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Abstract: We explained the long standing puzzle on 
the mechanism for the resistance peak which appears 
when the magnetic field is precisely aligned along the 
conducting planes of layered materials. Using 
experimentally determined Fermi surface morphology 
in the layer, we showed that the interlayer conduction 
in the presence of strictly in-plane magnetic field is 
primarily governed by tunneling between two Fermi 
surfaces of adjacent layers. We successfully explained 
the azimuthal and field dependence of the peak 
resistance without invoking coherence of interlayer 
transport. So-called coherence peak results from a 
crossover between coherent and incoherent transport. 
 
1. Introduction 

Low dimensional layered materials have been 
intensively studied both for fundamental scientific 
interests and for the perspective of applications. One of 
the important problems in this class of materials is to 
understand the electronic transport properties between 
layers. Angle dependent magnetoresistance oscillations 
(AMRO) for various configurations of magnetic field 
rotation are particularly sensitive to the nature of the 
interlayer coupling and have been extensively studied 
in organic conductors [1-8], cuprates [9], intercalated 
graphites [10], ruthenates [11], and topological 
insulators [12]. 

The so-called coherence peak is an additional 
feature to the AMRO which is observed in some 
layered materials when the magnetic field direction lies 
within a few degrees from the conducting layers 
[13,14]. It is usually observed as a small peak 

superposed on the large background magnetoresistance 
and has long been regarded as a decisive evidence for 
the coherent nature of the interlayer transport [15]. 
However, the mechanism for the coherence peak has 
not yet been settled. It is proposed to result from the 
formation of small closed orbits that arise on the side 
of the warped Fermi surface cylinder in the magnetic 
field nearly parallel to the conducting plane [14], but it 
could be described as well by taking into account the 
role of the self-crossing orbits around the inflection 
point of quasi-two-dimensional (Q2D) Fermi surface 
[16]. 

Both of the above models, being based on the Q2D 
nature of the Fermi surface, assert that the angular 
width of the peak begins must be independent of 
temperature and magnetic field [14]. Surprisingly, our 
study shows that the width of the coherence peak 
strongly depends both on the magnetic field and on 
temperature. Therefore, it becomes very urgent to 
elucidate the underlying physics for the resistance peak. 

Metallic state of β-(BEDT-TTF)2I3 under 
hydrostatic pressure higher than 1.5 kbar, has an 
exceptionally well defined Fermi surface [17-19] and 
showed extraordinarily well developed Shubnikov-de 
Haas oscillations [19], AMRO and the coherence peak 
(this work). We performed the detailed study of 
azimuthal, temperature and magnetic field dependence 
of the coherence peak using the organic layered 
conductor β-(BEDT-TTF)2I3. Unprecedentedly large 
peak height together with large AMRO dominates the 
magnetoresistance and allows us to study its 
temperature, field and azimuthal angle dependence 
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without paying much attention to the background 
behavior. 

Temperature dependence of the peak resistance 
suggests an activated behavior and becomes saturated 
below 5 K. Tunneling model between two identical 
layers successfully explains both the azimuthal angle 
dependence and magnetic field dependence of the peak 
resistance. There is no need to invoke coherence of 
interlayer electron transfer to develop the resistance 
peak in the presence of only the in-plane magnetic field. 
So-called coherence peak results from a crossover from 
coherent to incoherent transport as the out-of-plane 
component of magnetic field vanishes. 
 
2. Material and Methods 

Conventional low-frequency ac technique is used 
for the interlayer resistance Rzz measurement, that is, 

the current is applied perpendicular to the plane of 
highly conducting layers and the voltage is measured 
between two outermost layers. Precise field alignment 
is crucial for this study because Rzz varies extremely 
rapidly within a few degrees from the conducting layer 
(θ = 90o). Moreover, the mounted sample position 
cannot be visually checked once the sample is 
embedded in a pressure cell. Our two-dimensional 
sample rotating system enables us to measure Rzz for all 
the 4 magnetic field directions from which we could 
find Rzz precisely at θ = 90o at any given 𝜙𝜙 direction. 
 
3. Results and discussion 

Figure 1(a) shows the typical AMRO data when 
the magnetic field rotates in a plane containing the z-
axis. There are more than 50 resonance peaks in each 
side which can be interpreted as the Yamaji oscillations 
[21]. They can be understood as an Aharanov-Bohm 
interference of tunneling between the Fermi surfaces of 
the adjacent layers shifted relative to each other by the 
in-plane component of the magnetic field [22]. Angles 
for the resonance peaks satisfy the well-known 
expression [21] 

 
𝑐𝑐𝑐𝑐� tan 𝜃𝜃 � ��𝑛𝑛 � 𝛾𝛾� 

 
where 𝑐𝑐  is the spacing between neighboring 
conducting planes, 𝑐𝑐�  the Fermi wave vector at a 
given 𝜙𝜙, 𝑛𝑛 integer, and 𝛾𝛾 a phase factor smaller than 
1. 𝑐𝑐�  can be obtained from plots of tan 𝜃𝜃  at peak 
angles of magnetoresistance versus 𝑛𝑛 . Projection of 
the Fermi surface to the layer was constructed from 𝑐𝑐� 
values for 36 𝜙𝜙's after the standard procedure [23], and 
shown in Fig. 1(b) as a blue trace. 

The background resistance monotonically 
increases until θ reaches within 3-4o to �90° . But, 
beyond that characteristic angle, it develops a 
pronounced dip at 𝜃𝜃�  (Fig. 1) before increasing 
sharply as θ further approaches �90°. The interlayer 
magnetoresistance reaches up to about 55000% at 2 K 
for the field of 14 T along a direction in the layer, which 

Figure 1. Typical angular dependence of Rzz of β-
(BEDT-TTF)2I3 when the magnetic field rotates in a 
plane containing the axis normal to the conducting 
plane. More than 50 resonance peaks can be resolved 
in each side. Around 𝜃𝜃 � �90°, a pronounced peak 
appears accompanied with dips at both sides. 𝜙𝜙 𝜙
158°, P = 7 kbar, B = 14 T and T = 1.5 K. Rzz at B = 0 
is 4.64 x10-3Ω. Insets: (a) Schematic diagram of β-
(BEDT-TTF)2I3 crystal with crystallographic axis and 
definition of angles. z-direction is parallel to the c*-
axis. (b) First Brillouin zone (red line) based on the 
room temperature crystallography data [20] and the 
experimentally constructed Fermi surface (blue trace). 
Arrows are for directions only. 
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is extremely large for a nonmagnetic material [24]. 
Occurrence of the dip is related with the electron orbits 
near the inflection point of the Q2D Fermi surface, 
where the so-called self-crossing orbits begin to build 
around the belly. Logarithmically diverging cyclotron 
period for these orbits makes their average velocity 
along the z direction significantly large [16]. So, it has 
been proposed to be a good way to estimate the 
interlayer transfer integral 𝑡𝑡�  through the following 
relation [14].  

 
𝜋𝜋/2� �� � 2𝑚𝑚∗𝑡𝑡�𝑐𝑐/ℏ𝑘𝑘� 

 
The resistance peak at � � �90° is of particular 

interest in this study. We used the symbol 𝑅𝑅��∥   to 
denote the peak resistance at � � �90° . Azimuthal 
dependence of 𝑅𝑅��∥  and 𝐺𝐺��∥  (= 1/𝑅𝑅��∥ ) of the peak is 
shown in Fig. 2(a) and (b), respectively. 𝑅𝑅��∥ �𝜙𝜙�  
shows a two-fold rotational symmetry and consists of 
two kinds of lobes, one of which is much larger than 
the other. It is also worth of noting that except the 
conductance peak at 110o corresponding to the 
crystalline b direction, no other feature corresponds 
with any direct or reciprocal lattice vector or a 
combination of them. 

There has been proposed either the closed orbits on 
the side of the warped cylindrical Fermi surface [14] or 
the open orbits nearly parallel to the cylinder axis of the 
Fermi surface [1,16,23] are responsible for the 
spectacular increase of resistance at � � �90° . 
However, none of them could explain the azimuthal 
dependence of 𝑅𝑅��∥ , nor its temperature and magnetic 
field dependence. 

𝑅𝑅��∥   under high magnetic field has unusual 
temperature dependence. Fig. 3 shows temperature 
dependence of 𝑅𝑅��∥  for four different pressure values. 
Magnetic field direction is put along the maximum of 
𝑅𝑅��∥  in the conducting plane (𝜙𝜙 𝜙 158°). Regardless of 
pressure values, there is a universal characteristics in 
the temperature dependence of 𝑅𝑅��∥ : (1) it is metallic 
above Tmin, (2) thermally activated between Tmin and 
about 7 K (T-1 ≈ 0.14 K-1), and (3) becomes saturated 
below 3 K. 

It is interesting to note that the activation energy 
divided by the Boltzmann constant Δ/kB corresponds 
approximately the temperature where the resistance 
peak begins to emerge from the smoothly varying 
background around � � 90° . This suggests that the 
mechanism to produce sharp resistance peak at low 
temperature is tempered by the thermal energy and 

Figure 2. Azimuthal dependence of (a) interlayer resistance 𝑅𝑅��∥  and (b) interlayer conductance 𝐺𝐺��∥  at � �
90°. P = 11 kbar, B = 14 T and T = 1.5 K. 
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completely overwhelmed by thermally activated 
motion above the temperature of the order of the 
activation energy. Around 1.5 K where we performed 
most of azimuthal and field dependent measurements 
of 𝑅𝑅��∥   the temperature effect can be safely ignored 
regardless of pressure value. 

Here, we will show that the interlayer tunneling 
can explain the observed experimental results without 
invoking any semiclassical orbital motion of electrons. 
Let's consider a bilayer system consisted of two 
identical conducting layers separated by d. In the 
presence of magnetic field electron tunneling between 
two layers is described by the Hamiltonian [22] 

 
𝐻𝐻�� � 𝑡𝑡� �𝜓𝜓��� �𝒓𝒓�𝜓𝜓���𝒓𝒓�𝑒𝑒�����𝒓𝒓��/ℏ𝑑𝑑�� � 𝐻𝐻.𝐶𝐶. 
                                     (1) 

where the z-component of the vector potential is given 
by 𝐴𝐴� � 𝐵𝐵∥𝑥𝑥. 𝑡𝑡� is the interlayer tunneling amplitude 
and 𝐵𝐵∥ is the in-plane component of the magnetic field. 
Because of the gauge phase in Eq. (1), the in-plane 
electron momentum changes by Δ𝑘𝑘∥ � 𝑒𝑒𝐵𝐵∥𝑑𝑑/ℏ upon 
traveling between layers [22,25-27], so that the Fermi 
surfaces of the two layers are shifted relative to each 
other by Δ𝑘𝑘∥ along perpendicular to the magnetic field. 

The tunneling current then becomes greatly reduced 
because electrons can tunnel only at the points where 
the conservation laws of both energy and momentum 
are satisfied [for example, the points ka and kb in Fig. 4 
(b)]. 

Addition of perpendicular component of the 
magnetic field 𝐵𝐵�  makes electrons do a cyclotron 
motion along the Fermi surface before tunneling 
through the points ka and kb although they are subject 
to a finite scattering time. Gauge phase is averaged over 
the entire Fermi surface during cyclotron motion and 
causes interference when there are several possible 
trajectories between two tunneling points. Ordinary 
AMRO could be successfully interpreted in this way 
[22]. 

On the other hand, there is no semiclassical 
cyclotron motion within layers when the magnetic field 
is strictly confined in the conducting layers. Only those 
electrons near the points ka and kb can tunnel from one 
layer to the other. This is a so stringent condition for 
electrons on the Fermi surface that the tunneling 
conductance falls sharply as soon as a magnetic field is 

Figure 3. Temperature dependence of 𝑅𝑅��∥   for four
different pressure values. 𝑅𝑅��∥   is metallic above Tmin

(upward arrows), activated between Tmin and about 7 K,
and saturated below 3 K. Activation energy is smaller
at 3.4 kbar but saturates above 6 kbar. 

Figure 4. Magnetic field dependence of calculated
tunneling conductance between two identical layers of
free electrons. Insets depict relative alignment of Fermi 
surfaces for the upper layer (solid) and lower layer
(dashed) for various field values: (a) 𝐵𝐵∥ = 0, (b) 0 < 
𝐵𝐵∥ < 𝐵𝐵∥,� , (c) 𝐵𝐵∥ = 𝐵𝐵∥,� , and (d) 𝐵𝐵∥ > 𝐵𝐵∥,� . 𝐵𝐵∥ is 
applied along upward in the paper and electrons tunnel 
from lower layer to upper one. 
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applied (Fig. 4). Experiments for two purely two-
dimensional electron layers in semiconductor 
structures confirmed the above model in which electron 
density in each layer could be controlled to keep the 
Fermi surface reasonably small so that the laboratory 
superconducting magnet could provide strong enough 
magnetic field 𝐵𝐵∥,� � 2ℏ𝑘𝑘�/𝑒𝑒𝑒𝑒  to make the Fermi 
surfaces of two layers completely apart like in Fig. 4(d) 
[25]. 

However, when there is strong in-plane anisotropy 
with a significant distortion from the circular Fermi 
surface, the Fermi surfaces of neighboring layers share 
the same k over a broad section on the Fermi surface 
even after displacement along certain field directions. 
Fig. 5 shows the Fermi surfaces of two adjacent layers 
of β-(BEDT-TTF)2I3 when the magnetic field is applied 
along four different directions within layers. The size 
of Δ𝒌𝒌∥ in this figure is exaggerated by a factor of 30 
for clarity. 

Angles 𝜙𝜙 � �22° and 56° are directions where 

the peak resistance 𝑅𝑅��∥   has primary and secondary 
maxima, respectively. It is evident that electrons can 
tunnel through only two points denoted with black dots. 
On the other hand, the Fermi surface has flat sections 
along Δ𝒌𝒌∥  at directions of 𝜙𝜙 � 29°  and 110 ° . 
Because all electrons on the flat area can tunnel from 
one layer to the other, interlayer conductivity develops 
sharp maximum for the field orientations around these 
angles. Because the situation in Fig. 5(a) or (c) prevails 
for most of 𝜙𝜙  values and the condition described in 
Fig. 5(b) or (d) is satisfied only over a narrow angular 
range, azimuthal dependence of 𝑅𝑅��∥  must have broad 
maxima and sharp minima. 

The tunneling current under the influence of small 
electric potential difference which is applied across the 
layers, can be represented by [25] 

 
𝐼𝐼� ∝ �𝑅𝑅��∥ ��� ∝ |𝑀𝑀|� �𝑒𝑒�𝒌𝒌�𝑒𝑒� 𝒌𝒌� 

� 𝛿𝛿�𝜀𝜀� � 𝜀𝜀�,��𝛿𝛿�𝜀𝜀� � 𝜀𝜀��𝑓𝑓�𝒌𝒌� � 𝒌𝒌��       (2) 
 
where 𝜀𝜀� and 𝜀𝜀� are electronic energies in the lower 
and upper layer, respectively. Similarly, 𝒌𝒌�  and 𝒌𝒌� 
are wavevectors of electrons in the lower and upper 
layer, respectively. 𝜀𝜀�,�  is the Fermi energy of the 
lower layer and 𝑀𝑀 is the tunneling matrix. The two 𝛿𝛿 

Figure 6. Azimuthal dependence of calculated 
interlayer resistance 𝑅𝑅��∥   using Eq. 2 and the Fermi 
surfaces in Fig. 5 

Figure 5. Fermi surfaces of two adjacent layers of β-
(BEDT-TTF)2I3 for four different magnetic field
directions within the layers. The Fermi surface of the
upper layer (red) is displaced by 𝚫𝚫𝒌𝒌∥  along
perpendicular to the magnetic field. The magnetic field
directions � �  �𝟐𝟐𝟐𝟐°  and 𝟓𝟓𝟓𝟓° correspond to those
of maximal 𝑹𝑹𝒛𝒛𝒛𝒛∥ , and the directions � �  𝟐𝟐𝟐𝟐°  and
𝟏𝟏𝟏𝟏𝟏𝟏°  to minimal 𝑹𝑹𝒛𝒛𝒛𝒛∥ , respectively. The size of 𝚫𝚫𝒌𝒌∥
in this figure is exaggerated by a factor of 30 for clarity.
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functions ensure that only those states near the Fermi 
energy contribute to the tunneling and that energy is 
conserved through tunneling. The 𝑓𝑓 function contains 
the scattering information [25]. Fig. 6 shows the 
calculated interlayer resistance using Eq. (2) and the 
Fermi surfaces in Fig. 5. We assumed an isotropic 
Gaussian distribution of momentum transfers 𝑓𝑓��� �
exp����/2Γ�� with Γ � 0.05𝑘𝑘�  and a constant 
tunneling matrix M over the Fermi surface. 
Considering the simplification that we used, agreement 
between experiment and calculation is excellent. Not 
only the shape of azimuthal dependence but also the 
relative magnitude is well reproduced. Sharper 
resistance dips in the measured data can be attributed 
to the detailed structure of the tunneling matrix M. It is 
remarkable that we do not need to invoke the coherent 
interlayer transport to understand the angular 
dependence of the so-called “coherence” peak. 

Field dependence of tunneling conductance can 
also be calculated with Eq. (2) as in Fig. 4. The 
maximum displacement Δ𝒌𝒌∥  we can introduce to β-
(BEDT-TTF)2I3 using the magnetic field of 14 T is at 
most ~3.2x107 m-1 which is two orders of magnitude 
smaller than the value to achieve the condition in Fig. 
4(c). Therefore, we could observe only the beginning 
of the sharp decrease of tunneling conductivity with our 
available magnetic field. 

Unusually sharp fall of the tunneling conductance 
signifies that the Fermi surface of the current system is 
very well and sharply defined as was already evidenced 
by exceptionally well developed Shubnikov-de Haas 
oscillations [19] and AMRO oscillations (Fig. 1). The 
falling curves of conductance for different field 
directions do not scale with 𝐵𝐵∥,� . Instead, the falling 
rate is principally governed by the degree of 
superposition of the Fermi surfaces between two layers. 
The higher the conductance is on a given field direction, 
the slower the decreasing rate of conductance is. This 
observation strongly supports our tunneling model for 
the field and angle dependence of the resistance peak.  
The tunneling matrix M may vary significantly along 

the Fermi surface because of molecular nature of the 
current system, but our simple model cannot 
distinguish its influence. 
 
4. Conclusion 

We showed both experimentally and theoretically 
that the interlayer tunneling is a dominant mechanism 
for the sharp resistance peak which appears when the 
magnetic field lies parallel to the conducting layers. 
Contrary to the common belief, it is not necessary to 
invoke coherence of interlayer transport for its 
development. But, the dips on both sides of the 
resistance peak are still believed to be originated from 
the existence of the self-crossing orbits. Therefore, the 
so-called coherence peak results from a crossover 
between coherent and incoherent transport. 
 
References 
1. Kartsovnik, M. V., Kononovich, P. A., Laukhin, V. 

N., Schegolev, I. F., Pis'ma Zh. Eksp. Teor. Fiz. 48, 

498 (1988), [JETP Lett. 48, 541 (1988)]. 

2. Kajita, K., Nishio, Y., Takahashi, T., Sasaki, W., 

Kato, R., Kobayashi, H., Solid State Commun. 70, 

1189 (1989). 

3. Osada, T., Kawasumi, A., Kagoshima, S., Miura, N., 

Saito, G., Phys. Rev. Lett. 66, 1525 (1991). 

4. Naughton, M. J., Chung, O. H., Chaparala, M., Bu, 

X., Coppens, P., Phys. Rev. Lett. 67, 3712 (1991). 

5. Kang, W., Hannahs, S. T., Chaikin, P. M., Phys. Rev. 

Lett. 69, 2827 (1992). 

6. Osada, T., Kagoshima, S., and Miura, N., Phys. Rev. 

Lett. 77, 5261 (1996). 

7. Yoshino H., Murata, K., J. Phys. Soc. Jpn. 68, 3027 
(1999). 

8. Kartsovnik, M. V., Chem. Rev. 104, 5737 (2004). 
9. Hussey, N. E., Abdel-Jawad, M., Carrington, A., 

Mackenzie, A. P., Balicas, L., Nature 425, 814 

56
　 Woun Kang NSR. O., Vol. 71



(2003). 
10. Enomoto, K., Uji, S., Yamaguchi, T., Terashima, T., 

Konoike, T., Nishimura, M., Enoki, T., Suzuki, M., 
Suzuki, I. S., Phys. Rev. B 73, 045115 (2006). 

11. Ohmichi, E., Adachi, H., Mori, Y., Maeno, Y., 
Ishiguro, T., Oguchi, T., Phys. Rev. B 59, 7263 
(1999). 

12. Taskin, A. A., Segawa, K., Ando, Y., Phys. Rev. B 
82, 121302 (2010). 

13. Danner, G. M., Kang, W., Chaikin, P. M., Phys. Rev. 
Lett. 72, 3714 (1994). 

14. Hanasaki, N., Kagoshima, S., Hasegawa, T., Osada, 
T., Miura, N., Phys. Rev. B 57, 1336 (1998). 

15. Moses P., McKenzie, R. H., Phys. Rev. B 60, 7998 
(1999). 

16. Peschansky V. G., Kartsovnik, M. V., Phys. Rev. B 
60, 11207 (1999). 

17. Murata, K., Tokumoto, M., Anzai, H., Bando, H., 
Saito, G., Kajimura, K., Ishiguro, T., J. Phys. Soc. 
Jpn. 54, 2084 (1985). 

18. Kang, W., Creuzet, G., Jerome, D., Lenoir, C., J. 
Phys. (Paris) 48, 1035 (1987). 

19. Kang, W., Montambaux, G., Cooper, J. R., Jerome, 
D., Batail, P., Lenoir, C., Phys. Rev. Lett. 62, 2559 
(1989). 

20. Mori, T., Kobayashi, A., Sasaki, Y., Kobayashi, H., 

Saito, G., Inokuchi, H., Chem. Lett. 1984, 957 
(1984). 

21. Yamaji, K., J. Phys. Soc. Jpn. 58, 1520 (1989).  
22. Yakovenko V. M., Cooper, B. K., Physica E 34, 128 

(2006). 
23. Kartsovnik, M. V., Laukhin, V. N., Pesotskii, S. I., 

Schegolev, I. F., Yakovenko, V. M., J. Phys. I 2, 89 
(1992). 

24. Takatsu, H., Ishikawa, J. J., Yonezawa, S., Yoshino, 
H., Shishidou, T., Oguchi, T., Murata, K., Maeno, 
Y., Phys. Rev. Lett. 111, 056601 (2013). 

25. Eisenstein, J. P., Gramila, T. J., Pfeiffer, L. N., West, 
K. W., Phys. Rev. B 44, 6511 (1991). 

26. Simmons, J. A., Lyo, S. K., Klem, J. F., Sherwin, M. 
E., Wendt, J. R., Phys. Rev. B 47, 15741 (1993). 

27. Boebinger, G. S., Passner, A., Pfeiffer, L. N., West, 
K. W., Phys. Rev. B 43, 12673 (1991). 

 
Acknowledgement 

This work was supported by the  National 
Research Foundation of Korea (NRF) grants funded by 
the Korean Government (MSIP) 
(2018R1D1A1B07050087, 2018R1A6A1A03025340). 
W.K. benefited from the visiting professorship of the 
ISSP, University of Tokyo.

57
　Tunneling Picture for the Resistance Peak in the In-Plane Magnetic FieldSeptember 2020




