Lipid Binding Properties of Annexin A9

Sachiko Kuroiwa^{*, 1}, Sayo Toi¹, and Kyoko Kojima-Aikawa^{2, 3}

¹Department of Chemistry and Biochemistry, Division of Advanced Science, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan, ²Natural Science Division, Faculty of Core Research, Ochanomizu University., 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan, ³Institute for Human Life Innovation, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan.

*g1940631@edu.cc.ocha.ac.jp

(Received July 27, 2020)

Abstract: Annexin (ANX) is a family of Ca²⁺ membrane/lipid -dependent binding proteins; altogether 12 types (ANXA1-A11 and A13) have been identified in the mammalian genome. Some of these are important regulators of the cell membrane organization, trafficking, repair, etc. Among them, ANXA9 is the only ANX that does not have the type II Ca²⁺ binding site. ANXs commonly bind to phosphatidylserine (one of the plasma membrane components), via the type II Ca²⁺ binding sites but does not bind to cholesterol. Therefore, ANXA9 appears to have different lipid binding properties and biological functions from other ANXs. In this study, we examined the binding ability of recombinant ANXA9 to cholesterol and its derivatives via the solid-phase assay and characterized the molecular structure of ANXA9 by circular dichroism spectrometry, by determining amino acid sequence motifs, and molecular modeling.

1. Introduction

Annexins (ANXs) are a family of evolutionarily conserved proteins which bind membrane/lipid in a Ca^{2+} -dependent manner. Twelve ANXs have been identified in the mammalian genome. ANXs are involved in several physiological functions related to intracellular membrane trafficking, cell surface membrane repair, and regulation of endocytosis/ exocytosis. ANXs interact with Ca^{2+} via the so called type II Ca^{2+} binding sites which are localized to the carboxy-terminal (C-terminus) core domains composed of 4 or 8 repeating, homologous 70-amino acid units (Fig. 4, *shaded*). Although the type II Ca²⁺ binding sites have been considered as a hallmark of the ANX family, ANXA9 is very unusual because it not only the lacks the type II Ca²⁺ binding sites but also shares little amino acid similarity with other ANXs [1]. It is considered that ANXA9 is unable to bind to phosphatidylserine (PS) due to lack of type II sites.

In previous studies, ANXA9 was shown to bind to liposomes prepared from phospholipids derived from bovine brain extracts in a Ca²⁺-independent manner [2]. ANXA9 was identified as an antigen of the autoantibody of pemphigus vulgaris [3] and as the biomarker of exosomes secreted from colorectal cancer cells [4]. Also, ANXA9 may have functions similar to the membrane proteins because some ANXs have been suggested to be localized in the late endosomes and lysosomes, and may be involved in membrane trafficking and repair [5]. However, detailed lipid binding ability and physiological/pathological functions of ANXA9 have not been elucidated.

In this study, we showed that ANXA9 binds to cholesterol, one of the major membrane lipids besides phospholipids. Membrane cholesterol interacts with phospholipids by its hydrophobic steroid nucleus and regulates the membrane fluidity and permeability. Thus, it is assumed that the cholesterol binding activity of ANXA9 might have relevance to its biological functions. Further, we proposed the possible cholesterol binding sites of ANXA9 by searching for cholesterol-binding motifs, i.e. CRAC and CARC motifs and hydrophobic/ hydrophilic surface mapping.

2. Material and Methods

Analysis and measurements

A 3130xl Genetic Analyzer (Applied Biosystems, Foster City, CA) was used to verify the nucleotide sequences. Protein concentration was estimated using a Pierce BCA protein assay kit (Thermo Scientific, Waltham, MA). Sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) was performed using the Laemmli method [6] and the gels were stained using Coomassie Brilliant Blue (CBB). The secondary structures of the proteins were assessed using circular dichroism (CD) spectrometry. Briefly, the protein solutions (200 µg/mL) were prepared in a 10 mM Tris-HCl solution containing 150 mM NaCl, pH 7.5 and were analyzed in the range- 190 to 250 nm using a CD spectrometer (J-820, JASCO, Tokyo, Japan). The optical density (OD) was measured using a microplate reader (Cytation3, BioTek, Winooski, VT).

Expression vector and preparation of recombinant protein

The cDNA encoding the open reading frames of human ANXA9 was ligated into pGEX-6P-1 (GE Healthcare, Chicago, IL). The glutathione Stransferase (GST) fusion proteins were expressed in *Escherichia coli* JM109 cells and affinity-purified using GSH-Sepharose according to the manufacturer's instructions. Recombinant ANXA9 without the GST tag was prepared by digestion with PreScision Protease (GE Healthcare), followed by affinity purification.

Lipid binding assay

Cholesterol, 7-dehydrocholesterol, and phospha -tidylserine (bovine brain) were purchased from Sigma Aldrich. Ergosterol, ergocalciferol, and cholecalciferol were purchased from Tokyo Chemical Industry Co., Ltd. Microtiter plates (Immulon 1B, Thermo Scientific) were coated with lipids (0–1.6 μ g/well) by volatilizing ethanol at ambient temperature. Binding

assays were carried out in presence of 5 mM CaCl₂ or 2 mM EDTA. After washing with TBS, the wells were blocked with 5% BSA in TBS for 1 h. GST-ANXA9 in TBS containing 2.5% BSA was added to the wells (100 μ L/well) and incubated for 1 h. Bound proteins were detected by enzyme-linked immunosorbent assay ELISA using rabbit anti-GST tagged antibody (Bethyl Laboratories, Montgomery, TX), HRP-conjugated anti-rabbit antibody (KPL), and *o*-phenylenediamine as a substrate. The absorbance of the colored reaction was measured at 490 nm using a microtiter plate reader.

Molecular modeling and analysis of hydrophobic molecular surfaces

Homology modeling of three-dimensional structure of ANXA9 was constructed using the crystal structure of human ANXA2 (PDB: 1W7B) as a template and surface hydrophobicity/hydrophilicity analysis was performed using the Molecular Operating System (MOE).

3. Results and Discussion

Preparation of recombinant ANXA9

GST-ANXA9 was expressed in an *E. coli* expression system and approximately 16 mg of GST-ANXA9 and 3.5 mg of ANXA9 were obtained from 1 L of culture. Recombinant GST-ANXA9 and ANXA9 resolved as a single band on a CBB stained SDS-PAGE gel at the expected positions— 64 kDa and 38 kDa respectively (Fig. 1A). CD spectrometry of ANXA9 showed a spectrum typical of α -helix structures (Fig. 1B), confirming that ANXA9 is composed of α -helical structures similar to other ANX family proteins [7].

Lipid-binding properties of ANXA9

To test the lipid binding property of ANXA9, solid-phase binding assays using GST-ANXA9 and specific antibodies were carried out. The results showed that ANXA9 significantly binds to cholesterol but not to PS, and Ca^{2+} is not necessary for the interaction between ANXA9 and cholesterol. It was suggested that ANXA9 possesses specific cholesterol

Figure 1. SDS-PAGE and CD spectrometry of recombinant ANXA9. (A) CBB-stained SDS-PAGE gel loading sequence: purified GST-ANXA9 (lane 1), purified GST-ANXA9 (after PreScission Protease cleavage (lane 2), and purified ANXA9 (lane 3). Molecular mass standards are shown to the left of the image; (B) CD spectrum of purified ANXA9.

binding property, independent of the type II Ca²⁺ binding sites. Next, we tested the binding ability of ANXA9 to steroid compounds (7-dehydrocholesterol secosteroid and ergosterol) and compounds (cholecalciferol and ergocalciferol). The results showed that while ANXA9 binds to cholecalciferol and ergocalciferol to a lesser extent, it does not bind to 7-dehydrocholesterol and ergosterol. Since a hydroxyl group is present in the same position of 7 relative -dehydrocholesterol and ergosterol to cholesterol, it is not considered to be responsible for the ANXA9-cholesterol interaction. On the other hand, unlike cholesterol, 7-dehydrocholesterol and ergosterol have a double bond between C-7 and C-8; therefore ANXA9 may specifically recognize the double bond in the B ring of steroid nucleus. However, the slight interaction of ANXA9 to cholecalciferol and ergocalciferol suggests that ANXA9 also binds to sites other than the B ring structure.

Putative cholesterol binding sites of ANXA9

Cholesterol is relatively abundant in the plasma membrane and endocytic recycling compartment [8] and plays important roles in regulating the cell membrane fluidity and subcellular distribution of transmembrane receptor proteins in the mammalian cells [9]. The membrane-spanning domains of the nicotinic acetylcholine receptor displays a series of cholesterol consensus domains called the cholesterol recognition/ interaction amino acid consensus (CRAC) motif- (L/V)X1-5YX1-5 (R/K). It has been reported that several cholesterol binding membrane receptors also have CRAC motifs and the reverse version, CARC motif-(R/K) X1-5YX1-5 (L/V). Some receptors have a pair of CRAC and CARC motifs in their transmembrane domains and are suggested to interact with two cholesterol molecules in each leaflet of the membrane bilayer [10]. It has been demonstrated that the CRAC/CARC motif binding to cholesterol consist of the following three interactions: the aliphatic (L/V) amino acid residue holds a methyl group, the aromatic (Y) amino acid residue interact by π - π stacking, and the basic (R/K) amino acid residue forms a hydrogen bond with a hydroxyl group of cholesterol [11]. It has also been reported that CRAC/CARC motifs are not paired and exist outside of the transmembrane domain- hMincle [12]. While ANXs do not have a transmembrane domain, they are abundant in α -helices (Fig.1B); therefore we expected that the CRAC/CARC motifs in ANXA9 to be involved in its cholesterol binding. We tried a CRAC/CARC algorithm to find possible cholesterol binding sites of ANXA9. A CRAC motif (V233-R239) and two CARC motifs (K269 -L279 and K315-L324) were identified in ANXA9 in repeats 3 and 4 of the C-terminus core domain (Fig. 3A). These CRAC and CARC regions are shown in the three-dimensional structure of ANXA9 (Fig. 3B). All of them were localized to the concave side of ANXA9.

Figure 2. Lipid binding activity of ANXA9.

Microtiter plate wells were lipid coated and incubated with 0.25 μ g/mL of GST-ANXA9 in the presence of 5 mM Ca²⁺ (O) or 2 mM EDTA (\blacktriangle). The bound GST-ANXA9 was detected using anti-GST antibodies and HRP conjugated anti-rabbit IgG. Absorbance was measured at 490 nm on a microtiter plate reader. Data from a triplicate experiment is represented as mean \pm standard deviation. Lipid structures are also depicted. Cholesterol, 7-dehydrocholesterol and ergosterol have the steroid nucleus (A-D ring).

Figure 3. CRAC and CARC motifs identified in ANXA9 amino acid sequence.

(A) Amino acid sequence of ANXA9; (B) Putative three-dimensional structure of ANXA9. CRAC and CARC motifs are indicated in *red*.

In addition, some of these motifs in ANXA9 were also found to be in the same regions of other ANXs; ANXA1, A4, A5, A6, A8, A10, A11 (Fig. 4, *boxes*). Whether these ANXs can directly bind to cholesterol remains largely unknown. Previous studies showed that ANXA6 interacts with cholesterol monolayer [14], so ANXA6, as well as ANXA9, might bind to cholesterol via CRAC/CARC motifs. This is only a prediction from the primary structure of the protein and therefore further experimental study is required.

Next, we compared the surface hydrophobic patches of ANXA9 to those of ANXA2 (Fig. 5). It was shown that ANXA9 has a wider hydrophobic surface area than ANXA2. It is suggested that surface hydrophilicity may play a role in the binding of ANXA9 to cholesterol. Patch #7 corresponds to the CARC motif of K315-L324, making it the most probable cholesterol binding site. In future, we plan to

N-terminal	ANXA1	1:		MAMVSEFL	.KQAWFIENEEQEY\	/QTVKSSKGGPGSAVSPYPTFN	N:43
	ANXA2	1:			-MSTVHEILCKLSL	EGDHSTPPSAYGSVKAYTNF	D:34
	ANXA3	1:				MASIWVGHRGTVRDYPDF	5:19
	ANXA4	1:				MATKGGTVKAASGFN	N:15
	ANXA5	1:				MAQVLRGTVTDFPGFE	D:16
	ANXA6a	1:				MAKPAQGAKYRGSIHDFPGF	0:21
	ANXA7	1:			MSYPGYPP1	GYPPFPGYPPAGQESSFPPS	G:30
		31:QYPYPSGFPPMGGGA	PQVPSSGYPGAG	YPAPGGYPAPGGYP	GAPQPGGAPSYPG	/PPGQGFGVPPGGAGFSGYPQF	P:108
		109: PSQSYGGGPAQVPLP	GEPGGQMPSQYPG	GOPTYPSOINTDSF	SSYPVFSPVSLDYS	SEPATVTOVTOGTIRPAANF	0:186
	ANXA8	1:				1AWWKSWIEQEGVTVKSSSHFI	N:22
	ANXA9	1:		MSVTGGK	MAPSLTQEILSHLG	GLASKTAAWGTLGTLRTFLNFS	5:42
	ANXA10	1:				MFCGDYVQGTIFPAPNFN	N:18
	ANXA11	1:		MSYPGYPPPP	GGYPPAAPGGGPWG	GAAYPPPPSMPPIGLDNVAT	Y:45
		46: AGQFNQDYLSGMAAN	45GTFGGANMPNLY	PGAPGAGYPPVPPG	GFGQPPSAQQPVPF	YGMYPPPGGNPPSRMPSYPP	Y:123
		124: PGAPVPGOPMPPPGO	OPPGAYPGOPPVTY	PGOPPVPLPGOOOP	VPSYPGYPGSGTV1	PAVPPTOFGSRGTITDAPGF	0:201
	ANXA13	1:				MGNRHAKASSPQGFE	D:15
						c c	
Repeat1	ANXA1	44:PSSDVAALHKAIMVK	GVDEATIIDILTKR	NNAQRQQIKAAYLQ	ETGKPLDETLKKAL	TGHLEEVVLALLKTP:115	
	ANXA2	35:AERDALNIETAIKTK	GVDEVTIVNILTNR	SNAQRQDIAFAYQR		SGHLETVILGLLKTP:106	
	ANXA3	20:PSVDAEAIQKAIRGI	GTDEKMLISILTER	SNAQRQLIVKEYQA	AYGKELKDDLKGDL	SGHFEHLMVALVTPP:91	
	ANXA4	16:AMEDAQTLRKAMKGL	GTDEDAIISVLAYR	NTAQRQEIRTAYKS	TIGRDLIDDLKSEL	_SGNFEQVIVGMMTPT:87	
	ANXA5	17:ERADAETLRKAMKGL	GTDEESILTLLTSR	SNAQRQEISAAFKT	LFGRDLLDDLKSEL	TGKFEKLIVALMKPS:88	
	ANXA6a	22: PNQDAEALYTAMKGF	GSDKEAILDIITSR	SNRQRQEVCQSYKS	LYGKDLIADLKYEL	TGKFERLIVGLMRPP:93	
	ANXA6b	365: PDADAKALRKAMKGL	GTDEDTIIDIITHR	SNVQRQQIRQTFKS	HFGRDLMTDLKSEI	ISGDLARLILGLMMPP:436	
	ANXA7	187:AIRDAEILRKAMKGF	GTDEQAIVDVVANR	SNDQRQKIKAAFKT	SYGKDLIKDLKSEL	SGNMEELILALFMPP:258	
	ANXA8	23:PDPDAETLYKAMKGI	GTNEQAIIDVLTKR	SNTQRQQIAKSFKA	QFGKDLTETLKSEL	SGKFERLIVALMYPP:94	
	ANXA9	43:VDKDAQRLLRAITGQ	GVDRSAIVDVLTNR	SREQRQLISRNFQE	RTQQDLMKSLQAAL	SGNLERIVMALLQPT:114	
	ANXA10	19:PIMDAQMLGGALQGF	DCDKDMLINILTQF	CNAQRMMIAEAYQS	MYGRDLIGDMREQL	_SDHFKDVMAGLMYPP:90	
	ANXA11	202:PLRDAEVLRKAMKGF	GTDEQAIIDCLGSR	SNKQRQQILLSFKT	AYGKDLIKDLKSEL	SGNFEKTILALMKTP:273	
	ANXA13	16: VDRDAKKLNKACKGM	STNEAAIIEILSGR	TSDERQQIKQKYKA	TYGKELEEVLKSEL	SGNFEKTALALLDRP:87	
		IA	IB	IC	ID	IE HI IA	
Repeat2	ANXA1	116:AOFDADELRAAMKGLO	TDEDTLIEILASR	TNKEIRDINRVYRE		SGDFRNALLSLAKG:186	
	ANXA2	107: AOYDASELKASMKGLO	TDEDSLIEIICSR	TNOELOEINRVYKE	MYKTDLEKDIISDT:	SGDFRKLMVALAKG:177	
	ANXA3	92:AVFDAKQLKKSMKGAG	TNEDALIEILTTR	TSROMKDISOAYYT	VYKKSLGDDISSET	SGDFRKALLTLADG:162	
	ANXA4	88:VLYDVOELRRAMKGAG	TDEGCLIEILASR	TPEEIRRISOTYOO	OYGRSLEDDIRSDT:	SFMFORVLVSLSAG:158	
	ANXA5	89:RLYDAYELKHALKGAG	TNEKVLTEIIASR	TPEELRAIKOVYEE	EYGSSLEDDVVGDT	SGYYORMLVVLLOA:159	
	ANXA6a	94:AYCDAKEIKDAISGI	TDEKCLIEILASR	TNEQMHQLVAAYKD	AYERDLEADIIGDT	SGHFOKMLVVLLOG:164	
	ANXA6b	437: AHYDAKQLKKAMEGAG	TDEKALIEILATR	TNAEIRAINEAYKE	OYHKSLEDALSSDT	SGHFRRILISLATG:507	
	ANXA7	259: TYYDAWSLRKAMQGAG	TQERVLIEILCTR	TNQEIREIVRCYQS	EFGRDLEKDIRSDT	SGHFERLLVSMCQG:329	
	ANXA8	95:YRYEAKELHDAMKGL	TKEGVIIEILASR	TKNQLREIMKAYEE	DYGSSLEEDIQADT	SGYLERILVCLLQG:165	
	ANXA9	115: AQFDAQELRTALKASI	SAVDVAIEILATR	TPPQLQECLAVYKH	VFQVEAVDDITSET	SGILQDLLLALAKG:185	
	ANXA10	91: PLYDAHELWHAMKGV(TDENCLIEILASR	TNGEIFQMREAYCL	QYSNNLQEDIYSET	SGHFRDTLMNLVQG:161	
	ANXA11	274:VLFDIYEIKEAIKGV	TDEACLIEILASR	SNEHIRELNRAYKA	EFKKTLEEAIRSDT	SGHFQRLLISLSQG:344	
	ANXA13	88:SEYAARQLQKAMKGL	TDESVLIEVLCTR	TNKEIIAIKEAYQRI	LFDRSLESDVKGDT	SGNLKKILVSLLQA:158	
		IIA	IIB	IIC	- IID -	IIE -	

Linker	ANXA1	187:	DRSE-	DFGV:	:194															
	ANXA2	178:	RRAED	GSVI:	:186															
	ANXA3	163:	RRDE-	SLKV:	:170															
	ANXA4	159:	GRDE -	GNYL:	:166															
	ANXA5	160:	NRDP-	DAGI:	:167															
	ANXA6a	165:	TREE-	DDVV:	:172															
	ANXA6b	508:	HREE-	GGE - :	:514															
	ANXA7	330:	NRDE-	NQSI:	: 337															
	ANXA8	166:	SRDDV	SSFV:	:174															
	ANXA9	186:	GRDSY	SGII:	:194															
	ANXA10	162:	TREE-	-GYT:	:168															
	ANXA11	345:	NRDE -	STNV:	: 352															
	ANXA13	159:	NRNE-	GDDV:	:166															
Repeat3	ANXA1	195:	NEDLA	DSDAF	₹ <i> </i>	ALYEA	GERRK	G		/FNTI	LTTRS	YPOLI			SKHD	1NKVLE	DLELKG	DIEKCL	TAIVKCA	ATS:273
·	ANXA2	187:	DYELI	DODAF	2[DLYDA	GVKRK	G	TDVP	WISI	MTERS	VPHL		RYKSY	SPYD/	ALESIF	RKEVKG	DLENAF	LNLVOCI	ION:265
	ANXA3	171:	DEHLA	KODAC)]	ILYKA	GENRW	G	TDED	FTEI	LCLRS	FPOL	C (LTFC	EYRNI	SOKD		GELSG	HFEDLL		/RN:249
	ANXA4	167:	DDALV	RODAC)[DLYEA	GEKKW	G	TDEV	FLTV	LCSRN	RNHLI	HVFD	EYKRI	SOKD	EOST	SETSG	SFEDAL	LAIVKC	RN: 245
	ANXA5	168:	DEAOV	EODAC)/	ALFOA	GELKW	- G	TDEEK	FITI	FGTRS	VSHL	RKVFD	KYMTI	SGFO	CEETIC	DRETSG	NLEOLL	LAVVKS]	RS: 246
	ANXA6a	173:	SEDLV	QODVQ)[DLYĔĂ	GELKW	G	TDEAG	FIYI	LGNRS	KQHLI		EYLK	TGKP	EASIF	RGELSG	DFEKLM	ILAVVKCI	RS:251
	ANXA6b	515:	NLDQA	REDAG	Žvaai	EILEI	ADTPS	GDKT	SLETF	RFMTI	LCTRS	YPHL	RVFQ	EFIKM	ITNYD\	/EHTIK	KEMSG	DVRDAF	VAIVQS	/KN:599
	ANXA7	338:	NHQMA	QEDAQ	- 2R ·	- LYQA	GEGRL	G	TDESC	FNMI	LATRS	FPQL	RATME	AYSRM	IANRDI	LSSVS	SREFSG	YVESGL	.KTILQCA	ALN:416
	ANXA8	175:	DPGLA	LQDAQ	- 2[DLYAA	GEKIR	G	TDEM	FITI	LCTRS	ATHLI	RVFE	EYEKI	ANKS	EDSIK	SETHG	SLEEAM	ILTVVKCI	QN:253
	ANXA9	195:	DYNLA	EQDVQ	2Α·	LQR	AEGPS	R	EE1	WVPV	FTQRN	PEHL:	ERVFD	QYQR	TGQEI	EEAVQ	QNRFHG	DAQVAL	LGLASVI	KN:270
	ANXA10	169:	DPAMA	AQDAN	1V ·	-LWEA	сдокт	G	ЕНКТИ	1LQMI	LCNKS	YQQLI	RLVFQ	EFQNI	SGQDI	IVDAIN	ECYDG	YFQELL	VAIVLC	RD:247
	ANXA11	353:	DMSLA	QRDAQ	2E	-LYAA	GENRL	G	TDESK	FNAV	LCSRS	RAHL	/AVFN	IEYQR	ITGRD	CEKSIC	CREMSG	DLEEGM	ILAVVKCL	KN:431
	ANXA13	167:	DKDLA	GQDAk	([DLYDA	GEGRW	G	TDELA	FNEV	LAKRS	YKQLI	RATFQ	AYQIL	IGKD	<u>EEAIE</u>	EETSG	DLQKAY	LTLVRC4	QD:245
			-	II	IIA)(IIIB			II	EC .	Ш	IIID		-	IIIE		
Repeat/	ANYA1	271.	KDVEE	VEKIF	нолми	GVGT	RHKVI	TRTM	VSBSF			VOKW		солті				GGN	- • 346	
переасч	ΔΝΧΔ2	266.				GKGT		TRTM	VSRSE		KTRSF	FKRK		VVVTC	ортка			GGDD	339	
	ΔΝΧΔΒ	250:	ΤΡΔΕΙ	AFRIE	HRAI K	GIGT	DEETI	NRTM	VSRSF	TDIII	DTRTE	FKKH		Υςάτκ	SDTS	GDYFT1		GGDD	-:323	
	ANXA4	246:	KSAYF	AFKIN	/KSMł	GLGT		TRVM	VSRAF	TDML	DTRAH	FKRI	/GKSI	YSETK	GDTS	DYRK\		GGDD	-:319	
	ANXA5	247:	IPAYL	AETLY	YAM	GAGT	DDHTL	IRVM	VSRSE	IDLF	NIRKE	FRKN	ATSL	YSMIK	GDTS	DYKKA	ALLLLC	GEDD	-:320	
	ANXA6a	252:	TPEYF	AERLE	KAM	GLGT	RDNTL	IRIM	VSRSE	ELDMLI	DIREI	FRTK	/EKSL	YSMIK		GEYKK1	LLKLS	GGDDDA	A:328	
	ANXA6b	600:	KPLFF	ADKLY	/KSMł	GAGT	DEKTL	TRIM	VSRSE	IDLL	NIRRE	FIEK	/DKSL	HOAIE	GDTS	GDFLKA	LLALC	GGED	-:670	
	ANXA7	417:	RPAFF	AERLY	(YAM)	GAGT	DDSTL	VRIV	VTRSE	EIDLV	DIKOM	FAOM	/OKTL	.GTMIA	GDTS	DYRRL	LLAIV	'GO	-:488	
	ANXA8	254:	LHSYF	AERLY	YAM	GAGT	RDGTL	IRNI	VSRSE	IDLN	LIKCH	FKKM	GKTL	SSMIM	IEDTSO	DYKNA	LLSLV	GSDP	-:327	
	ANXA9	271:	TPLYF	ADKLI	IQAL	QETEP	NYQVL	IRIL	ISRCE	TDLL	SIRAE	FRKK	GKSL	YSSLC	DAVK	GDCQS4	ALLALC	RAEDM-	-:345	
	ANXA10	248:	KPAYF	AYRLY	/SAIH	DFGF	ΗΝΚΤΥ	IRIL	IARSE	IDLL	TIRKR	YKER	/GKSL	FHDIR	NFAS	БНҮККА	ALLAIC	AGDAED	Y:324	
	ANXA11	432:	TPAFF	AERLN	IKAM	RGAGT	KDRTL	IRIM	VSRSE	TDLL	DIRSE	YKRM	/GKSL	YHDIS	GDTS	GDYRK1	LLKIC	GGND	-:505	
	ANXA13	246:	CEDYF	AERLY	/KSMł	GAGT	DEETL	IRIV	VTRAE	VDLQ	GIKAK	FQEK	/QKSL	SDMVR	SDTS	<u>DFRKL</u>	LVALL	H	-:316	
				IVA	\neg	_	-	IVB	\neg	-	IVC		ΉC	IVD)	I١	/E]		

Figure 4. The multiple sequence alignment of all the ANXs repeats.

ANXs repeats (repeat 1-4) and the five helices within each repeat (IA-IE, IIA-IIE, IIIA-IIIE, and IVA-IVE) were referenced by the amino acid sequence alignment described by Huber *et al.*, 1990. Type II Ca²⁺ binding sites—GXGT-(38-40 residues)-D/E (*shaded*) and the identified CRAC/CARC motifs (*boxes*) are highlighted. CRAC/CARC motifs found in the same regions of other ANXs are also highlighted (*boxes*). ANXA6 composed of 8 repeats are split in to two cores— 6a and 6b. All amino acid sequences were referenced from UniProtKB (https://www.uniprot.org/) and the alignment analysis was carried out using NCBI BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

investigate the cholesterol binding sites of ANXA9 by examining the lipid binding properties of ANXA9 mutants (of potential amino acid residues) and determining the ANXA9 crystal structure.

Figure 5. The hydrophobicity/hydrophilicity analysis of ANXA2 and ANXA9. The hydrophobic areas (*green*) of the protein surfaces of ANXA2 (*upper*) and ANXA9 (*lower*) were calculated by MOE. Areas for all the patches are summarized in the table.

4. Conclusion

We demonstrated that ANXA9 is an α -helix-rich structure like other ANXs and has the ability to bind to cholesterol in a Ca²⁺-independent manner. Our results highlight potential cholesterol binding sites of ANXA9: cholesterol binding consensus motifs (CRAC and CARC) and the hydrophobic patches of protein surface.

References

- Morgan RO, Martin-Almedina S, Iglesias JM, Gonzalez-Florez MI, Fernandez MP. Evolutionary perspective on annexin calcium-binding domains. *Biochim Biophys Acta*, **1742**, 133-140 (2004). <u>https://doi.org/10.1016/j.bbamcr.2004.09.010</u>
- Goebeler V, Ruhe D, Gerke V, Rescher U. Atypical properties displayed by annexin A9, a novel member of the annexin family of Ca²⁺ and lipid binding proteins. *FEBS Letters*, **546**, 359-364 (2003)

https://doi.org/10.1016/s0014-5793(03)00634-3

 Nguyen VT, Ndoye A, Grando SA. Pemphigus vulgaris antibody identifies pemphaxin. A novel keratinocyte annexin-like molecule binding acetylcholine. *J Biol Chem.*, 275, 29466–29476 (2000).

https://doi.org/10.1074/jbc.M003174200

 Yu S, Bian H, Gao X, Gui L. Annexin A9 promotes invasion and metastasis of colorectal cancer and predicts poor prognosis. *Int J Mol Med.*, 41, 2185-2192 (2018).

https://doi.org/10.3892/ijmm.2018.3432

- Rentero C, Blanco-Muñoz P, Meneses-Salas E, Grewal T, Enrich C. Annexins-Coordinators of Cholesterol Homeostasis in Endocytic Pathways. *Int J Mol Sci.*, **19**, 1444 (2018). https://doi.org/10.3390/ijms19051444
- Laemmli UK. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. *Nature*. 227(5259), 680-685 (1970).

https://doi.org/10.1038/227680a0.

- Moss SE, Morgan RO. The annexins. *Genome Biol*, 5, 219.1-219.8 (2004). <u>https://doi.org/10.1186/gb-2004-5-4-219</u>
- Maxfield FR, Menon AK. Intracellular sterol transport and distribution. *Curr Opin Cell Biol.*, 18, 379-385 (2006). <u>https://doi.org/10.1016/j.ceb.2006.06.012</u>
- Maxfield FR, van Meer G. Cholesterol, the central lipid of mammalian cells. *Curr Opin Cell Biol.*, 22, 422-429 (2010).

https://doi.org/10.1016/j.ceb.2010.05.004

- 10. Fantini J, Di Scala C, Evans LS, Williamson PT, Barrantes FJ. A mirror code for protein-cholesterol interactions in the two leaflets of biological membranes. *Sci Rep.*, 6, 21907.1-14 (2016) <u>https://doi.org/10.1038/srep21907</u>
- 11. Fantini J, Di Scala C, Baier CJ, Barrantes FJ. Molecular mechanisms of protein-cholesterol interactions in plasma membranes: Functional distinction between topological (tilted) and

consensus (CARC/CRAC) domains. *Chem Phys Lipids.*, **199**, 52-69 (2016)

https://doi.org/10.1016/j.chemphyslip.2016.02.009

Kiyotake R, Oh-hora M, Ishikawa E, Miyamoto T, Ishibashi T, Yamasaki S. Human Mincle Binds to Cholesterol Crystals and Triggers Innate Immune Responses. *J Biol Chem*, **290(42)**, 25322-25332 (2015).

https://doi.org/10.1074/jbc.M115.645234

13. Huber R, Romisch J, Paques E-P. The crystal and molecular structure of human annexin V, an anticoagulant protein that binds to calcium and membranes. *EMBO J.* 9, 3867–3874 (1990).

https://doi.org/10.1002/j.1460-2075.1990.tb07605.x

14. Domon MM, Matar G, Strzelecka-Kiliszek A, Bandorowicz-Pikula J, Pikula S, Besson F. Interaction of annexin A6 with cholesterol rich membranes is pH-dependent and mediated by the sterol OH. *J Colloid Interface Sci.* 346, 436–441 (2010).

https://doi.org/10.1016/j.jcis.2010.03.015