings are methods to further visualize the trajectory data that has been

converted into strings. Teknomo et al. [37] analyzed moving patterns of customers at a

supermarket. They allocated letters to each intersection in a hypermarket and expressed

customers walking routes as strings. Also, they researched populations and length of

walking times. Burch et al. [38] proposed using a timeline to visualize eye-tracking

scan-path transitions between AOIs (Areas Of Interests). This method is effective to

understand in which parts of transitions the differences occurred. In addition to the

displaying shapes of the paths, highlighting transitions between AOIs is also popular.

Yang et al. [39] proposed Alpscarf that visualizes the order of access among AOIs for

scan-paths. This method does not include showing positions of each AOI, therefore

users may feel difficult to understand the specific movement of the scan-paths. These

methods have the common feature that trajectories get symbolized and the distribution

and appearance rate of the symbols that make up those strings are visualized using a

matrix. On the other hand, since the visualization of the shapes of trajectories is

not performed, it may be difficult to understand the actual behaviors for beginners of

visualization. In our proposed technique, the shapes of trajectories and the appearance

rate of the symbol are visualized simultaneously by coloring the trajectories or linking

multiple visualization screens.

2.1.2 Other Methods to Analyze Behaviors

Next, we introduce other behavior analysis methods using trajectory datasets. Johnson

[40] et al. proposed a method for detecting pedestrian movement information from

image sequences. Porikli et al. [41] proposed a method of classifying actions by speed

and position by applying hidden Markov models and spectral networking to trajectory

data. Suzuki et al. [42] proposed a method for detecting pedestrian departure in

real-time using the hidden Markov model. Asahara et al. [43] proposed a method

to assign labels to pedestrians and classify positioning data. With the proposed
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method, the positioning data acquired in a low-accuracy positioning environment could

be appropriately classified according to pedestrian behavior. Butenuth et al. [44]

superimposed pedestrian simulation data on satellite images and classified their actions

using a hidden Markov model.

Differently from the above methods, the proposed technique applies only simple

methods such as distance calculation and clustering or N-grams to classify actions.

These have the advantages that on simpler parameters and ease for users to adjust the

parameters according to what criteria the user wants to classify the behavior.

2.2 Visualization of Trajectories

This section introduces various visualization methods for trajectory datasets. We

classify and introduce along with the three issues related to the visualization method

presented in Chapter 1.1.

2.2.1 Representation of Trajectories

The existing visualization techniques feature variously different representations to draw

the flow lines themselves. This section first introduces unique methods for expressing

trajectories. Specifically, the introduced methods have features for (1) drawing the

shapes of the measured trajectories in detail, (2) representing trajectories grouped

together, and (3) displaying a list of features instead of the shape of the trajectories.

First, we introduce visualization methods for traffic trajectories. Approximately,

we can classify the methods according to observing whether people or other moving

things like cars. Andrienko et al. [45] collected datasets from a wide range using

GPS, and analyzed properties of various moving objects, using both drawing specific

trajectories and bar charts on maps. The following two studies are observation of

moving people using cameras to obtain the datasets. Yabushita et al. [46] proposed

a technique that summarizes pedestrians’ trajectories recorded at open spaces where

definite routes are not constructed. This technique effectively represents major routes of
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pedestrians; however, it misses some types of important information including temporal

tendency and walking speeds. Fukute et al. [47] applied a spectral clustering algorithm

to pedestrians’ trajectories to classify them to meaningful sets of walking patterns

and visualized temporal transition of populations for each cluster by applying a piled

polyline chart. Guo et al. [48] developed a composite visualization tool named

“TripVista” to analyze patterns of various objects such as bicycles, and cars (See

Figure 2.2). They adopted not only specific drawing of trajectories on maps, but also

other visualization methods including piled polyline charts, scatterplots, and parallel

coordinates plots. Wang et al. [49] improved TripVista and had experiments to analyze

Figure 2.2: View of Trip Vista (refer from [48]).

moving patterns of taxis in Nanjing. They succeeded to find differences of moving

patterns between weekdays and weekends. Guo et al. [50] classified walkers’ trajectories

according to their speed and direction. They also developed a system to visualize

important trajectories using meaningful colors based on the HSV model. However, the

tool does not support interactive trajectory selection for detail-on-demand visualization.

Remark that many studies on the analysis of pedestrians focus on small areas that can

be observed with a small number of cameras. Meanwhile, other types of trajectories

are also popular targets to analyze. Wang et al. [51] extracted and visualized features
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of automobiles passing at particular positions, applying datasets collected using many

sensors on roads. Al-Dohuki et al. [52] developed a visualization system for trajectories

Figure 2.3: GUI of semanticTraj (refer from [52]).

of taxis (See Figure 2.3). The system can visualize not only statistical information

about traffic but also messages which answer to questions input by users. For example,

uses can select particular streets or time periods, and visualize related datasets.

Next, we introduce visualization techniques that focus on eye-tracking data. Krueger

et al. [53] presented an improved visualization system for chronologically GPS datasets.

Users can move a circle looked like a lens and focus on particular areas to get detailed

information such as speeds and directions as shown in Figure 2.4. These above

mentioned studies introduced various visualization techniques; however, such studies

did not apply data compression techniques for the trajectory datasets. Krueger et al.

[54] proposed using a lens-shaped window to select scan-paths to show. Users can focus

on a particular region and search for scan-paths that passed the selected area. Kuebler

et al. [55] visualized scan-paths of when participants observed a painting, by two

visualization methods, a heat map, and drawing trajectories (See Figure 2.5). They

classified scan-paths according to positions and directions by hierarchical clustering.

Ramin et al. [56] proposed the Streakline framework. In this method, trajectory dataset

14



Figure 2.4: Using TrajectoryLenses (refer from [53]).

Figure 2.5: Eye-tracking scan-paths on the paintings. (refer from [55]).

is treated as streamline data, and flow detection and visualization from moving images

are performed. Rodrigues et al. [57] proposed a method to gradually summarize scan-

paths. Rudi et al. [58] proposed a combination of drawing trajectories and showing

timeline visualization. In such the composite visualization methods, too detailed scan-

paths often get visualized and reduces visibility. Users can arrange the selection

and summarization of scan-paths flexibly with such methods. On the other hand,

avoiding overlapping and pattern extraction are not main focuses of these studies.

They succeeded to extract popular behavior; however, they did not focus on finding

15



exceptional movements.

The method proposed in this thesis draws trajectories basically one by one and

represents groups of the trajectories by overwriting them. Users can flexibly switch

between drawing individual trajectories and visualizing groups of trajectories depending

on their selections.

2.2.2 Classification of Data Elements

Next, we introduce methods for drawing pre-classified trajectory data. Methods to

classify and visualize trajectories have been studied for a long time as a part of behavior

analysis. Okazaki et al. [59] proposed a simulation method of crowd movement in an

office building. The feature of this method is that it uses a magnetic model. The

classification focused on for example, when the vehicle passed a prescribed route, or

whether pedestrians are getting lost the way. Chittaro et al. [60] proposed a method to

detect characteristic behavior from human flow data in a virtual environment. Krueger

et al. [61] improved another visualization system named TravelDiff. The system

applies messages in Twitter instead of datasets of specific trajectories and visualizes

the movement patterns and crowded places. They aimed to visualize three types of

datasets, for pedestrians, taxis, and airplanes using graphs and heat maps. Gupta et al.

[62] worked on the visualization of relationships among a small number of pedestrians.

Figure 2.6 shows the main view developed as a part of this technique. They did not

visualize particular shapes of trajectories, but used a Gantt chart and visualized places

where people stayed. Especially, users can find places where plural people stayed at

the same time. Thach et al. [63] converted the spatiotemporal trajectories to strings as

shown in Figure 2.7, preserving the distances in the original space, and then divided the

trajectories. They succeeded to distinguish four types of trajectories collected under

different conditions, by taking into account both positions and movement patterns.

Alameda-Pineda et al. [64] analyzed two datasets of movements: participants during a

poster session, and actions and communications at a stationary. One of the uniqueness
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Figure 2.6: Main view of movementSlicer (refer from [62]).

Figure 2.7: Maps for convert a trajectory to strings (refer from [63]).

of this study is that the method realized the comprehensive analysis by applying

voice data in addition to the positioning data. The following studies focused on gaze

trajectory classification and drawing. Privitera et al. [65] segmented regions such as

paintings (Mona Lisa in this case) based on gaze trajectories. Muthumanickam et al.

[66] proposed an AOI visualization method that represents how people can categorize

places they are looking at in web pages. This study applied a 3D visualization to show

represent in AOI over time.

Similar to these methods, our proposed technique applies clustering, etc., and then

color the trajectories to represent the classification results. In addition, as described
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in the previous section, users can flexibly change the contents such as switching to

individual trajectory visualization.

2.2.3 Comparison of Trajectories

Finally, we introduce visualization methods whose main target is to compare multiple

trajectories. Blascheck et al. [67] used multiple radial transition graphs to show

movement between AOIs. Users have to prepare wide display and compare the

graphs since one graph indicates one scan-path. Burch et al. [68] analyzed the

differences between left and right eye movements using a time-series visualization

method named color bands. This method is suitable for analyzing detailed eye

movements of individuals; however, it is necessary to compare the same number of

graphs to compare data of multiple people. Burch et al. [69] converted scan-paths to

strings and visualized their features by a matrix. Gu et al. [70] developed the composite

visualization method ETGraph for comparison of scan-paths (See Figure 2.8). Users

can display several contents such as trajectories on a stimulus and comparison of gaze

times. Peysakhovich et al. [71] visualized differences of scan-paths on a painting using

a heat map.

Users cannot extract characteristic parts such as common or different parts in the

scan-paths using the above methods. Our proposed technique can narrow down and

display the differences or common parts according to the user’s operation.

2.3 Conclusion

We have introduced existing research on trajectory analysis in this section. Firstly,

we introduced preprocessing of visualization, specifically methods of symbolizing

trajectories and that of classifying behaviors in Section 2.1. We also described

a visualization method that specifically targets the trajectories that have been

symbolized. In Section 2.2, we introduced the visualization methods for trajectories

dividing into three categories.
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Figure 2.8: A comparison of two participants by ETGraph (refer from [70]).

As a whole, we mainly introduced existing studies that mainly focused on human

flow data and gaze trajectory data targeted by our proposed method. General-purpose

methods applicable to a wide range of flow line data will also be required while it is

necessary to develop a method specialized for each type of data.
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Chapter 3

People Flow Visualization

3.1 Introduction

This chapter introduces a method to visualize people flow data. We first compress

large trajectory data set by symbolizing and extract features to visualize. Section

3.2 mentions overview of the proposed technique. Section 3.3 contains details of the

processing flow and we introduce the results of experiments in Section 3.4. Section 3.5

discusses results of the experiments, and finally, Section 3.6 summarize this chapter.

3.2 Overview

In recent years, security cameras improved and set at various places, such as stations,

shops, residential area. These cameras record many pictures and movies of pedestrians

every day. Using these datasets, we can understand features of movings, such as “Where

pedestrians tend to walk?,” “Which place is most crowded?.”

Such information is very useful to solve various social problems, and develop our

life. For example, most popular problem is traffic control. Finding crowded areas and

suggesting solutions to prevent unwanted congestions are simple but significant problem

in our society. In the field of disaster prevention, analysis or simulation of evacuation

routes have been getting popular research theme since outbreak of the Great East

Japan Earthquake in 2011. For exmaple, Onishi [72] observed movings of audiences in

evacuation drill at a concert hall. They found that several people selected wrong routes
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since the people just followed leading people without any idea to try to pass correct

evacuation routes. Furthermore, analyzing movings of customers in various shops is also

important problem. Mainly, salesclerks can know which products attract many people

by knowing actions of customers in the shops, and suggest better product display. Like

this, recording moving routes of people using cameras, and analysis of moving patterns

should be useful.

However, such cameras work for night and day, and exist at many places. Following

two problems are still open problem in analysis of people flow data.

• People flow datasets easily accumulate and they are difficult to manage．

• Observers can not find characteristic data elements or trends from the datasets

efficiently．

Nowadays we can record huge datasets since hard disks improved and inexpensive.

However, solely saved datasets are not suitable to efficient management and analysis,

therefore we should improve methods to reduce sizes of the dataset. Furthermore,

finding important data elements is not an easy task. We have to develop methods

to find features and trends of people data, then present the information with simple

expression which is easy enough for general people.

Then, we focused on the two problems and developed visualization system to analyze

large-scaled datasets. We compress people flow datasets recorded by cameras into

sequences of characters, then visualize the features of the datasets. Concerning

compression, the process reduces sizes of dataset preserving essential way points and

staying times. One of characteristic points is that the process discards too fine

information about positions of persons. For example, if users want to understand about

“Which booth is most crowded in an exhibition?,” distinction of differences of only one

step is not essential. The system reduces such excess information about positions of

persons to manage the datasets efficiently.

Furthermore, the system generates pictures that allow users to understand trends of
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datasets recorded for several hours in a short time. Users can know particular walking

routes by looking graphs with colored nodes and edges that reflect map of locations.

Such visualization is useful to understand overview of people flow datasets. Also, users

can find several areas which is worth analyzing like especially crowded places or main

walking routes. Then users can check detailed information on the area. In other words,

users do not have to compare too much information on various places.

This chapter presents a technique to analyze large-scale people flow datasets

efficiently. First, record trajectories of waking people using RGB-D camera Xtion.

The datasets include ID, positions in 2D space, and times. Then we convert the

position data as real values to simple strings applying UniversalSAX[73]. UniversalSAX

is an expansion of SAX (Symbolic Aggregate approXimation) which can convert

chronologically datasets to sequence of simple characters. This operation means

compression of the datasets and transforming so as to make extraction of features easy.

Furthermore, we convert the strings to Run-Length codes which can reduce length of

the strings preserving original information. Run-Length code can directory express

way points and staying times at each region. Using the Run-Length codes, we classify

trajectories by applying clustering. Finally, we visualize walking patterns of people

using a graph. This chapter also shows a case study with a real-world people flow

dataset in an exhibition, then discusses effectiveness of the presented tool.

3.3 Implementation

This section presents the processing flow shown as figure 3.1 and detailed description

of technical components of the proposed technique. Section 3.3.1 defines the people

flow datasets. Section 3.3.2 describes a technique to convert the trajectories into

sets of characters. Then section 3.3.3 introduces preparation before extraction of

features, following by the discovery of typical movement features described in Section

3.3.4. Section 3.3.5 shows a method to classify walking routes. Lastly, we describe a

visualization technique which emphatically displays the features in Section 3.3.6.
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Figure 3.1: Processing flow of the proposed technique.

3.3.1 Recording of People Flow Data

We define that a record of people flow data includes the following information:

• Time that the position of a walker is measured

• ID of the walker

• Position of the walker in a 2D space (x, y)

We can construct a trajectory of this walker by collecting the records which have

the particular ID corresponding to the walker, and then chronologically ordering the

collected records.

Our current implementation uses a RGB-D camera Xtion to record the people flow

data applying a technique in [74]. Xtion can assign a particular ID to each walker, and

measure positions of heads of pedestrians every dozens of milliseconds. In this time,

Xtion can measure positions of pedestrians in a real three dimensional space; however,

we adopted only two dimensional coordinates on floors and regard walkers’ heights as

constant. One camera can capture an area of sabout 5 meters square, and also can to

record a wider range of pedestrian traffic lines by combining the recorded contents of

multiple cameras [75].
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3.3.2 Conversion of People Flow Data to Sequences of
Characters

In the next process, we generate sequences of characters from position values in the

people flow datasets, in order to reduce the data sizes and make it easier to extract

movement features.

Figure 3.2: Flow of converting position values.

Figure 3.2 illustrates this process. We apply UniversalSAX [73], an extended

implementation of SAX (Symbolic Aggregate approXimation) which converts time

series data recorded as real values to sequences of characters. There have been several

other techniques on extended implementation of SAX to deal with multidimensional

real values; UniversalSAX has advantages against other techniques on preservation of

numeric features of all dimensions and distances among data items.

The following briefly describes the processing flow of the setup phase of UniversalSAX:

1. Divide multidimensional space to multiple regions, and generate a distance table

among the regions.

2. Allocate a particular character to each of regions so that we can convert positions

described as real values to characters.

Users can adjust the resolution of space division with the following four parameters:

d : dimension of data
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2q : number of partitions in each axis

z : number of characters

2b : threshold value to divide large regions

UniversalSAX assigns characters to the regions by applying a Hilbert curve, a kind of

space-filling curves. In this process, we firstly separate a d-dimensional space (d is 2 in

this study) to lattices where each axis is divided into 2q segments. The shapes of the

regions generated thereafter are determined along the Hilbert curve passing through

this grid. Therefore, increasing the resolution tends to complicate the shapes of the

generated areas. This process can lead to producing the uniform distribution or finely

reproducing the distribution of the input data. However, the comprehensibility of the

divided regions may be worse because of their complex shapes. Therefore, users have to

take care not to divide too finely. Then, we generate a Hilbert curve that passes every

block once. A sequential number that indicates the order in which the Hilbert curve

passes is assigned to each block. Unlike other space-filling curves such as Z-ordering

and Peano curve, the Hilbert curve always passes an adjoining block right after passed

one block. Pairs of neighbor blocks are assigned closer numbers, while apart blocks

are assigned entirely different ones. Therefore, the one dimensional block numbers

represent original coordinates in a multi-dimensional space, preserving correlations of

distances among data items. Next, we generate z regions by grouping these blocks and

assign characters alphabetically to each region in the order of the sequential numbers of

the blocks. The number of blocks belonging to one region depends on the distribution

of data items. A smaller number of blocks are assigned to regions that many data

items belong. On the contrary, a larger number of blocks are assigned to a region if

few data items belong to. The following are two reasons to adjust areas of regions

according to the density of data items, not regularly separating the space in a grid

pattern. One is to keep a fine resolution to preserve more accurate spatial information

in high density regions such as crowded places. The crowded place is usually worth
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paying attention to understand the walking patterns of people. The other is to avoid a

lack of characters to assign as names of regions by too fine separation at sparse regions.

The number of regions z needs to be adjusted according to the environment in which the

multidimensional data is acquired and what behaviors the user needs to analyze. For

example, in the case of pedestrian flow line data, it is conceivable to first set a numerical

value that can reproduce the area division that can be assumed in advance (such as the

division of the store in the store). If users do not have enough knowledge to determine

these or apply the datasets of the places where the degree of freedom is high, the users

have to determine how finely pedestrian movements need to be analyzed. When z is

small and the area of one area is large, finding the characteristic of movements of the

pedestrian groups is possible. On the contrary, if z is large and the area of the area is

small, a comparison of individual pedestrians gets easy. Furthermore, users can set a

threshold of 2b and divide a large area. This process prevents coordinates that are too

far away from being included in the same area and being considered as the same point.

Similar to the number of regions, the threshold 2b needs to be determined according to

the data acquisition environment and what kind of behavior needs to be analyzed.

At the same time, this process saves a table of distances among all regions

conveniently. The distance between the regions is the same as the shortest route

connecting the regions, as in the processing in SAX. For example, when calculating

the distance between the area A and the area B, the Euclidean distance between the

squares is calculated for each of “all the cells that constitute the area A” and “all

the cells that constitute the area B,” and these distances are calculated. Then the

minimum value of these distances becomes the final distance between regions A and

B. As described above, since the shape of these regions is determined by the Hilbert

curve, the cells that form one region are densely gathered. Therefore, the distance

between regions strongly maintains the distance relationship before the transformation.

When a space-filling curve other than the Hilbert curve is used, it is possible that

“an elongated area is generated” or “the masses that form one area are discrete.”
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Therefore, the distance between regions may not be intuitive. The method of adopting

Figure 3.3: Illustration of the distance between original data and distance after
character string conversion(refer from [73]).

the shortest distance between masses has already been adopted in SAX as the base of

UniversalSAX. Figure 3.3 illustrates an example of distance definition. While applying

to the distance calculation of the trajectory data, it means that “ignoring the size of the

region itself and the moving distance inside the region and considering only the distance

outside the region.” When the segmentation by UniversalSAX is appropriate, “Moving

within a single area” means an action that is judged by the user to be less important

than “moving between different areas” or need not be considered. Such processing is

considered to be effective for calculating the distance according to the target of the

users’ analysis. As a specific example, let us suppose a case where each poster is

divided into one area for “analyzing how far a poster session participant walked and

how many posters the participants passed.” In this case, between which region (poster)

the movement has occurred is particularly important. On the other hand, positions

and movements within a single area (e.g. whether you are directly in front of or present

beside the presenter) are determined to be of low importance. Here, only the moving

distance corresponding to the target “moving to a different poster” can be calculated

by calculating the distance using the shortest distance between the cells. If another

distance (e.g. between the center of the region or between distant cells) is used instead

of the shortest distance, the obtained distance contains as both “outside the region”

and “inside the region.” In particular, while calculating the distance between regions

with large areas, it is necessary to take into account that the influence of the latter
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will increase. As described above, redundant movement information can be reduced by

using the shortest distance. On the other hand, if parameter settings of the Universal

SAX are not appropriate and points that should be in different areas are included in

the same area, the movement information to be taken into account will be reduced.

We can refer the table while calculating distances among walking routes. This lookup-

table-based implementation reduces the computation time of this process.

After completing the setup process described above, we can convert people flow

datasets to sequences of characters which form much smaller datasets. In this

process, we firstly apply an Affin transformation to positions at each time step of

the trajectories to complete the calibration. Then, we generate sequences of characters

from pedestrians’ walking routes with the regions divided by the setup process. We

define three kinds of datasets, G consisting names of regions, Sk which represents single

walking route, and P that is a collections of all of walking routes as:

G = {g1 g2 ... gz} (3.1)

Sk = {s1, s2, ... , sl | sj ∈ G} (3.2)

P = {S1 S2, ... Sp} (3.3)

gi (i = 1, 2, ... , z) is characters as names of regions, selected from ‘A’-‘Z’, ‘a’-‘z’,

and some symbols such as ‘\’, ‘[’, and ‘]’ in this order. The process chooses l letters as sj

from the names of regions permitting duplication, and generates Sk (k = 1, 2, ... , p)

using sj which are chronologically ordered.

3.3.3 Preparation of Calculation of Distances

The following processing is added to the strings generated by UniversalSAX in the

previous section. This process can convert the strings into a form that more clearly

shows the characteristics of the trajectories.
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Run-Length encoding

The sequence of characters usually construct much smaller datasets comparing with the

original people flow datasets.

Figure 3.4: Applying run length encoding to a walking route.

To compress the datasets further, we apply the Run-Length encoding to the sequences

of characters, as shown in Figure 3.4. From each Sk, we generate p Run-Length

codes defined as S ′
k. Run-length encoding is a reversible compression method which

is especially effective for sequences that the same letter continuously appears; it

corresponds to a situation that a walker stays for a while in one region. Contribution

of run-length encoding is not only the compression of the sequences of characters; it

also assists the discovery of places which walkers stays for a while, by searching for

continuously appearing characters.

We extract features in the sequences of characters to understand property of people

flow datasets. One of the features is where people stop walking. We can discover

congestions and their average staying time, by searching for the gi which continuously

appear in Sk. Furthermore, we calculate distances among the sequences of characters

to summarize or search for particular walking routes.

Correction of Abnormally Long Strings

Before calculating distances, we correct abnormally long strings generated by the people

flow conversion process described in Section 3.3.2 to calculate appropriate distances.

(See Figure 3.5.) Usually, Run-Length codes generated from movements covering wide
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Figure 3.5: Correction of abnormal strings.

places get longer than other ones from movements staying at limited regions. However,

if a walker stopped on a border of two regions ‘A’ and ‘B’, positions recorded at regular

time intervals may be occasionally judged as ‘A’ and converted to ‘B’ at other times,

affected by noises or other factors. A generated Run-length code have alternately

appearing ‘A’ and ‘B’ with small numbers which means short staying times while

converting such positions. In other words, the code means round trips between two

regions ‘A’ and ‘B’, even though the walker actually stopped. Focusing on camera view

in this study, whole view is about five square meters, and approximate area of each

region is from tens of square centimeters to one square meter, so actually it does not

often happen that walkers have such round trips many times. To solve this problem,

we arrange such Run-length codes. Specifically, we convert reputations of two letters

and staying times at each region, to one of the letters and staying time there. We select

one letter which has longer staying time than the other, and set new staying times by

accumulating staying times at each region. In this implement, we correct parts which

have reputations of patterns “ABA” of way points (like “ABABA”). We do not adjust

only one appearing (like “ABA”), since it is likely a real turning.
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Figure 3.6: An example of calculating original Levenshtein Distance.

3.3.4 Calculation of Distances among Walking Routes

After this process, we calculate distances among S ′
k. We adopt Levenshtein Distance

(LD), one of popular definitions of distances between sequences of characters. We can

calculate LD even S ′
1 and S ′

2 have different lengths. If length of S ′
1 is m1, and that of

S ′
2 is m2, time complexity to calculate LD between them is O(m1m2). This method

determines how many operations (insert, delete or replace one character) are required

to convert S ′
1 to S ′

2. The number of operations corresponds to the distance between

sequences S ′
1 and S ′

2. We regard S ′
1 as closer to S ′

2, if the less number of operation is

required to convert S ′
1 to S ′

2. Specifically, this method calculates sums of conversion

costs, while supposing costs of any operations as 1. We can determine the smallest cost

to convert S ′
1 to S ′

2 applying dynamic programming. (See Figure 3.6.)

Here, original definition of LD causes a problem in our study. Degrees of a difference

between two characters are ignored in the original definition since all costs are uniformly

defined as 1. For this reason, we cannot calculate degrees of differences between any two

letters, and express differences among walking routes accurately. Suppose three region

‘A’, ‘B’, and ‘C’, and a walking route“ABC”, and compare this walking route “ABC” to

other walking routes “ADC” and “AZC”, by calculating differences using LD. If region
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Figure 3.7: Costs of each operation.

‘D’ is close to ‘B’, and region ‘Z’ is far from ‘B’, we should set a distance between “ABC”

and “AZC” larger than that of “ABC” and “ADC”. However, in practice LD(“ABC”,

“ADC”) and LD(“ABC”, “AZC”) get the same value 1, and no differences between the

distances are produced. To solve this problem, we apply a weighted LD (WLD) [76]

which can reflect differences between arbitrary pairs of characters by flexibly adjusting

costs of insert, delete and replace operations. Furthermore, we regard a pair of one

name of region and staying time there as one unit uj′ (j
′ = 1, 2, ... , l′) and calculate

sum of cost of operating one unit. We define S ′
k = {u1, u2, ..., ul′}, where tj′ denotes

how many times gj′ continuously appeared:　

u′
j′ =

{
gj′ (tj′ = 1)

gj′tj′ (otherwise)
(3.4)

We define costs of each operations as shown in Figure 3.7 using these definitions.

ud(uj′1
, uj′2

) denotes distances between two units described as:

ud(uj′1
, uj′2

) = d(gj′1 , gj′2) + wtime

√
|tj′1 − tj′2 | (3.5)

The first term denotes distances between two regions, and the second one means

staying times at each region. We simply refer a lookup-table generated by the setup
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process described in Section 3.3.2, to identify a distance between two regions gj′1 and

gj′2 as d(gj′1 , gj′2). wtime is weight of influence of staying times. If wtime is zero, the

system distinguish walking routes according to only shapes or way points. We define

same formulas for inserting and deleting operations since they are just opposite each

other. When applying inserting or deleting, selection of a formula depends on whether

the modified unit is at the top or the last of S ′
k, or not.

We can change values of costs by not only which type of operation is applied but also

to which letter we apply operations, by using d(gj′1 , gj′2). The more distance between

gj′1 and gj′2 , the more c(gj′1 , gj′2). If two S ′
k include different letters, we can express

not only information that way points are not same, but also degrees of differences

between gj′1 and gj′2 . At this moment, we add a positive real number wlength to costs of

inserting and deleting, so as to make these costs larger than cost of converting. When

we calculate LD between two S ′
k that have different lengths, insert and delete tend to

be required operations. Hence, adding wlength causes that LD between S ′
k that have

different lengths get larger. Length of S ′
k denotes how many regions does the walker

pass, and get a different value whether the walker moved wide area or not. We can

classify these movements easily using u. It is possible to define an operation to swap the

order of a pair of characters as one operation. We did not implement it as an individual

operation because a sequence and its reverse cannot be treated as the same meaning;

such sequences correspond to opposite directions of walking routes in our study.

In summary, LD calculation in our study takes into account the following features:

• Places where walkers passed

• Wideness of the walking routes

• Directions

• Staying times

Our method includes the above distance calculation method. On the other hand,

there is room to use other distance calculation depending on the analysis target. For
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example, Jaro-Winkler distance is also a representative distance for strings similar to

edit distance. The Jaro-Winkler distance is a method of adding the number of symbols

that co-occur in two strings as a score, and the high score means high similarity. The

main difference from the edit distance is that the more characters that match in the

front part of the string, the higher the score. Therefore, it can be used effectively in

the following cases.

• When users want to focus on the movement at the initial stage and analyze it (for

example, finding the product that shoppers want to buy first)

• If users want to check that the prescribed behavior is being followed at the initial

stage of the behavior

• When the starting point of the trajectories tends to be aligned to some extent

Conversely, in such cases such as “there is no prescribed route and the degree of freedom

of movement is high,” “the starting point of the trajectory is dispersed,” and “the order

in which the traffic lines pass through each point is not important”there may be little

reason to introduce it [2].

Using results of the calculations, we can classify trajectories or search particular

walking routes and submit patterns of walking to observers. Users can select a method

to display the patterns. For example, if they want to count numbers of persons who

passed specified routes, they can input the route as search term and find corresponding

trajectories. On the other hand, when using people flow data recorded at places which

do not have designated walking routes, users can hardly understand existing patterns

of movements. Then we apply clustering to dataset of strings, and divide them to some

groups automatically.

3.3.5 Classification of Trajectories

We select K-medoids as method of clustering. This is one of non-hierarchical clustering

methods which is suitable for our large people flow datasets. The process is similar to
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the major non-hierarchical clustering algorithm K-means. But K-medoids applies not

centroids but medoids selected from existing elements. That means we have to calculate

only distances among elements. Instead of describing walking routes by vectors that

have same length, we calculate distance matrix among elements as mentioned above,

and apply K-medoids clustering.

In K-medoids, users can set the number of clusters freely, however it is sometimes

difficult to select the optimal value. In that case, we apply the following way to

determine the number of clusters.

1. Set the number of clusters n to 2.

2. Run K-medoids and generate n clusters.

3. Finish the process when the clustering result satisfies the following formula 3.4.2.

If the following expression is not satisfied, increase n by 1 and return to step 2.

0.3 <
c

n
(3.6)

c is the number of clusters whose number of elements is equal to or less than the

threshold value m. By setting such a criterion, both of a cluster containing many

elements and a cluster containing only few elements are generated. Clusters with many

elements are considered to contain typical behaviors, and clusters with only few elements

are considered to include exceptional behaviors and characteristic actions. These are

useful information for analysis regardless of what kind of trajectory dataset is used.

3.3.6 Visualization of Walking Routes

Finally, we visualize people flow data as sequences of characters emphasizing its features.

We generate nodes at the centers of the regions divided by the setup process described in

Section 3.3.2. This process displays the connections of the nodes based on the sequences

of characters to represent the walking routes. We suppose two types of operations with

this representation. One is to represent abstract information of the data with the

overview, and the other is to select particular regions interactively and then display
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detailed information at the selected regions. We suppose that users can find multiple

regions by selectively displaying the following:

• Regions which many walkers densely stopped

• Number of walkers moving across a particular pair of regions

We visualize the congestion of walkers at each region by drawing circles at the nodes.

Their radii depict the numbers of walkers that passed the corresponding regions, while

their colors depict the average staying times of the walkers at each region. Warmer

colors are assigned to the circles when the average staying times are longer. We also

represent the populations of walkers moving across the pairs of regions by widths of

segments connecting the corresponding pairs or nodes.

Using the functions mentioned above, users can narrow down several regions that

worth exploring finely down. They can select particular regions and observe detailed

information related to the regions using the following:

• Animation of walking routes

• Search function for walkers who passed a particular route

Users can observe animations that show particular walking routes. Our

implementation draws segments connecting pairs of regions increasingly in the temporal

order. Users can select segments to be drawn by selecting a node and a radio button.

Specifically, our implementation allows to interactively select a particular region to draw

segments representing walkers leaving or coming to. We adjust densities in segments

reflecting the number of the segments. Our implementation separately draws each

segment to directly compare them, as shown in Figure 3.8(left), if there are small number

of segments to display. Otherwise, our implementation bundles similar segments as

they look like a single thick segment, as shown in Figure 3.8(right). This representation

avoids too complex visualization results caused by huge number of visible segments.

36



Figure 3.8: Visualizations of small number of segments (left) and bundles of similar
segments(right).

Colors of the segments indicate the time when walkers passed the selected region:

earlier walking routes are drawn in warmer colors, while later routes are in cooler

colors. Users can understand various features of the people flow, such as where walkers

passed continuously, and which time the regions are most crowded, by observing the

visualization results.

Our implementation also provides a user interface for search operations to specify

the segments to be drawn. When a user enters a keyword associated to a particular

walking route, our implementation calculates distances between the specified walking

routes and others. Then, only walking routes similar to the specified walking route are

displayed. The presented technique can assist the understanding of the peculiarity of

walkers’ actions sufficiently and quickly, by visualizing people flow data emphasizing

the tendency of the walkers.

The following two methods are color schemes for trajectory visualization.

Color setting 1 Expressing clustering results in detail

Color setting 2 Expressing the appearance rate of each behavior

The first one is for expressing the clustering results in detail. Our implementation also

features visualization of clustering results. Users can choose all clusters or one of them

to be displayed. Our implementation specifies colors of clusters based on the following

rule using the HSB model. (See Figure 3.9.)
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Hue =
300 v

(V − 1)
(3.7)

Saturation = smin + wsat
tgv
pv

(3.8)

Brightness = bmin + wbright (255 − bmin)
pv
p

(3.9)

V is the total number of clusters, and v is the number of selected clusters to be

visualized. Particular hues are assigned to each of the clusters. Clusters which have

smaller numbers get redder, while clusters which are assigned larger numbers get bluer.

Saturation is also specified for each region. smin is a natural number to avoid S

gets too low and therefore it gets difficult to visually distinguish hues of clusters.wsat

arranges ranges of saturation. tgv/pv is the average staying time of people who passed

the region g and belonged to the cluster v. Vivid colors are assigned to places that

many people tend to stop.

Brightness denotes populations of each cluster in our implementation. Here, we would

like to discover typical moving patterns than exceptional ones in this study. Thus,

we color clusters that have many trajectories lighter in order to make the clusters

conspicuous. If the clusters have larger brightness, it is easier to visually recognize

changes of colors while increasing or decreasing their saturation. Therefore, users can

recognize differences of average staying times at each region. bmin is a natural number to

avoid assimilation of trajectories and black background. wbright sets amount of changes

when pv changes.

We also draw yellow hexagons on departure points of trajectories, and white

rhombuses on their arrival points to depict moving directions. Sizes of the figures

reflect numbers of passed trajectories there.

Next, we introduce the second color setting. This is the use of colors to express the

appearance of actions included in each trajectory. The appearance rate of each cluster
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Figure 3.9: Selecting colors of trajectories.

p is represented by changing only the saturation of the flow line. Hue and lightness are

set to constant values.

Saturation = 255− (1− p) (3.10)

The appearance rate p of the cluster ci is the product of the following values.

• Number of words belonging to ci / Total number of words

• Number of trajectories containing words belonging to ci / Total number of

trajectories

A word representing a certain action is calculated based on “how many times the word

appears in the entire trajectory data” and “in how many trajectories do the word

appear.” We can visualize which part of a certain trajectory is a typical behavior and

which part is an exceptional action by this color scheme.

3.4 Experiments

This section presents experiments of classification and visualization using people flow

dataset recorded at an exhibition. Broadly, we introduce the results of the following

two data sets.

• Visitors of an exhibition.

• Attendees of a poster session.
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3.4.1 Case of an Exhibition

Figure 3.10 shows a layout of the ground. We set three cameras at the entrance, a

corridor, and an exhibition room, then recorded trajectories of visitors.

Figure 3.10: Maps of the exhibition.

Exhibition Room

We visualized people flow data recorded in an exhibition room. There were two

doorways in the room. One lied at the lower edge in the recorded picture, while the

other was at the upper right corner. There were exhibits in the left and upper sides,

as shown in Figure 3.11. The dataset contained 5531 trajectories recorded for 8 hours

(9:00 to 17:00). We divided the whole floor in the recorded view to 44 regions by

UniversalSAX, and assigned characters ‘A’-‘Z’, ‘\’, ‘]’, ‘ˆ’, ‘ ’, ‘”, ‘a’-‘l’ to the regions.

We firstly visualized congestions to briefly understand the tendency of the people flow

as shown in Figure 3.12, and then searched for where many people passed.

There were many large circles painted in yellow or orange, from lower-left to upper-

right regions, in the visualization result. It depicted the regions that were on a walking

route where many people passed smoothly. On the other hand, circles at upper-left
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Figure 3.11: Camera view in the exhibition room.

Figure 3.12: Visualization of congestions.

regions got red, which suggested certain number of walkers stopped in front of exhibit

there to look carefully. Especially, circles at the upper-left corner were larger than

others, which depicted exhibits on the circles got attention of the participants.

Next, we visualized particular walking routes and compared populations in each time

periods, as shown in Figure 3.13. We colored trajectories based on HSB model, where

larger hue values mean that walkers appeared in a later time period. Each of colors

correspond to particular hour; for example, segments drawn in red depict walkers’

movement during 9:00 to 10:00. We could find various colors from red to purple near

the exhibits, which illustrates the exhibit attracted people constantly. In particular,
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Figure 3.13: Visualizing walking routes passed the selected region.

there were large number of dark blue segments corresponding to participants visited

during 14:00 to 15:00, which illustrates larger number of participants visited the exhibits

around midday compared to other times.

Then, we selected more specific walking routes as sequential characters, and counted

numbers of people who passed the routes by the search function. Figure 3.14 shows eight

types of routes that we searched for. We focused on two doors and the exhibition at the

upper left corner, and specified these routes based on their directions and way points.

There were larger number of walkers (corresponding to routes 1, 3, and 5 in Figure 3.14)

came from door A, while smaller number of other walkers (corresponding to routes 2, 4,

and 6 in Figure 3.14) came from the opposite direction. Totally, many people entered

the room from door A. As above, exhibits constantly had walkers’ attention enough to

make them stop walking. On the other hand, several walkers (corresponding to routes

5 and 6 in Figure 3.14) straightly moved from a door to the other, not passing in front

of the exhibits. Moreover, small number of walkers (corresponding to routes 7 and 8

in Figure 3.14) turned buck after moving to the upper left exhibition. These indicate

that we ought to devise arrangement of the exhibition to attract more visitors.
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Figure 3.14: Result of counting numbers of people.

Figure 3.15: Camera view at the entrance(left) and visualization of congestions
there(right).

Entrance

This subsection introduces cases of using datasets recorded near reception of the

exhibition. First dataset is 8160 trajectories recorded near a reception for 8 hours

(Figure 3.15(left)). The data decreased from 138MB to 151KB (compression rate is

99.89%) by UniversalSAX.

Figure 3.15(right) shows congestions at the entrance made from the data. There are

red circles which depict many people stopped for a long time at (1) and (2), which

means congestions occurred near the reception a whiteboard. From the camera view

(Figure 3.15(left)), the congestions are due to visitors’ procedures at the reception and
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Figure 3.16: Animations of moving around the reception.

chatting in front of the whiteboard. In contrast, we can know that walkers moved

smoothly at (3), since several yellow circles appeared there.

Figure 3.16 are examples of visualizing walking route in each time period. Trajectories

in the upper picture correspond to walkers who passed a region near the door. In the

lower figure, we selected a region near the upper corridor. One of the different points

is that in the upper picture there are less red lines than in the lower picture. Red

trajectories depict visitors who came in the morning from 9:00 to 10:00. That ’s

because there were not many events in the morning so visitors who entered from left

door were rare.

Corridor

This subsection introduces results of another experiment using datasets recorded at

a corridor next to the exhibition room, as shown in Figure 3.17. We applied clustering

to visualize the datasets, changing numbers of clusters and weights of features while
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Figure 3.17: Camera view at a corridor and a result of visualizing passable routes.

calculating distances. We selected numbers of clusters as 5, 10, and 15. We can grab

representative patterns of movement, meanwhile finding exception or persons walked

at narrow spaces is difficult, while selecting the number as 5. On the other hand,

unnoticeable trajectories formed a single cluster when the number is 10 or more. We

changed in the weights as follows.

• wlength = 0.1 or 1.0

• wtimes = 0.0 or 5.0

Major differences among clusters are not observed while changing in weights.

Comparing constructions where wtimes is 0.0 or 5.0, we can find correspondence among

clusters and how trajectories belonged to different clusters.

We used 302 trajectories recorded from 9:00 to 10:00 and drew clusters one by one.

Figure 3.18 shows the distribution of trajectories while staying time information is not

taken into account. Figure 3.19 shows a result with applying staying time information.

Figure 3.20 is an example of visualizing results of clustering. Trajectories in these

clusters did not disperse to many types of clusters. Clusters in the left rank are results

where wtimes = 0.0, and the right ones are generated where wtimes = 5.0. While

visualizing each cluster, we can find that trajectories in one cluster have a couple of
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Figure 3.18: Generated clusters excluding staying time information.

Figure 3.19: Generated clusters including staying time information.

representative departure and arrival points. On the other hand, when wtimes = 5.0,

many trajectories are belonged to clusters in the right rank. Arrows depict how many

trajectories belonged to clusters in the left rank moved to clusters in the right rank.

Observing the results of visualizing cluster 1 and 9 in the right rank, shapes of clusters

are similar, though they have different saturations. Whole saturations of cluster 1 is

higher than those of cluster 9. This means cluster 1 includes trajectories of walkers who

stopped or walked slowly in the way, and trajectories belonged to cluster 9 represent

moving people. However, while increasing weights of times, representative departure

points are scattered and classifying based on way points are ambiguous. Specifically,

trajectories started from the upper border and went to the lower one and trajectories

from door of the left room are mixed. Users should change in weights based on whether

they want to focus on way points or times to move.

Figure 3.21 is a part of a clustering result where the number of clusters is 15. We

focused on cluster 14 generated where wtimes = 0.0, and traversed trajectories in the

46



Figure 3.20: Comparing affiliations of trajectories in particular clusters.

cluster. While setting wtimes = 5.0, almost 80 percent of trajectories went to five

clusters in Figure 3.21, and approximately half of trajectories moved into cluster 1 or

cluster 14. Cluster 1 includes trajectories that passed to the left side or the corridor

without stopping for a long time. On the other hand, cluster 14 includes trajectories

at the right side and high saturations which depict longer staying time. Trajectories

that passed the left side denote people who came from the room and turned right soon

to move. Meanwhile, people at the right side of the corridor are not always moving,

but stopped near the wall so as not to distribute walkers. Thus, we can separate these

different types of movement not from way points but staying times.
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Figure 3.21: Dividing trajectories which passed almost same places by features of
staying times.

3.4.2 Case of Poster Session

This section introduces the results of using poster session participants’ trajectory data

recorded in June 2017. We set eight Xtions to record trajectory datasets and visualized

the dataset. Figure 3.22 (left) is an example of the field of view of Xtion. Figure

3.22(right) is the result of dividing the room into regions by UniversalSAX. As a rough

layout, poster panels were placed on the wall approximately every 1m, and tens of

participants could move between two rows of posters. The number of trajectories was

403 in 10 minutes measured by Xtion, and the total number of words generated by

dividing the strings was 968. For the region segmentation, we used an almost grid-like

segmentation result.

In the initial stage of the experiment, we tried to generate a result that strongly

reflected the trajectory distribution as shown in Figure 3.23(right). These were the
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Figure 3.22: Venue for poster sessions. (left)An example of camera view. (right)Result
of region division.

Figure 3.23: Comparison of results of UniversalSAX. (left)strongly reflecting
distribution of trajectories. (right)division to like lattices.

results of segmentation using parameters similar to the case of the exhibition hall.

The area near the center of the room with heavy traffic was divided into extremely

small areas in this result. Since the space divided by UniversalSAX is based on a

square, applying to data in a rectangular room seems difficult. The comparison of the

distribution of the trajectory data including the coordinates around the walls that the

participants did not able to pass affected the results. It seems dividing one poster into

one region is preferable in the case of poster presentation venue. However, it is difficult

to estimate the poster layout from this segmentation results. Therefore, we arranged

the parameters and used the division result 3.23 (right) which similar to a substantial
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Figure 3.24: A simple trajectory of one person (left)Visualization of clusters to which
each action belongs by hue.(right)Visualization of action appearance rate p using
saturation.

Figure 3.25: A complex trajectory of one person(left)Visualization of clusters to
which each action belongs by hue(right)Visualization of action appearance rate p using
saturation.

grid pattern.

Next, we introduce the results on the classification of the trajectories. First, we

applied clustering to 968 words using the dissimilarity weighting the difference between

the trajectory length and the passing point. The number of clusters was automatically

determined by using the formula . As a result, 6 clusters were generated. Based on these

results, we compared the visualization results of the trajectories representing individual

pedestrians.

Figure 3.24 is the visualization result of the trajectory of the pedestrian who has
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moved from area ’P’ to area ’X’. Since no circle was drawn in addition to the start and

endpoints, this means the participant did not stop for a long time. Figure 3.24(left)

shows the cluster to which the words that make up the flow line belong, expressed in

hue. The behaviors of the pedestrian were classified as follows.

1. Movement from the end of the venue to the central passage (blue)

2. Movement from the right end to the left end of the venue (green)

3. Movement from the left edge of the venue to near the center and turning right

(blue)

Here, Figure 3.24(right) which indicates the appearance rate of the cluster shows that

the blue part of the trajectory is an action with a high appearance frequency, while the

green part is an action with a low appearance frequency.

Figure 3.25 is the visualized trajectory of another pedestrian who has moved from

the area ’]’ to the area ’O’. As in the case of Figure 3.24, the behavior of pedestrians

was classified according to hue as follows.

1. Movement with a little detour to the right side of the venue (blue)

2. Movement slightly away from the wall (light blue)

3. Movement from near the center of the venue to the left (purple)

4. Movement slightly toward the opposite wall and movement to the left (blue)

5. Movement toward the right side of the venue (red)

From Figure 3.25(right), we can see that the light blue and purple part in the Figure

3.25(left) correspond to slightly less frequent actions, and the red trajectory in the left

figure is a more exceptional action.

Next, we applied clustering on 968 words, taking into account both passing points

and staying time. Thirteen clusters were generated in this process. Figure 3.26 is
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Figure 3.26: Clustering results of the poster session trajectory dataset.

a visualization of three clusters that have many words belonging to them (light blue

group) and three clusters that have few words (pink group). The numbers on the

horizontal axis of the bar graph are cluster IDs, and the numbers on the vertical axis

indicate the number of words included in each cluster. Cluster 2, which contains many

long trajectories at the center of the venue, is considered to represent the typical walking
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pattern involving occasional stopping and looking around at multiple posters. Cluster

4 represents behavior that stays in a narrow area for a long time. There was a small

number of posters in this place, and many participants seem to had listened to the

explanation for a relatively long time. Cluster 8 represents a group that stops at the

venue. Not a few participants seem to had stayed away from the poster. On the

other hand, clusters in the pink group in Figure 3.26 represent exceptional behavior.

All clusters of 9, 0, and 10 represent a movement that moves around the center of

the venue without stopping. This means that there was a small number of behaviors

passing through the poster and crossing the venue as the dataset was the record at the

crowded poster presentation venue.

3.5 Discussion

This section discusses the execution results. First, we review the results for each of the

two types of data and then describe the achievement rates of the tasks described in 3.1.

First, we describe the results of the data at the exhibition introduced in 3.4.1. The

presented technique can deal with huge people flow datasets and simply visualize

movement patterns discovered from the datasets, as solutions of the two problems

which we mentioned in Section 3.2. Compression by UniversalSAX and Run-Length

encoding can archive close to 100% of compression rates. The rate is high enough

to increase capacity for large datasets and process the data in a short time. Our

system can reduce the sizes of processing data while preserving information of way

points and staying times. These properties lead the results of the visualizations. This

paper introduced that the presented analysis and visualization techniques generated

meaningful results from the compressed data. We found various information; such as

crowded places and popular walking routes. Finding such information is useful in a

variety of locations including markets and stations, as well as exhibitions. Especially,

the system distinguished way points and staying times by the formulas defined in Section

3.3.4. By arranging the values of weights in the calculation of distances, we found
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different types of patterns. For example, we found particular walking patterns including

staying next to the wall in the corridor. Next, we look back at the analysis results at

the poster venue described in 3.4.2. In this case, we could not verify the compression

ratio sufficiently because the data used was small. However, we could detect some

characteristic behaviors even from small data and classify them into clusters. In

particular, both of typical movements and exceptional actions were detected, different

from the results in 3.4.1.

In each case, we have succeeded in detecting characteristic behaviors and extracting

them as clusters. In addition to being able to identify the location of the exhibits

and posters where many people gathered, we found places that could be called layout

problems, such as congestion and gathering of people who did not participate in the

session, at the poster venue. This is close to the scenario using the analysis results

described in 1.3. Therefore, we can see that the string keeping the passing point and

the stay time was effective for feature extraction. On the other hand, there is a difference

in the result of region segmentation in UniversalSAX. In 3.4.1, the region segmentation

results could be used according to the flow line data distribution, but in 3.4.2, good

results could not be obtained, and the segmentation results in a grid were used. Based

on the above results, the cases where UniversalSAX can be applied effectively at this

time are limited to “acquisition on a square floor” and “places with few prescribed

routes and obstacles and high degree of freedom of action.” When applied to more

diverse cases, users have to specify the obstacles and immovable coordinates in advance

and divide the remaining free-traffic range based on the flow line distribution.

As for the issues listed in 1.1, the effectiveness of the proposed method for data

compression and feature extraction was confirmed. Furthermore, the problem of how to

present the results of the visualization of the flow line was largely achieved by visualizing

both individual and group movements and visualization of clustering results. However,

there is still room for improvement in the visualization of trajectories. In particular,

since a function for comparing multiple trajectories was not introduced, conventional
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methods such as switching the cluster to be visualized and comparing two visualization

result screens side by side were used.

Future issues of this study are follows.

• Improvement of formulas and conditions of clustering.

• More functionality for searching for walking routes.

• Manual specification of region division in the setup process.

• Inferring the semantics of walking actions.

In these experiments, we demonstrated shapes of trajectories and staying times are

important to distinguish movements of people. On the other hand, we should discuss

further goals and methodologies, such as how to automatically specify appropriate

number of clusters for proper classification, or how to determine balance of weights for

calculating distances among sequences of characters.

We would like to develop additional user-specified conditions to the search user

interface. We would like to adjust the costs for distance calculation according to the

user-specified conditions, so that we can search for various walking routes from various

viewpoints. It is also useful to develop a sketch user interface to query the walking routes

with arbitrarily shaped trajectories, instead of specifying sequences of characters.

In current processing of region division, we cannot specify positions and shapes of

borders between the regions. We would like to develop a user interface to specify the

attributes, positions, and shapes of the regions for the cases that we know the objects

in the scene which should divide the regions.

In addition to the above development, we would like to challenge how we can visualize

the semantics of walking actions from the results of summarization and grouping of

walking routes. Adopting a method of analyzing actions of people, we would like to

visualize its result with trajectories.
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3.6 Conclusion

In this chapter, we proposed a technique to visualize features of people flow data

by converting real values of walking routes into sequences of characters. Section 3.2

presented importance of understanding features of people flow and problems on analysis.

Section 3.3 presented the technique for compression and visualization of people flow

dataset. Section 3.4 stated results of experiment of applying the visualization technique

to datasets recorded in some events. Section 3.5 discussed results of the experiments and

future work. This technique allows users finding nature of people flow and important

factors quickly. Especially, we focused on two kinds of features, way points and staying

times, then showed they are effective to classify trajectories.
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Chapter 4

Eye Tracking Data Visualization

4.1 Introduction

This chapter introduces the second proposed technique for visualization of eye-tracking

data. Section 4.2 includes overview of the proposed technique. Section 4.3 introduces

the processing flow. Section 4.4 presents two case studies applying the technique.

Section 4.5 discusses the result, and Section 4.6 is summarization.

4.2 Overview

The development of eye-tracking devices brought the spread of the study of eye-tracking

data. Analysis of eye-tracking on a stimulus such as web pages or advertisements

[77] indicates what people are interested in. Furthermore, eye-tracking is effective

to measure proficiency in learning[78]. Such information is effective to improve the

design or layouts of the stimulus. There have already developed various methods of

eye-tracking data visualization[79][80]. Especially, visualization of trajectories is an

intuitive expression even for non-expert of visualization. However, the following two

problems are still left. One is the lack of visualization method to show transitions

among multiple areas of interest (AOIs). AOI means region that surrounds an object

such as a text paragraph and picture, or part of it, and frequently used in the analysis

[66][81][82]. Figure 4.1 is a simple example of AOIs on a website. The order of scan-

path transitions between AOIs indicates relationships in contents or products such as
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Figure 4.1: An example of an analysis of gazing times in each AOIs. (refer from [81])

“The customer who likes product A also like product B.” However, the visualization of

multiple scan-paths often involve overlapping of the paths and reduction of visibility,

therefore we have to carefully select elements to visualize. The second problem is a

shortage of methods to compare multiple scan-paths. Finding common or different

parts in the scan-paths leads to understanding popular or exceptional behaviors. In

existing comparison methods, basically users have to overlap or line up scan-paths to

compare them[68]. Such a way sometimes brings overlooking differences between the

paths since too much information is shown. In this chapter, we propose a visualization

method of characteristic parts of scan-paths on static stimulus, especially focusing on

solving the above two problems. First, we obtain scan-paths when the subject observes

a stimulus such as a web page or advertisement. Next, we create hierarchical AOIs

according to the content of the stimulus. Then, we convert the scan-paths to strings

following the layout of the AOIs. We apply N-gram [83] to the strings and extract

patterns which mean orders of access between AOIs. Finally, we visualize the results

of pattern extraction and transitions between the AOIs on the stimulus like Figure 4.2.

(We will mention details of the panels (A) to (F) in the Section 4.3.3.) These techniques

are effective to find frequent behaviors or differences in participants. As case studies,

we introduce two case studies using different stimuli, a web page of Wikipedia and a
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Figure 4.2: Construction of our visualization system.

poster with several illustrations.

4.3 Implementation

This chapter contains the procedure of the gaze trajectory visualization method. Section

4.3.1 explains how to acquire the gaze trajectory and generate a hierarchical AOI based

on the data. Section 4.3.2 describes a method of converting gaze trajectories into

strings based on the layout of AOI and extracting patterns using N-grams. Section

4.3.3 contains how to visualize the shape of the extracted pattern and the difference

between the behavior patterns of each subject on a single window.

4.3.1 Recording of Eye tracking Data and Generation of AOIs

Figure 4.3 shows the processing flow of our visualization system. First, we use record

eye-tracking scan-paths Ci(1 ≤ i ≤ p) from p participants using eye tracking device.
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Figure 4.3: The processing flow of our proposed technique.

We define the scan-paths using position cq and the number of points ni.

Ci = {c1, ..., cni
} (4.1)

Next, we define hierarchical AOIs on the stimulus. Hierarchical AOIs are a collection

of AOI layouts on a single stimulus that is saved as hierarchical data according to a

degree of fineness [84]. The layout of AOIs effects results of pattern extraction, thus

users can change behavior to analyze by switching layouts of AOIs. In this time, users

can efficiently generate various AOIs by merging or dividing existed AOIs as parents

or children of the old AOIs. Figure 4.4 shows the processing flow of the AOI definition

consists of 2 steps. In the first step, users can generate a detailed layout of AOIs that

one object gets single AOI. Secondly, the users can set rough AOIs and hierarchy by

merging parts of the existing AOIs. The detail of each procedure is as follows. First,

users can manually or automatically generate the most detailed AOIs. One AOI gets

the shape of a rectangle to keep visibility when the user visualizes scan-paths and AOIs

on the stimulus as mentioned in Section 4.3.3. In the automatic AOI definition, color

information of the stimulus affects the AOI layout as shown in Figure 4.4 (1) to (4).

The detail of each step is as follows.

60



Figure 4.4: Flow of the definition of AOIs.

1. Apply mosaic processing and posterization, and select the most frequent color as

blank color. The other colors are regarded as objects.

2. Paint blank area which is the dent of an object by another color.

3. Surround the objects by rectangles and set temporary AOIs.

4. Arrange shapes of overlapping AOIs by merging or transforming into two AOIs.

On the other hand, users can manually set AOIs to do fine regulation. The users can

surround objects one by one and set each AOI. In this time, if the newest AOI and the

existing AOI are close, the newest AOI adjoin to the existing AOI to avoid overlapping

or leaving a minute opening between the AOIs. The next step is setting rough AOIs

and hierarchy based on the detailed AOIs. Users can merge multiple AOIs to one large

AOI and also subjectively set various AOI layout, for example, “Gathering close AOIs”

or “Merging figure and tables.” This is an efficient way to increase AOI layouts since
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Figure 4.5: Conversion of a scan-paths to a string.

the users can generating rough AOI from existing AOIs. Figure 4.4 includes an example

of hierarchical AOIs. We define the level of fineness as k, and corresponding AOI layout

as Lk.

4.3.2 Symbolization of Scan-paths and Extraction of Patterns
by N-gram

Next, we convert the scan-paths to strings and and divide to N letters parts using

N-gram. These process can show the variety and order of AOIs which the scan-paths

passed, and combinations of AOIs which the participants focused. Figure 4.5 shows the

flow of the conversion to strings. First, we use the finest AOIs Lh and allocate letters

to each AOI and blank area. Using this result, we convert the scan-paths Ci generated

in Section 4.3.2 to strings C ′
i as shown in Figure 4.5 (1). Next, we apply run-length

encoding to C ′
i and generate Ri. Ri consists of the repetition of mj the AOI or blank

area which the scan-path passed, and tj which means the times of gazing mj. Now the

run-length codes reflect the finest AOI layout and means the detailed behaviors. Then

we convert Ri to additional codes which reflects rough AOIs and shows summarized

behaviors. A letter that corresponds to a group are the same as the largest AOI in

the group. This process prevents too much gathering of scan-paths at a small AOI
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when the trajectory visualization as mentioned in Section 4.3.3. We make strings for

all Lk, in other words, we generate h strings from one scan-path. Next, we extract

transition patterns between AOIs using the run-length codes. As a preparation, we

delete (1)the letter which means a blank area (2)the length of gazing tj and (3)mj with

small tj from the string. As a result the strings only preserve letters that indicate AOIs

that the participant noticed and the string shows the transition between the AOIs. We

apply N-gram to find AOIs in which the scan-paths successively passed. N-gram is a

popular simple method for text analysis and has the advantage that it is practicable for

small-scale datasets. Finally, we compare the differences between extracted patterns

from each scan-path. We calculate the variety and frequency of each pattern and get

the cosine similarity in p strings to compare the whole scan-path. Here, we introduce a

supplementary method of calculating the similarity that can be applied to eye-tracking

data in addition to the cosine similarity. First, the similarity can be calculated using

the correlation coefficient of a random variable, such as Pearson’s correlation coefficient.

This coefficient is basically similar to cosine similarity. The difference is that the data

is assumed to follow a normal distribution, and the average value of the vector is used.

We can also apply the pattern similarity and the deviation pattern similarity. The

difference from Pearson’s correlation coefficient is whether the used average is of each

vector or the entire vector. The average value of these vectors, in other words, whether

the average trajectory is effective at the time of analysis depends on the data to be

analyzed. For example, the average trajectory may be helpful when a route is specified

and users want to detect the behavior deviating from it. On the other hand, when there

is a high degree of freedom and various flow lines are included, we have little reason to

actively apply them because the average trajectory itself has no significant semantics.

The gaze trajectory data used in this study recorded the movements of the subject

when he/she freely observed a specific web page or poster, and no specific behavior

was assumed and there were many variations in different participants. In this case,

defining a proper average trajectory is difficult, and therefore, we have little reason to
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use the correlation coefficient using the average value. On the other hand, a specific task

(searching for specific information, tracing numbers in order, etc.) is often imposed on

the subject in gaze measurement. Along with the tasks, we need to consider the cases

where the subject has ”the action that becomes the correct answer”, and the behavior

of the subject is strongly induced. We also need to consider the cases where the gaze

movements of a skilled person and a beginner are compared using a specific task. In

that case, the correlation coefficient may be applied to detect how the behavior deviated

from those assumed behavior. In addition, we can apply an index that compares the

similarity between sets by treating a string as a set of words. Jaccard index, Dice index,

and Simpson’s diversity index are representative sets of similarities. Each coefficient

calculates the proportion of elements common to the two sets, and the weight increases

in the order of Jaccard index, Dice index, and Simpson’s diversity index. Since the

lengths of symbolized trajectory data often differ greatly, the Simpson’s diversity index

is considered to be effective among them. However, the number of occurrences of each

word is not considered in any coefficient. It is therefore basically better to use the above

comparison as a string or comparison as a vector. On the other hand, the comparison

as a set may be effective in cases where the same behavior is unlikely to be repeated, or

where special emphasis is placed on ”whether or not a particular behavior has occurred

at least once”.

4.3.3 Visualization of Scan-paths and Extracted Patterns

Finally, we visualize the result of pattern extraction by N-gram. The visualization

system includes panels (A) to (F) as shown in Figure 4.2, and each panels have following

roles.

(A) Selection of datasets and parameters

(B) Showing hierarchy of AOIs

(C) Drawing a stimulus, a layout of AOIs, and scan-paths
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(D) Visualization of pattern extraction by N-gram

(E) Showing the list of visualized patterns in (C)

(F) Display of cosine similarity in the strings

(C) and (D) are the main visualization view in the system. In the panel (D), users

can set fineness of AOIs k and length of extracted patterns N , and select contents

to visualize from “total” and “difference.” “total” is the display of frequency of all

extracted patterns, and “difference” shows the comparison of included patterns in two

participants that users specify in panel (A). X-axis means each string as a pattern,

and Y-axis shows the frequency of each string. Users can sort strings for example

by “Frequency in all scan-paths” and “Search for patterns that a specified scan-path

include much.” In panel (C), we display a little bright stimulus and translucent AOIs.

This is to keep visibility when users draw scan-paths on the stimulus and the AOIs

later. The number and letter in the lower-left corner are for the identification of the

AOI. Colors of AOI follow the rule below and reflect the hierarchy of AOIs. First, we

set the cost of leaves in the hierarchy (each AOI) as 1, and calculate the other parent

nodes (groups of AOIs) as a total of the cost of their children. Next, we collect colors

in different hues as many as the AOIs and save them in a list following the order of the

hues. Starting from the root node, we distribute each color to the nodes. We allocate

the color at the top of the list to each node and pass colors as many as the cost to the

child nodes. If the node have multiple child nodes, we divide the list and pass different

colors to each of them. As a result, close AOIs in the hierarchy have similar colors.

Furthermore, little changes occur when users change Lk and can keep visibility. We

draw a directed graph that means extracted patterns, on the stimulus and the AOIs.

Users can select patterns to visualize by clicking bars in panel (D) or AOI in panel

(C). When selecting AOI, the users can search for patterns that passed the AOI as a

starting point or end or relay point. Figure 4.6 is an example of the graph. We put

nodes at AOIs that the selected patterns passed, and connect the nodes by edges to
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Figure 4.6: Force-directed graph to display patterns.

display transitions. Red nodes are the starting point of the patterns and blue ones mean

endpoints. The other nodes get gray. The color of edges means relations between the

connected AOIs. Edges get yellow if the corresponding string connects AOIs in rather

different groups. These edges can show connections between the AOIs that the user

who set the hierarchy did not expect. We put these nodes and edges following the rules

which are based on force-directed graph layout [85] and the conditions below. First,

we added attractive forces from centers of AOIs to collect the nodes in the same AOI

to avoid the nodes overlap the borders of AOIs. Furthermore, we apply the exchange

of nodes if the crossing edges have nodes in common AOI to reduce the overlapping of

edges. These processes can display positions and orders of AOIs that the scan-paths

passed, and also avoid overlapping and gathering of nodes and edges espeially in a

common AOI. Each AOI uses a different hue color to make it easier for the user to

distinguish areas. We use the method of Tree Colors [86], then the colors of large AOI

groups including many AOIs are greatly different, and individual AOIs belonging to

similar groups can be given similar colors become. Figure 4.7 describes an example of

hue assignment.
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Figure 4.7: Assignment of hue values. (refer from [86])

4.4 Experiments

In this section, we introduce the results of visualization using two types of static stimuli.

We used Tobii Pro T60 XL to record scan-paths from Eight participants Pi. The

participants observed each stimulus for 90 seconds, and we recorded 16 scan-paths.

When applying N-gram to analyze the scan-paths, we referred [87] and set N relatively
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small values, from 2 to 5.

4.4.1 Case A: Page of Wikipedia

First, we applied the automatic AOI definition to the stimulus and set a hierarchy of

which depth h is 3. Then we generated 8 strings from the scan-paths. Figure 4.8 is the

visualization of scan-paths in the finest AOIs L3. The left result is the visualization of

patterns that starts from the text paragraph surrounded by the circle. The value of

N is 3. In this result, many red nodes which mean starting points of patterns gather

in the left picture and introduction. Furthermore, there are many gray nodes on just

above text paragraph of the circled AOI. This means the participants read the text

paragraphs following the supposed order. On the other hand, there are a small number

of yellow edges that detour first text paragraph and passed the upper right figure.

The right picture of Figure 4.9 is the visualization of patterns extracted by 4-gram

and passed the circled text paragraph. Many red nodes are in the AOI in the right

area, and blue nodes are on the left figure. Furthermore, no pattern directly moved to

the next text paragraph from the circled paragraph. These mean many participants

moved the gazing points from the right area to the left area looking the figures and text

paragraphs. Like this, we visualized frequent patterns and relations of AOIs on the

stimulus. Next, we introduce the visualization of differences between participants. We

set k as 1 and AOI layouts L1 which contains (1)introduction(red) (2)main text(brown)

(3)figures(blue) (4)footer(purple). Then we extracted patterns by 3-gram as shown in

Figure 4.8. We visualized cosine similarities by a matrix and found that raws of P1,

P3, P5 were strong red which means low similarity. Furthermore, there are three yellow

green bars on the right area of the bar chart. These elements show a unique behavior

of P3, specifically transitions among the table of contents, main texts, and figures. Like

this, we visualized that participants P1, P3 and P5 had different behaviors from the

other participants.
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Figure 4.8: Visualization result of transitions between paragraphs on the detailed AOI
(L3)

Figure 4.9: Comparison of differences in scan-paths on the rough AOI (L1).
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Figure 4.10: Visualization result of frequent patterns in the poster.

4.4.2 Case B: Poster to Alert Influence of Drinking

Next, we introduce another case that we used a poster with a more complex layout as a

stimulus. We specified the layout of AOIs as this stimulus was difficult to estimate the

color of the blank area automatically. Figure 4.10 is the visualization result of frequent

patterns extracted by 4-gram. The most frequent behavior is the transition between

the circled texts and illustrations. 7 participants except for P7 had this action. Briefly,

there were two representative behaviors. One is the red pattern, starting from the title

and reached the right board (L) or texts (H) through the centerboard (J). The other is
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Figure 4.11: Comparison of the two participants P3 and P7.

the blue pattern separated on (J) and went to a light yellow board (\). We checked the

color of the corresponding bars in the bar chart and found differences in the participants.

P4, P5, P7 included the both patterns. P1, P8 only included the red pattern and P6

had the blue one. Furthermore, we can find P2 and P6 paid attention to the lower

right texts in the orange circle. Figure 4.11 is the visualization result of differences

between participants. We used AOI layout that includes (1)title (2)numbers above

the four square boards (3)texts under the square boards (4)illustrations on the grass

(5)texts under (4) (6)illustrations of trees. First, we selected P3 and P7 and visualized

patterns that they include. Common patterns (bars including gray) are about one-third

and frequencies of each pattern are different. We found differences that P3 had many

transitions between (5) and (6), and P7 moved much between (5) and (3).

4.5 Discussion

In both cases A and B, we succeeded to visualize characteristic patterns by combining

drawing scan-paths and showing the result of pattern extraction. We look back to the

two problems that we mentioned in Section 4.1. The first one is lack of the visualization
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of patterns that passed multiple AOIs. We succeeded to visualize relatively long

patterns keeping visibility since we selected only remarkable patterns from the bar chart.

In this time, we found unique behavior in particular participants since we visualized

not only representative patterns but also exceptional behavior. Furthermore, the force-

directed graph was effective to avoid overlapping in AOIs and classify edges with

common starting points but different directions. The second problem is comparison of

multiple scan-paths. We displayed common and exceptional behaviors on the “different”

view and selected patterns that users were interested in. As a result, we visualized only

common or different part in the scan-paths as trajectories. Showing such a characteristic

paths are not major in the existing methods.

Regarding the tasks mentioned in section 1.1, we believe that almost all tasks except

for the compression of the flow line data have been achieved. First, N-gram was able

to detect common patterns between trajectories to some extent and we were able to

grasp the characteristics of actions. Regarding the contents of the visualization, a wide

range of actions were visualized as a result of increasing the items that can be adjusted

by the user, such as interactive pattern selection and selection of the AOI layout to

be used. Furthermore, the behavior between subjects was compared in detail and the

results were clearly visualized, unlike the results of people flow visualization in 3.4.

In this case, we used the data obtained when observing a stimulus freely without

specifying a task. As a result, on both the Wikipedia page and the poster, we

could visualize that many participants had looked at noticeable figures. This result

is considered to close to scenario 1 indicated by 1.3. On the other hand, we did not set

”correct action”, so we could not obtain a direct result of the design layout improvement

as in scenario 2. By applying data when a task such as searching for specific information

is specified, or by evaluating numerical values such as the length of the gaze trajectory

or the distribution of the AOI through, we will be able to obtain results which lead

to getting an evaluation of layouts in the stimulus. We think that scenario 2 can be

clearly realized in this way.
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On the other hand, some problems are still left. We could not find common patterns

when we set 4 and 5 as N . This means our method should be developed to find longer

patterns. We would like to regard partially similar patterns as same if necessary.

4.6 Conclusion

In this Chapter, we proposed a method to extract patterns from multiple eye tracking

scan-paths. Section 4.3 presented details of the proposed technique. Section 4.4

introduced two case studies using the technique, and Section 4.5 discussed the results.

The combination of showing results of N-gram and a force directed graph to show

the specific path was effective to find characteristic patterns and directory display the

corresponding behaviors.
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Chapter 5

Conclusion

5.1 Summary

We proposed two visualization techniques for the trajectories of people flow data and

eye-tracking scan-paths in this thesis. Chapter 1 discussed the usefulness of the

trajectory data in society and explained the outline of the recording and analysis

methods. Based on these backgrounds, we organized the issues related to flow line

analysis, especially issues related to flow line visualization. Chapter 2 introduced

existing research on trajectory analysis. We categorized existing studies according to

the issues in the flow analysis described in Chapter 1 and compared them with our

proposed techniques. In the next two chapters, we presented the details of the proposed

techniques. Chapter 3 described the method to visualize people flow trajectories after

classifying characteristic behaviors. We conducted experiments on human flow data

acquired at the exhibition and the poster session and demonstrated that the proposed

method can classify behaviors based on the passage points of traffic lines and the

duration of stay. In Chapter 4, we proposed a method to visualize gaze trajectory

data. We analyzed the characteristic of trajectories passing the AOIs with the strings

symbolized based on the hierarchical AOIs. Furthermore, we also visualized differences

in behavior among the participants by using a bar graph or selective visualization of

the flow line shape.

We mentioned three problems with the analysis of the trajectory dataset in Chapter 1.
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As compression of data, we adopted conversion from trajectories to strings. Especially,

the compression rate got high on the people flow data. This process succeeded to

preserve characteristic parts of trajectories. As pattern extraction, we applied different

methods such as weighted Levenshtein distances, clustering, and N-gram. We found

various useful features like common behaviors, long-staying or gazing at particular

places. On the third problem, we used a direct drawing of trajectories first, then added

supporting visualization to display characteristic data elements. These methods were

effective to visualize both particular shapes and positions of trajectories and detailed

useful features in a single view.

As future work, we would like to extend the proposed techniques so that we can apply

other types of trajectories and work with more various fields.

5.2 Future Outlook on Trajectory Analysis

Finally, we discuss the future prospects for research and practical applications of

trajectory analysis. We suppose the following trends will be more important and we

will need to address them.

• Increasing the size and complexity of trajectory data to be analyzed.

• Promotion of a detailed analysis combining trajectory data with other data.

• Increasing the use of simulated trajectory data.

First, the scale of the data is expected to diversify larger in the future. For example,

in the target traffic data, the number of moving objects and the lengths of measured

periods will be expanded due to the active traffic network, logistics, and the flow of

tourists in urban areas. Therefore, techniques on a more efficient trajectory analysis

will be necessary. It will be particularly desirable to develop techniques that can not

only select important trajectories from a large number of flow line groups but also

directly extract knowledge about the meaning of the movement extracted from the
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trajectory datasets. In addition, user interfaces for visualization will be important.

More flexible selection and adjustment of visualization contents should be possible by

applying the latest technologies for interactive systems such as Virtual Reality (VR) and

Powerwall. We need to develop visualization methods using large devices, apart from

existing visualization techniques available on relatively small devices such as personal

computers and tablet terminals. Second, the analysis integrating other types of data

in addition to trajectory data may be more effective. Other relevant data include

location information and comments transmitted on Social Network Service (SNS), image

contents, face images captured by cameras, and voice recordings. Several past studies

have addressed analysis and visualization that focuses on the movement information

itself, such as using only trajectory data or performing classification based on the

position and speed of traffic lines. On the other hand, in recent years, there have been

studies that presuppose the use of additional data in addition to movement information

[64]. Moreover, opportunities for individuals to contribute to the accumulation of data

is also increasing through the daily use of location information and the spread of SNS.

Such a composite analysis will be more practical for a more detailed analysis. One of

the major issues is the development of simultaneously visualizing the state of a moving

object and the shape of a flow line. For example, conceivable targets for visualization are

“Where the pedestrian is aiming” and “While he is stopped, what he is paying attention

to” along with the pedestrian’s trajectory. Visualizing such the inner surfaces of such

pedestrians lead to understand what actions have what kinds of meanings and to apply

it for prediction and guidance of actions. Third, the analysis of simulated flow line data

will be more important. As mentioned in Chapter 1.1, the analysis of past trajectory

data is often intended to predict and control future movements or behaviors. Advances

in research on visualization of flow line data and behavior analysis have enabled the

simulation of trajectory data in complex environments. The collection of a large-scale

measurement dataset is often difficult because the recording trajectory data takes time

and often needs careful privacy management. Simulation is more effective for rapid
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flow analysis and prediction of the movement in various environments. It is therefore

essential to develop a visualization method that can efficiently compare the trajectory

simulation datasets under different conditions.
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