Signatures of Supersymmetry at B-Factories

大下範幸

お茶の水女子大学理学部素粒子論研究室1

超対称性標準模型には、flavor changing neutral current の過程を引き起こす、標準模型には無い、新しい要因が存在する。例えば、chargino-d-type quark-u-type squark 相互作用において、異なった世代の quark と squark が結合し得る。また、 charged Higgs boson-d-type quark-u-type quark 相互作用においても同様である。こういった異なる世代間の相互作用は、いわゆる 'box diagrams' を介して、 B^0 - \bar{B}^0 混合や K^0 - \bar{K}^0 混合に寄与する。この影響が、どんな観測量にどの程度現れ得るかを、考えてみたい。

模型としては、N=1 超重力 と 大統一理論に基づくものを仮定する。このとき、d-type quarks と up-type squarks の相互作用における世代混合は、 quarks どうしに対するのと同じ Cabibbo-Kobayashi-Maskawa (CKM) 行列によって記述される。また、第一世代と第二世代の squarks の質量はほぼ縮退するが、第三世代の top squarks だけは軽いものと重いものに分れている可能性がある。

 B_d^0 - \bar{B}_d^0 混合や K^0 - \bar{K}^0 混合に関して、box diagrams による単距離効果を測定し得る物理量は、 B_d^0 - \bar{B}_d^0 混合に対する混合パラメーター x_d と K^0 - \bar{K}^0 混合に対する CP 非保存パラメーター ϵ である。これらは、理論的には以下のように与えられる。

$$x_{d} = \frac{G_{F}^{2}}{6\pi^{2}} M_{W}^{2} \frac{M_{B}}{\Gamma_{B}} f_{B}^{2} B_{B} |V_{31}^{*} V_{33}|^{2} \eta_{B} |A_{tt}^{W} + A^{C} + A_{tt}^{H}|$$

$$\epsilon = -e^{i\pi/4} \frac{G_{F}^{2}}{12\sqrt{2}\pi^{2}} M_{W}^{2} \frac{M_{K}}{\Delta M_{K}} f_{K}^{2} B_{K} \text{Im} [(V_{31}^{*} V_{32})^{2} \eta_{K33} (A_{tt}^{W} + A^{C} + A_{tt}^{H})$$

$$+ (V_{21}^{*} V_{22})^{2} \eta_{K22} A_{cc}^{W} + 2V_{31}^{*} V_{32} V_{21}^{*} V_{22} \eta_{K32} A_{tc}^{W}]$$

$$(2)$$

ととで、Vは CKM 行列を表す。また、 A^W 、 A^C 、 A^H は、それぞれ、W-boson、chargino、charged Higgs boson が介する box diagrams からの寄与を表し、 $A^C=A^H=0$ とおけば、標準模型での式に帰着する。したがって、超対称性模型と標準模型の違いは、 $A^W+A^C+A^H$ と A^W との大きさの違いだけであり、二者の比を

$$R = \frac{A_{tt}^W + A^C + A_{tt}^H}{A_{tt}^W} \tag{3}$$

と定義すれば、 R の値の R=1 からのずれが、標準模型には含まれない寄与の大きさの目安となる。

¹東京都文京区大塚 2-1-1

比 R の値を計算すると、 A^W 、 A^C 、 A^H が同符合となるため、一般に 1 以上である ことがわかる。さらに、Higgs bosons の真空期待値の比 $\tan \beta$ が 1 よりあまり大きくな ければ、squarks や charged Higgs bosons の質量によっては、 $R \stackrel{>}{_{\sim}} 2$ となることも可能 である。この時、超対称性模型における新しい寄与は、W-boson によるものと同じくら いの大きさを持っているわけである。

もし R の値が 1 からずれたとすると、式 (1)、 (2) を通して CKM 行列の値の評価に影響が現れる。このことをみるためには、 CKM 行列を標準型で表すと判りやすい。

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$
(4)

ててで $c_{ab}=\cos\theta_{ab}$ 、 $s_{ab}=\sin\theta_{ab}$ である。実験によると、現在のとてろ $|V_{12}|\equiv |V_{us}|=0.2205\pm0.0018$ 、 $|V_{23}|\equiv |V_{cb}|=0.04\pm0.004$ 、 $|V_{13}/V_{23}|\equiv |V_{ub}/V_{cb}|=0.08\pm0.02$ という値になることが知られている。これらの値は、標準模型を仮定して決められたものだが、 tree level での崩壊過程を用いて測定されたものであり、超対称性模型の枠内でも同じ値となる。したがって、CKM 行列を決める 4 個のパラメーターのうち、3 個は、この実験結果から $\sin\theta_{12}=|V_{12}|$ 、 $\sin\theta_{23}=|V_{23}|$ 、 $\sin\theta_{13}=|V_{13}|$ と定まる。残るパラメーターは、CP-violating phase δ だけとなるが、この値は、 x_d や ϵ から決めることができる。これらの実験値は、 $x_d=0.71\pm0.06$ 、 $|\epsilon|=2.26\times10^{-3}$ と、かなり正確に測定されているからである。すなわち、R>1 と R=1 では、CP-violating phase δ が異なって予言されるのである。

実際に δ の値がどのように定まるかをみてみよう。この時、一つの問題点は、式 (1)、 (2) に含まれる f_{B_d} 、 B_{B_d} 、 B_K の値に関して、まだ理論的不定性が大きいということであるが、これらの値は標準模型か超対称性模型かの違いにはよらない。ここでは、最近のlattice 計算による $180~{\rm MeV} < f_{B_d}\sqrt{B_{B_d}} < 260~{\rm MeV}$ と lattice ならびに $1/{\rm N}$ 計算による $0.6 < B_K < 0.9$ という結果をつかうことにする。 CKM 行列の成分 $|V_{13}/V_{23}|$ 、 $|V_{23}|$ に 関する実験値の誤差もまだ小さくはないが、実験の中心値 $|V_{13}/V_{23}|=0.08$ 、 $|V_{23}|=0.04$ を仮定する。そうすると、 x_d と ϵ を 矛盾なく説明できる R の値として可能な領域は $0.8 \lesssim R \lesssim 2.1$ 、これに対応して $\cos\delta$ の値は $-0.5 \lesssim \cos\delta \lesssim 0.8$ と予言される。一方、標準模型 (R=1) では、 $-0.1 \lesssim \cos\delta \lesssim 0.3$ となる。すなわち、標準模型ではとり得ない $\cos\delta$ の値を、超対称性模型では持つことができる。

上に述べた $\cos \delta$ の値は、 B-meson 崩壊における CP 非対称性に影響を与える。いわゆる 'unitarity triangle' の角を $\phi_1 (\equiv \arg(-V_{21}V_{23}^*V_{31}^*V_{33}))$ 、 $\phi_2 (\equiv \arg(-V_{31}V_{33}^*V_{11}^*V_{13}))$ 、 $\phi_3 (\equiv \arg(-V_{11}V_{13}^*V_{21}^*V_{23}))$ と書いて、 $\sin 2\phi_1$ 、 $\sin 2\phi_2$ 、 $\sin 2\phi_3$ 等が CP 非対称性として測定されるが、これらは $r (\equiv \cot \theta_{12} (\sin \theta_{13}/\sin \theta_{23}))$ と δ で表せ

$$\sin 2\phi_1 = \frac{2r\sin\delta(1-r\cos\delta)}{1-2r\cos\delta+r^2}$$
 $\sin 2\phi_2 = \frac{2\sin\delta(r-\cos\delta)}{1-2r\cos\delta+r^2}$

	超対称性模型	標準模型
$\sin 2\phi_1$	(0.55, 0.66)	(0.61, 0.66)
$\sin 2\phi_2$	(-0.96, 0.74)	(0.15, 0.74)
$\sin 2\phi_3$	(-0.18, 1.00)	(-0.18, 0.54)
x_s/x_d	(17, 36)	(17, 21)

表 1: 超対称性模型と標準模型によって予言される $\sin 2\phi_1$ 、 $\sin 2\phi_2$ 、 $\sin 2\phi_3$ と x_s/x_d の値 $|V_{13}/V_{23}|=0.08$ $|V_{23}|=0.04$

$$\sin 2\phi_3 = \sin 2\delta \tag{5}$$

となることが示される。ここで $\sin 2\phi_2$ は δ と r の関数であるが、 δ への依存性が大きく、r の値にはあまり依らない。 $\sin 2\phi_3$ は δ だけの関数である。ゆえに、 $\sin 2\phi_2$ もしくは $\sin 2\phi_3$ が測定されると、ほぼ δ の値が分ることになる。いいかえれば、R の値に起因する $\cos \delta$ の値の相違は、 $\sin 2\phi_2$ と $\sin 2\phi_3$ に反映されるということである。 なお、 $\sin 2\phi_1$ は δ にも r にもあまり依らない。もし、 B^0_s - \bar{B}^0_s 混合に対する混合パラメーター x_s が測定されるとすると、 x_s/x_d も δ 依存性を持つ。表 1 に、超対称性模型と標準模型 による、 CP 非保存性と x_s/x_d に対する予言を記す。 $|V_{13}/V_{23}|$ と $|V_{23}|$ の値としては、 実験の中心値を仮定した。例えば、 B-factories で $\sin 2\phi_2 \sim -1$ という測定値が得られたとすると、これは、超対称性模型を間接的に示唆しているといえるであろう。

結論を述べれば、超対称性標準模型においては、 CKM 行列に含まれる CP-violating phase δ の値が標準模型とは異なって予言され得る。この相違は、 B-meson 崩壊における CP 非対称性 $\sin 2\phi_2$ または $\sin 2\phi_3$ を測定することにより観測される可能性がある。

参考文献

- [1] N. Oshimo, Nucl. Phys. B404 (1993) 20.
- [2] G.C. Branco, G.C. Cho, Y. Kizukuri, and N. Oshimo, Phys. Lett. B337 (1994) 316.
- [3] G.C. Branco, G.C. Cho, Y. Kizukuri, and N. Oshimo, Nucl. Phys. B449 (1995) 483.
- [4] G.C. Cho, Y. Kizukuri, and N. Oshimo, TKU-HEP 95/02, OCHA-PP-62 (1995).